Tutorial Problems #3
MAT 292 — Calculus III — Fall 2014

SOLUTIONS

2.3 - # 22 Verify the both y;(t) = 1 —t and y(t) = —t2/4 are solutions of the initial value problem

, =t (1 Ay)t?
Yy = B s

y(2)=-1

Where are these solutions valid? Explain why the existence of two solutions of the given problem does not

contradict the uniqueness part of Picard-Lindeléf Theorem.

Solution To check if these are solutions to the IVP, we compute the derivative and see if equality holds true.

For y; we have

—t+ /(2 +4—4t) —t t—2)2  —t+|t—2 -1 t>2
LHS =y, = -1, RHS=—" (2+ ) _ +V2ﬁ: l |{

2 1—t t<?2

For y» we have

t —t+ /(2 —t2)  —t
LHs:yéz_? RH5:¥:7

We see y; solves the problem on [2,00) and y; on R. This doesn’t violate the existence-uniqueness theorem

since
—t 4 (£ + 4y)'/? 1
flty) = + (" +4y) == or = = or isn’t continuous(or Lipschitz) around (2, —1)
2 oy~ JEiay Oy
Thus the Picard-Lindel” of Theorem does not apply. O

Example Consider

Show the solution is unique and exists, then solve the system. Where is the domain of the solution?

Solution Well, ¥/ = f(¢,y), thus in our case we have

flty)=—y = = =-2
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which is continuous. Thus the solution is unique and exists by the Picard-Lindel6f Theorem. The solution to

the ODE can be found using separation of variables, i.e.

d 1 1 1
y =y = /—‘g:/—dt = —=14+C = —=t—-1 = y{t)= —
y y y t—1
The domain is seen to be (—o0,1) since we need to satisty 0 € (—o0,1). O

2.3 - # 32 Solve
{ Y +2y = g(t)

4(0) =0 ,  where g(t) = {

Solution We know

1
y(t) = — /,ugdt where = exp [/p(t)dt] — o2
I
Thus the solution on [0, 1] is given by

1— e—2t

t
y(t) = e_Qt/ e ds = ———
0 2

The solution on t > 1 is given by
y(t) = Ce™™

Since we’d like a continuous solution, we find C by setting both pieces equal to each other at ¢t = 1.

1—e2 . 076271

Ce? =
€ 2 2

Thus a piecewise solution to the ODE is given by

2.3 - #34  Consider
{y+pmy=mw
y(to) = o
Write this in definite form. Using the definite form, assume p > pg > 0 for all ¢ > ¢y and |g(¢)] < M for all
t > to. Show that y(¢) is bounded. Also construct an example.

Solution To do this, let’s define our integrating factor to satisfy u(tp) = 1, i.e.

pu(t) = exp [ /t : p(S)dS}

1
y(t) = o) {

One may combine the integrating factor into the integral by recalling that

Thus we may write

(fmm@@+wﬂ

to

[U@@+Aﬁ@%:17@@
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and the additivity of the exponential. i.e.

1 t s)g(s)ds = t@ s y(to)
. [ / u()g(s)d +y<to>] / ) )+ 0

where
0 ol o] -cof- [

Thus we may write

y(t) = /t:g<s>exp - [ bterae] as-+atamr e [ [ picrae

to

Now if we assume p > py > 0 and |g(t)| < M, we easily have that —p < —pg < 0, thus

t t
o[ [ -] <[ [ -] -
to to

This bound shows the second terms is bounded by

sttohexp [~ [ 0] | < ol ezt

to

To bound the first term, notice that

/t:g(S) exp [— /:p(é)di] ds

since |g| < M. Using the previous bound, we see that

<M /t t exp [— / tp(&)d&} s

t t t t e (4
M (1 — e—po(t—to) M

M [ exp [—/ p(&)df} ds < M [ e Polt=8)gg = Me_pﬂt/ ePosds = ( € ) < —
to s to to Po Do

Putting both bounds together with the triangle inequality we see

M
ly(t)| < pio +y(to)], Vt=to

For an example, take g(t) = e (< 1), y(0) = yo and p(t) = 1(= 1).

Picard Iterations Consider
y' = f(t,yt), y(to) =0

Describe how to do the Picard Iteration Method here. Then assume ¢,, — ¢, and show that ¢ is a solution of

the IVP.

Solution Notice by the fundamental theorem of Calculus we may write

y(t) =y(to) + [ f(s,y(s))ds

to

To approximate the answer to this integral equation, take the approximating sequence

t
0 = Yo, Pr+1 = Yo +/ f(s,¢r(s))ds
to
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This is why the Picard Iteration works if f is nice enough. If we assume that our approximation converges to

some answer ¢, we see this implies that

o(t) = yo + / £(5,6(s))ds

This solves the IVP by differentiating the integral equation. O



