
Tutorial Problems #7
MAT 292 – Calculus III – Fall 2014

Solutions

3.5.14.

(a) With L = 4R2C we note that the determinant of

A− λI =

(
0− λ 1

L

− 1
C − 1

RC − λ

)
,

is given by

λ2 +
λ

RC
+

1

LC
=

(
λ+

1

2RC

)2

,

so that (
λ+

1

2RC

)2

= 0⇒ λ = − 1

2RC
.

(b) With R = 1, C = 1, L = 4 we have that:

λ = −1

2
.

A corresponding eigenvector is

v =

(
− 1

2

1

)
.

We solve the system:

(A− λI)w = v,

and a corresponding generalized eigenvector is

w =

(
0

−2

)
.

We arrive at the general solution

x(t) = c1e
−t/2v + c2(te−t/2v + e−t/2w).

By the initial condition

x(0) =

(
1

2

)
,

we get that c1 = c2 = −2.

1



Tutorial #7 – Fall 2014 MAT 292

3.5.16. We find the eigenvalues:∣∣∣∣∣a11 − r a12

a21 a22 − r

∣∣∣∣∣ = 0 ⇔ (a11 − r)(a22 − r)− a12a21 = 0

⇔ r2 − pr + q = 0 ⇔ r =
p±
√

∆

2
.

(a) If q > 0 and p < 0, then ∆ = p2 − 4q < p2 and there are two options:

• If ∆ > 0, then both eigenvalues are real and negative:

r1 =
p−
√

∆

2
<
p

2
< 0 and r2 =

p+
√

∆

2
<
p+

√
p2

2
= 0

• If ∆ < 0, then the eigenvalues are complex with real part p
2 < 0.

In either case, the solutions are asymptotically stable.

(b) If q > 0 and p = 0, then ∆ = −4q < 0 and the eigenvalues are complex with no real part, so the critical

point (0, 0) is a center, which is stable.

(c) We have two options

• If q < 0, then ∆ = p2 − 4q > p2 > 0 and the eigenvalues are real and have opposite signs:

r1 =
p−
√

∆

2
<
p−

√
p2

2
6 0 and r2 =

p+
√

∆

2
>
p+

√
p2

2
> 0

So (0, 0) is a saddle-node, which is unstable.

• If p > 0, then there are 5 cases:

– If ∆ < 0, then the eigenvalues are complex with real part p
2 > 0. Then (0, 0) is a spiral source,

which is unstable.

– If ∆ = 0, then there is only 1 eigenvalue: p
2 > 0, so (0, 0) is an unstable improper node.

– If 0 6 ∆ < p2, then the eigenvalues are real and positive. Then (0, 0) is an unstable node.

– If ∆ = p2, then the eigenvalues are 0 and p > 0. So (0, 0) is unstable.

– If ∆ > p2, then the eigenvalues are real and have opposite signs. So (0, 0) is a saddle-node, which

is unstable.

6.2.10.(a) W is given by

W (t) = Cexp

(∫ t

t0

tr
(
P(s)

)
ds

)
.

If W is zero or not depends on the initial condition thus agreeing with Theorem 6.2.5 and Theorem 6.2.1 which

asserts uniqueness of the solution when P(t) is continuous (as it is assumed here).

6.5.6. By 3.4.7 (from tutorial #6), we have that a fundamental matrix is given by:

X(t) =

(
−2e−t sin(2t) 2e−t cos(2t)

e−t cos(2t) e−t sin(2t)

)
.
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Computing X(0) and then the inverse of that, we get that:

eAt = ΦΦΦ(t) = X(t)X−1(0) =

(
e−t cos(2t) −2e−t sin(2t)
1
2e

−t sin(2t) e−t cos(2t)

)
,

as

X−1(0) =

(
0 1
1
2 0

)
.

6.5.15. We just computed the special fundamental matrix, so the solution required is

x(t) = ΦΦΦ(t)

(
3

1

)
=

(
3 cos(2t)− 2 sin(2t)
3
2 sin(2t) + cos(2t)

)
e−t.

6.5.15. (extra) Just like before, we have

x(t) = ΦΦΦ(t)

(
2

2

)
=

(
2 cos(2t)− 4 sin(2t)

sin(2t) + 2 cos(2t)

)
e−t.

Remark. These last 3 exercises are meant to show the advantage of computing the special fundamental

matrix ΦΦΦ when we need to apply different initial conditions to the same system of differential equations: once

ΦΦΦ is computed, it is a simple matter to find solutions to different initial conditions.
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