Tutorial Problems \#7

MAT 292 - Calculus III - Fall 2014

3.5.14.

(a) With $L=4 R^{2} C$ we note that the determinant of

$$
\mathbf{A}-\lambda \mathbf{I}=\left(\begin{array}{cc}
0-\lambda & \frac{1}{L} \\
-\frac{1}{C} & -\frac{1}{R C}-\lambda
\end{array}\right)
$$

is given by

$$
\lambda^{2}+\frac{\lambda}{R C}+\frac{1}{L C}=\left(\lambda+\frac{1}{2 R C}\right)^{2}
$$

so that

$$
\left(\lambda+\frac{1}{2 R C}\right)^{2}=0 \Rightarrow \lambda=-\frac{1}{2 R C}
$$

(b) With $R=1, C=1, L=4$ we have that:

$$
\lambda=-\frac{1}{2}
$$

A corresponding eigenvector is

$$
\mathbf{v}=\binom{-\frac{1}{2}}{1}
$$

We solve the system:

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}
$$

and a corresponding generalized eigenvector is

$$
\mathbf{w}=\binom{0}{-2} .
$$

We arrive at the general solution

$$
\mathbf{x}(t)=c_{1} e^{-t / 2} \mathbf{v}+c_{2}\left(t e^{-t / 2} \mathbf{v}+e^{-t / 2} \mathbf{w}\right)
$$

By the initial condition

$$
\mathbf{x}(0)=\binom{1}{2}
$$

we get that $c_{1}=c_{2}=-2$.
3.5.16. We find the eigenvalues:

$$
\begin{aligned}
\left|\begin{array}{cc}
a_{11}-r & a_{12} \\
a_{21} & a_{22}-r
\end{array}\right|=0 & \Leftrightarrow \quad\left(a_{11}-r\right)\left(a_{22}-r\right)-a_{12} a_{21}=0 \\
& \Leftrightarrow \quad r^{2}-p r+q=0 \quad \Leftrightarrow \quad r=\frac{p \pm \sqrt{\Delta}}{2} .
\end{aligned}
$$

(a) If $q>0$ and $p<0$, then $\Delta=p^{2}-4 q<p^{2}$ and there are two options:

- If $\Delta>0$, then both eigenvalues are real and negative:

$$
r_{1}=\frac{p-\sqrt{\Delta}}{2}<\frac{p}{2}<0 \quad \text { and } \quad r_{2}=\frac{p+\sqrt{\Delta}}{2}<\frac{p+\sqrt{p^{2}}}{2}=0
$$

- If $\Delta<0$, then the eigenvalues are complex with real part $\frac{p}{2}<0$.

In either case, the solutions are asymptotically stable.
(b) If $q>0$ and $p=0$, then $\Delta=-4 q<0$ and the eigenvalues are complex with no real part, so the critical point $(0,0)$ is a center, which is stable.
(c) We have two options

- If $q<0$, then $\Delta=p^{2}-4 q>p^{2}>0$ and the eigenvalues are real and have opposite signs:

$$
r_{1}=\frac{p-\sqrt{\Delta}}{2}<\frac{p-\sqrt{p^{2}}}{2} \leqslant 0 \quad \text { and } \quad r_{2}=\frac{p+\sqrt{\Delta}}{2}>\frac{p+\sqrt{p^{2}}}{2} \geqslant 0
$$

So $(0,0)$ is a saddle-node, which is unstable.

- If $p>0$, then there are 5 cases:
- If $\Delta<0$, then the eigenvalues are complex with real part $\frac{p}{2}>0$. Then $(0,0)$ is a spiral source, which is unstable.
- If $\Delta=0$, then there is only 1 eigenvalue: $\frac{p}{2}>0$, so $(0,0)$ is an unstable improper node.
- If $0 \leqslant \Delta<p^{2}$, then the eigenvalues are real and positive. Then $(0,0)$ is an unstable node.
- If $\Delta=p^{2}$, then the eigenvalues are 0 and $p>0$. So $(0,0)$ is unstable.
- If $\Delta>p^{2}$, then the eigenvalues are real and have opposite signs. So $(0,0)$ is a saddle-node, which is unstable.
6.2.10.(a) $\quad W$ is given by

$$
W(t)=C \exp \left(\int_{t_{0}}^{t} \operatorname{tr}(\mathbf{P}(s)) d s\right)
$$

If W is zero or not depends on the initial condition thus agreeing with Theorem 6.2.5 and Theorem 6.2.1 which asserts uniqueness of the solution when $\mathbf{P}(t)$ is continuous (as it is assumed here).
6.5.6. By 3.4.7 (from tutorial $\# 6$), we have that a fundamental matrix is given by:

$$
\mathbf{X}(t)=\left(\begin{array}{cc}
-2 e^{-t} \sin (2 t) & 2 e^{-t} \cos (2 t) \\
e^{-t} \cos (2 t) & e^{-t} \sin (2 t)
\end{array}\right)
$$

Computing $\mathbf{X}(0)$ and then the inverse of that, we get that:

$$
e^{\mathbf{A} t}=\boldsymbol{\Phi}(t)=\mathbf{X}(t) \mathbf{X}^{-1}(0)=\left(\begin{array}{cc}
e^{-t} \cos (2 t) & -2 e^{-t} \sin (2 t) \\
\frac{1}{2} e^{-t} \sin (2 t) & e^{-t} \cos (2 t)
\end{array}\right)
$$

as

$$
\mathbf{X}^{-1}(0)=\left(\begin{array}{cc}
0 & 1 \\
\frac{1}{2} & 0
\end{array}\right) .
$$

6.5.15. We just computed the special fundamental matrix, so the solution required is

$$
\mathbf{x}(t)=\boldsymbol{\Phi}(t)\binom{3}{1}=\binom{3 \cos (2 t)-2 \sin (2 t)}{\frac{3}{2} \sin (2 t)+\cos (2 t)} e^{-t}
$$

6.5.15. (extra) Just like before, we have

$$
\mathbf{x}(t)=\boldsymbol{\Phi}(t)\binom{2}{2}=\binom{2 \cos (2 t)-4 \sin (2 t)}{\sin (2 t)+2 \cos (2 t)} e^{-t}
$$

Remark. These last 3 exercises are meant to show the advantage of computing the special fundamental matrix $\boldsymbol{\Phi}$ when we need to apply different initial conditions to the same system of differential equations: once $\boldsymbol{\Phi}$ is computed, it is a simple matter to find solutions to different initial conditions.

