
Tutorial Problems #8
MAT 292 – Calculus III – Fall 2014

Solutions

4.1 - # 18 A body of mass m is attached between two springs with spring constants k1 and k2 as shown

in the figure. The springs are at their rest length when the system is in the equilibrium state. Assume that

the mass slides without friction but the motion is subject to viscous air resistance with coefficient γ . Find the

differential equation satisfied by the displacement x(t) of the mass from its equilibrium position.

Solution Recall that the force acting from each springs obeys Hook’s Law

Fi = −kix

where ki is the spring constant and x is the displacement. We also have an air resistance acting by

Fair = −γ| .x|

Thus, by Newton’s second law, we have the following ODE.

Fnet = F2 + F1 + Fair =⇒ mẍ = (k2 − k1)x− γ| .x|

4.2 - # 15 Can an equation y′′+p(t)y′+q(t)y = 0, with continuous coefficients, have y = sin(t2) as a solution

on an interval containing t = 0? Explain your answer.

Solution To check if this is possible, we assume p, q are continuous (since it’s given), and check how the

solution would solve the ODE (assuming it is a solution of course). We clearly have

y = sin t2, & y′ = 2t cos t2, & y′′ = 2 cos t2 − 4t2 sin t2
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Plugging this back into the ODE gives the following:

2(1 + p(t)t) cos(t2) + (q(t)− 4t2) sin(t2) = 0

Notice since the above should hold for t around 0, this implies the coefficients must be zero. i.e

1 + p(t)t = 0 & 4t2 + q(t) = 0

This fixes our choice of p and q, namely

p(t) = −1

t
& q(t) = 4t2

This means p(t) isn’t continuous around t = 0, i.e. a contradiction to p(t) being continuous. Therefore we

cannot have y = sin(t2) as a solution on an interval containing t = 0.

4.2 - # 25 Prove Theorem 4.2.4 and Corollary 4.2.5

Theorem[4.2.4]: Let K[x] = x′ − P (t)x, where the entries of P are continuous functions on an interval I. If x1

and x2 are continuously differentiable vector functions on I, and c1 and c2 are any constants, then,

K[c1x1 + c2x2] = c1K[x1] + c2K[x2]

Proof. By explicit computation we have

K[c1x1 + c2x2] =(c1x1 + c2x2)′ − P (t)(c1x1 + c2x2) ⇐= Def’n of K

=c1x
′
1 + c2x

′
2 − c1P (t)x1 − c2P (t)x2 ⇐= x1, x2 are differentiable

=c1(x′1 − P (t)x1) + c2(x′2 − P (t)x2) ⇐= rearranging

=c1K[x1] + c2K[x2] ⇐= Def’n of K

Corollary[4.2.5]: Let K[x] = x′ − P (t)x and suppose the entries of P are continuous functions on an interval I.

If x1 and x2 are two solutions of K[x] = 0, then the linear combination

x = c1x1(t) + c2x2(t)

is also a solution for any values of the constants c1 and c2.

Proof. Using the above theorem, we have

K[x] = K[c1x1 + c2x2] = c1K[x1] + c2K[x2]

Thus, if x1 and x2 are solutions, i.e. K[x1] = K[x2] = 0, we see

K[x] = 0

Therefore it is also a solution.

4.2 - # 36 The differential equation

y′′ + δ(xy′ + y) = 0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify that y1 =

exp(−δx2/2) is one solution and then find the general solution in the form of an integral.
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Solution We begin by checking the solution.

y = e−δx
2/2, & y′ = −δxy, & y′′ = −δy + δ2x2y

Thus:

(−δy + δ2x2y) + δ(x(−δxy) + y) = 0

So it is indeed a solution. Recall that when you have the first solution, the full solution is readily found via

y(x) = y1(x)

∫
W [y1, y2]

y21
dx

where the Wronskian is interpreted via Abel’s formula:

W [y1, y2] = C exp

(
−
∫
p(x)dx

)
= C exp

(
−δ
∫
xdx

)
= C exp(−δx2/2)

where C ∈ R. Explicitly, we have y in the integral form of

y(x) = Ce−δx
2/2

∫
eδx

2/2dx

Since the inside is a Gaussian, we are unable to write a closed form.

4.3 - # 51 Consider the equation ay′′ + by′ + cy = 0, where a, b, and c are constants with a > 0. Find

conditions on a, b, and c such that the roots of the characteristic equation are:

(a) Real, different, and negative,

(b) Real with opposite signs

(c) Real, different, and positive.

Solution We begin by computing the characteristic equation, and finding the eigenvalues.

P (λ) = aλ2 + bλ+ c = 0 =⇒ λ± =
−b±

√
b2 − 4ac

2a

We see that if we want real eigenvalues, we require the discriminant to be positive. i.e.

∆ = b2 − 4ac > 0

If we want the eigenvalues to have the same sign, we require that

∆ < b2 =⇒ −4ac < 0 =⇒ c > 0

since a > 0. The positive and negative now come down to the sign of b. If b > 0, this implies the eigenvalues

are negative. If b < 0, this implies the eigenvalues are positive. To make sure that they’re different, we need

∆ 6= 0. If we want eigenvalues with opposite signs, we require

∆ > b2 =⇒ −4ac > 0 =⇒ c < 0

Summarizing we have
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(a) Real, different, and negative,

c > 0 & b > 0 & a > 0 & b2 − 4ac 6= 0

(b) Real with opposite signs

c < 0 & a > 0

(c) Real, different, and positive.

c > 0 & b < 0 & a > 0 & b2 − 4ac 6= 0
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