Tutorial Problems \#9

MAT 292 - Calculus III - Fall 2014

Solutions

4.5.11 We look separately at the equations:

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+4 y=e^{t}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+4 y=e^{-t}, \tag{2}
\end{equation*}
$$

since $2 \sinh (t)=e^{t}-e^{-t}$.
For (1) we look for a special solution of the form $A e^{t}$. Substituting this into (1] we get that $A=1 / 6$.
For (2) we look for a special solution of the form $B e^{-t}$. Substituting this into (2) we get that $B=-1 / 4$. Since the general solution of the linear equation

$$
y^{\prime \prime}+y^{\prime}+4 y=0
$$

is given by

$$
y_{l}(t)=c_{1} e^{-t / 2} \cos (\sqrt{15} / 2)+c_{2} e^{-t / 2} \sin (\sqrt{15} / 2),
$$

as $\frac{-1 \pm i \sqrt{15}}{2}$ are the roots of $\lambda^{2}+\lambda+4=0$, we have that the general solution of the equation

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+4 y=2 \sinh (t) \tag{3}
\end{equation*}
$$

is given by

$$
y(t)=c_{1} e^{-t / 2} \cos (\sqrt{15} / 2)+c_{2} e^{-t / 2} \sin (\sqrt{15} / 2)+\frac{1}{6} e^{t}-\frac{1}{4} e^{-t} .
$$

4.5.27 a) Follows directly from substitution.
b) We use the method of integrating factors and we have that:

$$
\begin{equation*}
w(t)=e^{5 t} \int 2 e^{-5 t} d t+C e^{5 t}=C e^{5 t}-\frac{2}{5} \tag{4}
\end{equation*}
$$

c) Integrating (4) we get that:

$$
v(t)=\frac{1}{5} C e^{5 t}-\frac{2}{5} t+C_{0} .
$$

Then we have as required that:

$$
Y(t)=v(t) e^{-t}=-\frac{2}{5} t e^{-t}+\frac{1}{5} C e^{4 t}+C_{0} e^{-t} .
$$

4.5.30 The change of variables $t=\ln x$ gives us that:

$$
x \frac{d y}{d x}=\frac{d y}{d t}, \quad x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} .
$$

By denoting now by y^{\prime} the t derivative of y (i.e. $y^{\prime}=\frac{d y}{d t}$) we have that our equation turns into the following one:

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{2 t}+2 t \tag{5}
\end{equation*}
$$

The solution for the linear part of (5) is given by:

$$
y_{l}(t)=c_{1} e^{t}+c_{2} e^{2 t}
$$

For a general solution of we consider separately the equations:

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{2 t} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=2 t \tag{7}
\end{equation*}
$$

For (6) we look for a special solution of the form $A t e^{2 t}$. Substituting this into (6) we get that $A=3$.
For (7) we look for a special solution of the form $B_{1} t+B_{2}$. Substituting this into (7) we get that $B_{1}=1$, $B_{2}=3 / 2$.
By converting back to the x variable, we find that a general solution of 5 is given by:

$$
y(x)=c_{1} x+c_{2} x^{2}+3 x^{2} \ln x+\ln x+\frac{3}{2}
$$

4.7.28 We use as before the change of variables $x=\ln t$ (which is permissible by the range of t). Then with $y^{\prime}=\frac{d y}{d x}$ we have the equation:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-2 y=3 e^{2 x}-1 \tag{8}
\end{equation*}
$$

The solution of its linear part is given by:

$$
y_{l}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=c_{1} e^{-x}+c_{2} e^{2 x}
$$

From this we can compute the Wronskian:

$$
W\left[y_{1}, y_{2}\right](x)=3 e^{x}
$$

Now we seek a special solution of (8) of the form:

$$
Y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
$$

Using the equation (or directly Theorem 4.7.2, or formulas (25) in page 289 of the textbook) we see that we have:

$$
\begin{gathered}
u_{1}(x)=-\frac{e^{2 x}\left(3 e^{2 x}-1\right)}{3 e^{x}}=-\frac{1}{3} e^{3 x}+\frac{1}{3} e^{x}, \\
u_{2}(x)=\frac{e^{-x}\left(3 e^{2 x}-1\right)}{3 e^{x}}=x+\frac{1}{6} e^{-2 x} .
\end{gathered}
$$

Integrating these two equations we get that $Y(t)$ has the form:

$$
Y(x)=x e^{2 x}-\frac{1}{3} e^{2 x}+\frac{1}{2}
$$

By switching back to the t variable we get that the general solution of (8) has the form:

$$
y(t)=C_{1} \frac{1}{t}+C_{2} t^{2}+t^{2} \ln t+\frac{1}{2}
$$

4.7.39 The equation for v follows by a direct substitution. We let $w=v^{\prime}$. We have that w satisfies the following equation:

$$
\begin{equation*}
w^{\prime}+P(t) w=Q(t) \tag{9}
\end{equation*}
$$

where

$$
P(t)=\frac{2 y_{1}^{\prime}(t)+p(t) y_{1}(t)}{y_{1}(t)} \text { and } Q(t)=\frac{g(t)}{y_{1}(t)}
$$

We use the method of integrating factors for this 1st order equation and we have that:

$$
w(t)=\frac{1}{\mu(t)} \int_{t_{0}}^{t} \mu(s) Q(s) d s+\frac{C}{\mu(t)}
$$

where

$$
\mu(t)=\exp \left(-\int_{t_{0}}^{t} P(s) d s\right)
$$

Letting

$$
F(t)=\int_{t_{0}}^{t} \mu(s) Q(s) d s
$$

we have that:

$$
v(t)=\int_{t_{0}}^{t} w(s) d s+v\left(t_{0}\right)=\int_{t_{0}}^{t} \frac{F(s)+C}{\mu(s)} d s+v\left(t_{0}\right)
$$

which then gives us a general formula for the required $y(t)=v(t) y_{1}(t)$.

