
Tutorial Problems #4
MAT 292 – Calculus III – Fall 2014

Solutions

Q. Write an Autonomous Differential Equation where 0 is a semi-stable critical point. Justify

Solution Take the example from last week,

y′ = −y2

If we try the line, y = 0, we see this is indeed a critical point. Since y′ 6 0, this is indeed semi-stable.

2.4 - # 23 Consider the equation

dy/dt = a− y2

(a) Find all of the critical points for the above ODE. Observe that there are no critical points if a < 0, one

critical point if a = 0, and two critical points if a > 0

¶Recall that a critical point is simply y′ = 0, thus

y′ = 0 ⇐⇒ a− y2 = 0 ⇐⇒ y = ±
√
a

If a < 0, there are no real roots. If a = 0, we have the single root of y = 0. If a > 0, we have the two

roots ±
√
a.

(b) Draw the phase line in each case and determine whether each critical point is asymptotically stable,

semistable, or unstable.

¶

a = 0 a > 0
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We see that the first is semistable ( a = 0), the second has that a > 0 is stable while a < 0 is unstable.

The last has no critical point.

(c) In each case, sketch several solution of the ODE.

¶Follow the lines in the below portraits.

a = 0 a > 0 a < 0

(d) If we plot the location of the critical points as a function of a in the ay-plane, we obtain

This is called the bifurcation diagram for the above ODE. The bifurcation at a = 0 is called a saddle-node

bifurcation.

2.4 - # 24 Consider the equation

dy/dt = ay − y3 = y(a− y2)

(a) Again consider the cases a < 0, a = 0 and a > 0. In each case, find the critical points, draw the phase

line, and determine whether each critical point is asymptotically stable, semistable, or unstable.

¶The analysis from the previous question is identical with the addition that y = 0 is in every case.

(b) In each case, sketch several solutions of the ODE in the y-plane

¶Use the previous part.

(c) Draw the bifurcation diagram for the ODE. Note that a = 0 is a pitch fork bifurcation.
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2.5 - # 16 Find b such that the equation is exact. Then solve.

(ye2xy + x)︸ ︷︷ ︸
M

dx+ bxe2xy︸ ︷︷ ︸
N

dy = 0

Solution For the equation to be exact we need the partials to match. i.e. My = Nx. We compute

My =
∂

∂y
(ye2xy + x) = e2xy + 2xye2xy

Nx =
∂

∂x
(bxe2xy) = be2xy + 2bxye2xy

We easily see that we need b = 1 for the above function to be equal. Thus the equation is exact! Now we solve

by comparing the integrand of M and N .∫
Mdx =

∫
(ye2xy + x)dx =

e2xy

2
+
x2

2
+ C(y)∫

Ndy =

∫
xe2xydy =

e2xy

2
+ C̃(x)

By comparing both integrals, we deduce

F (x, y) =
e2xy

2
+
x2

2

is a function that satisfies

∂F

∂x
= M &

∂F

∂y
= N

Therefore our solution must be

const =
e2xy

2
+
x2

2

2.5 - # 23 Show that if (Nx −My)/M = Q, where Q is a function of y only, then the differential equation

M +Ny′ = 0

has an integrating factor of the form

µ(y) = exp

∫
Q(y)dy

3



Tutorial #4 – Fall 2014 MAT 292

Solution Suppose that M +Ny′ = 0 is not exact and consider

µ(y)M︸ ︷︷ ︸
M̄

dx+ µ(y)N︸ ︷︷ ︸
N̄

dy = 0

We’ll try to find the condition on µ to make this exact. How do we do this? Check M ′y = N ′x.

M̄y =
∂

∂y
(µ(y)M) = µ′(y)M + µ(y)My

N̄x =
∂

∂x
(µ(y)N) = µ(y)Nx

Using these equations, we can form an ODE in µ. Namely

0 = N̄x − M̄y = µ(y)(Nx −My)− µ′(y)M ⇐⇒ µ′(y)

µ(y)
=
Nx −My

M
= Q

By solving the above ODE for µ, we obtain

µ(y) = exp

∫
Q(y)dy

2.5 - # 26 Find an integrating factor and solve the given equation

y′ = e2x + y − 1

Solution Rewrite the ODE in differential form

(e2x + y − 1)︸ ︷︷ ︸
M

dx+ (−1)︸︷︷︸
N

dy = 0

We check the partials.

My = 1

Nx = 0

Since the equation is not exact, we’ll need an integrating factor. Following the same logic as the previous

question, we deduce

µ(x) = exp

∫ (
My −Nx

N

)
dx = exp

(
−
∫
dx

)
= e−x

will work. Let’s check

(ex + e−x(y − 1)︸ ︷︷ ︸
M̄

dx+ (−e−x)︸ ︷︷ ︸
N̄

dy = 0

M̄y = e−x

N̄x = e−x

Now the equation is exact! Thus we can just integrate each part respectively.∫
M̄dx =

∫
(ex + e−x(y − 1))dx = ex + e−x(1− y) + C(y)∫
N̄dy =

∫
−e−xdy = −ye−x + C̃(x)
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By comparing the above equation, we see that a function satisfying the partials is

F (x, y) = ex + e−x(1− y)

This implies the general solution is

const = ex + e−x(1− y)

2.4 - # 18 A pond forms as water collects in a conical depression of radius a and depth h. Suppose that

water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.

(a) Show that the volume V (t) of water in the pond at time t satisfies the differential equation

dV/dt = k − απ(3a/πh)2/3V 2/3

where α is the coefficient of evaporation

¶The model we’d like to use is
dV

dt
= Vin − Vout

we’re given that Vin = k, and that Vout = αSA (out of the top, i.e. just a circle). We just have to compute

the surface area of the cone in terms of it’s Volume. Recall that

Vcone =
πr2l

3
& SAcircle = πr2

where r is radius and l is the length. By drawing a picture, you’ll find that the ratio between the length

and radius is always the same i.e. l/r = h/a. Thus we have

Vcone =
πr2l

3
=
πr3h

3a
=⇒ 3

√
3aVcone
πh

= r

=⇒ SA = π

(
3aVcone
πh

)2/3

Therefore, the ODE is

dV/dt = k − απ(3a/πh)2/3V 2/3

(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?

¶Recall that equilibrium occurs when V ′ = 0, so we have to find the roots of the ODE. We see

dV

dt
= k − απ(3a/πh)2/3V 2/3 = 0 ⇐⇒ V = ± (k/απ)3/2πh

3a

Since the Volume cannot be negative, we discard that root. To find the depth l, just substitute back in

as in the previous part.

(c) Find a condition that must be satiated if the pond is not to overflow.

¶For the pond to not overflow, we need dV/dt = 0 when the cone is full. Thus

Vcone =
πa2h

3
=

(k/απ)3/2πh

3a
=⇒ k = απa4/3
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