Tutorial Problems #4
MAT 292 — Calculus III — Fall 2014

SOLUTIONS

Q. Write an Autonomous Differential Equation where 0 is a semi-stable critical point. Justify

Solution Take the example from last week,
Yy =Yy
If we try the line, y = 0, we see this is indeed a critical point. Since ¢’ < 0, this is indeed semi-stable.
2.4 - # 23 Consider the equation
dy/dt = a — 3?

(a) Find all of the critical points for the above ODE. Observe that there are no critical points if a < 0, one

critical point if a = 0, and two critical points if a > 0

9YRecall that a critical point is simply 3’ = 0, thus
Y =0 <= a—13°=0 < y=+Va

If a < 0, there are no real roots. If a = 0, we have the single root of y = 0. If a > 0, we have the two
roots ++/a.

(b) Draw the phase line in each case and determine whether each critical point is asymptotically stable,
semistable, or unstable.

9
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We see that the first is semistable ( @ = 0), the second has that a > 0 is stable while a < 0 is unstable.

The last has no critical point.

(c) In each case, sketch several solution of the ODE.

g Follow the lines in the below portraits.
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This is called the bifurcation diagram for the above ODE. The bifurcation at a = 0 is called a saddle-node

bifurcation.
2.4 - # 24 Consider the equation
dy/dt = ay —y* = y(a — y°)

(a) Again consider the cases a < 0,a = 0 and a > 0. In each case, find the critical points, draw the phase

line, and determine whether each critical point is asymptotically stable, semistable, or unstable.

Y The analysis from the previous question is identical with the addition that y = 0 is in every case.

(b) In each case, sketch several solutions of the ODE in the y-plane

€ Use the previous part.

(c¢) Draw the bifurcation diagram for the ODE. Note that a = 0 is a pitch fork bifurcation.
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2.5 - # 16 Find b such that the equation is exact. Then solve.
(ye*™¥ + x) dx + bxf\f”‘y dy=0
M

Solution For the equation to be exact we need the partials to match. i.e. M, = N,. We compute

0
M, = 8—y(y62””y +a)= e+ 2xye**y

0
N, = — (bze?™) = be®™ + 2bzye?*Y
I &T(bxe ) = be“™ + 2bxye

We easily see that we need b = 1 for the above function to be equal. Thus the equation is exact! Now we solve

by comparing the integrand of M and N.

62:6y 1:2
/de = /(yem + z)dx = 5 + 5 +C(y)
ewa _
/Ndy = /xezzydy == + C(x)
By comparing both integrals, we deduce
62:vy LE2
F = —
(@,y) = ——+ 3
is a function that satisfies
oF OF
— = & — =N
ox 0
Therefore our solution must be
e2wy !E2
const = + —
2 2

2.5 - # 23 Show that if (N, — M,)/M = @, where @ is a function of y only, then the differential equation
M+ Ny =0

has an integrating factor of the form

u(y) = exp / Q(y)dy
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Solution Suppose that M + Ny’ = 0 is not exact and consider

p(y)M dx + p(y)N dy = 0
N—— N——

M N

We'll try to find the condition on p to make this exact. How do we do this? Check M; = N;.

- 0

M, = @(u(y)M) = 1 (y)M + u(y)M,

Ne = 2 (uly)N) = ()N,

Using these equations, we can form an ODE in pu. Namely

0= N, — My = p(e)(Na — My) — ()M = 28 _ ~0

By solving the above ODE for 1, we obtain

p(y) = exp / Q(y)dy

2.5 - # 26 Find an integrating factor and solve the given equation

/

y =" +y—1
Solution Rewrite the ODE in differential form

(e* +y—1)dx+(-1)dy =0
M N

We check the partials.
M, =1

Ny =0

Since the equation is not exact, we’ll need an integrating factor. Following the same logic as the previous

() = exp/ <MyNN’”> dz = exp <—/d:c> e

(e +e F(y—1)dx+ (—e *)dy=0
—_—

question, we deduce

will work. Let’s check

v —

M N
My =e 7
Ny,=e%

Now the equation is exact! Thus we can just integrate each part respectively.

/de = /(e”” +e % (y—1))de =e" +e (1 —y)+ C(y)
/]\_fdy = /—e‘zdy = —ye * +C(x)

4
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By comparing the above equation, we see that a function satisfying the partials is

F(z,y)=e"+e "(1-y)

This implies the general solution is

24 -

’const =e"+e " (1—-y) ‘

# 18 A pond forms as water collects in a conical depression of radius a¢ and depth h. Suppose that

water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.

(a)

(b)

(c)

Show that the volume V(¢) of water in the pond at time ¢ satisfies the differential equation
dV/dt = k — am(3a/7h)?/3V?/3

where « is the coefficient of evaporation

The model we’d like to use is

dv
¥, — ‘/zn - Vou
dt ‘

we’re given that V;, = k, and that V,,; = @S A (out of the top, i.e. just a circle). We just have to compute

the surface area of the cone in terms of it’s Volume. Recall that

2]

Veone = T & SAcirce = mr?

where 7 is radius and [ is the length. By drawing a picture, you’ll find that the ratio between the length

and radius is always the same i.e. [/r = h/a. Thus we have

v B 7T7“2l N 7T7"3h — 3 30/‘/00»”6 —r
ot 3 3a Y

3a‘/YCOTL6 ) 2/3

= SA:7T< 7

Therefore, the ODE is

dV/dt = k — am(3a/wh)?/3V2/3

Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable?

YRecall that equilibrium occurs when V'’ = 0, so we have to find the roots of the ODE. We see

dv k 3/25p,
—r =k —am(Ba/mh)? PV =0 = |V = o (k/am) Tk /O”;) T
a

Since the Volume cannot be negative, we discard that root. To find the depth I, just substitute back in
as in the previous part.
Find a condition that must be satiated if the pond is not to overflow.

§For the pond to not overflow, we need dV/dt = 0 when the cone is full. Thus

2 3/2
Voo Tath (k/am)*/“7h G P
3 3a

4/3




