Tutorial Problems \#5

MAT 292 - Calculus III - Fall 2014
1.
(a) The equation for v is:

$$
v^{\prime}=f(t, x, v), \quad v\left(t_{0}\right)=v_{0} .
$$

For $t_{1}=t_{0}+h$ we have by Euler's method that:

$$
\begin{equation*}
v_{1}=v_{0}+h \cdot f\left(t_{0}, x_{0}, v_{0}\right) . \tag{0.1}
\end{equation*}
$$

(b) Heun's (or improved Euler's) method for $x(t)$ is

$$
x_{n+1}=x_{n}+\frac{k_{n, 1}+k_{n, 2}}{2} h,
$$

where

$$
\begin{aligned}
& k_{n, 1} \approx x^{\prime}\left(t_{n}\right) \approx v_{n} \\
& k_{n, 2} \approx x^{\prime}\left(t_{n+1}\right) \approx v_{n+1}
\end{aligned}
$$

So we write it as

$$
\begin{equation*}
x_{n+1}=x_{n}+\frac{v_{n}+v_{n+1}}{2} h . \tag{0.2}
\end{equation*}
$$

We can compute v_{n+1} using (a) before we compute x_{n+1}.
c) By formulas (0.1) and 0.2 we can easily see that we have:

$$
v_{n+1}=v_{n}+h \cdot f\left(t_{n}, x_{n}, v_{n}\right),
$$

and

$$
x_{n+1}=x_{n}+\frac{v_{n}+v_{n+1}}{2} h,
$$

where $t_{n+1}=t_{n}+h$, for all $n \in \mathbb{N}$.
2.7.17. Note that we are looking for the local truncation error, so we assume that the $\left(t_{n}, y_{n}\right)$ is equal to the solution: $\phi\left(t_{n}\right)=y_{n}$.
(a) By Taylor's formula (stated in the exercise) and since $\phi^{\prime}\left(t_{n}\right)=f\left(t_{n}, x_{n}\right):=f_{n}$ we have that:

$$
\begin{aligned}
e_{n+1} & =\left[\phi\left(t_{n}\right)-y_{n}\right]+\left[\phi^{\prime}\left(t_{n}\right)-\frac{f_{n}}{2}\right] \cdot h+\left[\phi^{\prime \prime}\left(t_{n}\right) \cdot \frac{h^{2}}{2!}-\frac{f\left(t_{n}+h, y_{n}+h f_{n}\right)}{2} \cdot h\right]+\phi^{\prime \prime \prime}\left(\overline{t_{n}}\right) \frac{h^{3}}{3!} \\
& =\frac{\phi^{\prime \prime}\left(t_{n}\right) \cdot h+f_{n}-f\left(t_{n}+h, y_{n}+h f_{n}\right)}{2} \cdot h+\phi^{\prime \prime \prime}\left(\overline{t_{n}}\right) \frac{h^{3}}{3!}
\end{aligned}
$$

for some $\overline{t_{n}} \in\left(t_{n}, t_{n+1}\right)$.
(b) By Taylor's formula for functions of two variables (also stated in the exercise) we have that:

$$
\begin{aligned}
& f\left(t_{n}+h, y_{n}+h f_{n}\right)-f\left(t_{n}, y_{n}\right)=f_{t}\left(t_{n}, y_{n}\right) \cdot h+f_{y}\left(t_{n}, y_{n}\right) \cdot h f_{n}+ \\
& \quad+\frac{1}{2!}\left(h^{2} f_{t t}\left(\overline{t_{n}}, \overline{y_{n}}\right)+2 h^{2} f_{n} f_{t y}\left(\overline{t_{n}}, \overline{y_{n}}\right)+h^{2} f_{n}^{2} f_{y y}\left(\overline{t_{n}}, \overline{y_{n}}\right)\right)
\end{aligned}
$$

for $\overline{t_{n}} \in\left(t_{n}, t_{n+1}\right)$ and $\overline{y_{n}} \in\left(y_{n}, y_{n}+h f_{n}\right)$.
Going back to the equation of part (a), we see that since

$$
\phi^{\prime \prime}\left(t_{n}\right)=f_{t}\left(t_{n}, y_{n}\right)+f_{y}\left(t_{n}, y_{n}\right) \cdot f_{n}
$$

we finally have that

$$
\begin{equation*}
e_{n+1}=\frac{1}{2!}\left(h^{2} f_{t t}\left(\overline{t_{n}}, \overline{y_{n}}\right)+2 h^{2} f_{n} f_{t y}\left(\overline{t_{n}}, \overline{y_{n}}\right)+h^{2} f_{n}^{2} f_{y y}\left(\overline{t_{n}}, \overline{y_{n}}\right)\right) \cdot h+\phi^{\prime \prime \prime}\left(\overline{t_{n}}\right) \frac{h^{3}}{3!} \tag{0.3}
\end{equation*}
$$

which is a cubic polynomial with respect to h.
(c) Since we have that:

$$
f(t, y)=a t+b y+c
$$

for constants a, b, c, we can easily check that

$$
f_{t t}=f_{t y}=f_{y y} \equiv 0
$$

Now it follows from 0.3 that

$$
e_{n+1}=\phi^{\prime \prime \prime}\left(\overline{t_{n}}\right) \frac{h^{3}}{3!}
$$

in this case.
Note. In fact, we can write equation 0.3 as

$$
e_{n+1}=\frac{1}{2}\left(f_{t t}\left(\overline{t_{n}}, \overline{y_{n}}\right)+2 f_{n} f_{t y}\left(\overline{t_{n}}, \overline{y_{n}}\right)+f_{n}^{2} f_{y y}\left(\overline{t_{n}}, \overline{y_{n}}\right)\right) \cdot h^{3}+\phi^{\prime \prime \prime}\left(\overline{t_{n}}\right) \frac{h^{3}}{3!}
$$

This means that as long as the function f has continuous third partial derivatives, then we can say that

$$
e_{n+1} \leqslant C h^{3}
$$

3.

(a) For a partition of the time axis $\left\{t_{n}\right\}_{n \in \mathbb{N}}$, we have that:

$$
\begin{equation*}
x^{\prime}\left(t_{n}\right) \approx \frac{x\left(t_{n}\right)-x\left(t_{n-1}\right)}{t_{n}-t_{n-1}} \tag{0.4}
\end{equation*}
$$

(b) We have that:

$$
f\left(t_{n}, x\left(t_{n}\right), x^{\prime}\left(t_{n}\right)\right) \approx \frac{x^{\prime}\left(t_{n+1}\right)-x^{\prime}\left(t_{n}\right)}{t_{n+1}-t_{n}}
$$

which by 0.4 becomes:

$$
\begin{equation*}
f\left(t_{n}, x\left(t_{n}\right), x^{\prime}\left(t_{n}\right)\right) \approx \frac{x\left(t_{n+1}\right)-x\left(t_{n}\right)}{\left(t_{n+1}-t_{n}\right)^{2}}-\frac{x\left(t_{n}\right)-x\left(t_{n-1}\right)}{\left(t_{n+1}-t_{n}\right)\left(t_{n}-t_{n-1}\right)} \tag{0.5}
\end{equation*}
$$

(c) Consider $t_{n+1}=t_{n}+h$ for some step $h>0$. Then from (a) and (b) we get

$$
\frac{x_{n+1}-2 x_{n}+x_{n-1}}{h^{2}}=f\left(t_{n}, x_{n}, v_{n}\right)
$$

where $v_{n}=\frac{x_{n}-x_{n-1}}{h}$. We then have the numerical scheme

$$
x_{n+1}=2 x_{n}-x_{n-1}+f\left(t_{n}, x_{n}, v_{n}\right) h^{2} \quad \text { for } n \geqslant 1
$$

(d) The numerical scheme in (c) skips x_{1}, so we need to obtain x_{1} in a different way. We can use Euler's method:

$$
x_{1}=x_{0}+v_{0} h
$$

