
Tutorial Problems #3
MAT 292 – Calculus III – Fall 2014

Solutions

2.3 - # 22 Verify the both y1(t) = 1− t and y2(t) = −t2/4 are solutions of the initial value problem

y′ =
−t+ (t2 + 4y)1/2

2
, y(2) = −1

Where are these solutions valid? Explain why the existence of two solutions of the given problem does not

contradict the uniqueness part of Picard-Lindelöf Theorem.

Solution To check if these are solutions to the IVP, we compute the derivative and see if equality holds true.

For y1 we have

LHS = y′1 = −1, RHS =
−t+

√
(t2 + 4− 4t)

2
=
−t+

√
(t− 2)2

2
=
−t+ |t− 2|

2
=

{
−1 t > 2

1− t t < 2

For y2 we have

LHS = y′2 = − t
2
, RHS =

−t+
√

(t2 − t2)

2
=
−t
2

We see y1 solves the problem on [2,∞) and y2 on R. This doesn’t violate the existence-uniqueness theorem

since

f(t, y) =
−t+ (t2 + 4y)1/2

2
=⇒ ∂f

∂y
=

1√
t2 + 4y

=⇒ ∂f

∂y
isn’t continuous(or Lipschitz) around (2,−1)

Thus the Picard-Lindel”of Theorem does not apply.

Example Consider {
y′ = −y2

y(0) = −1

Show the solution is unique and exists, then solve the system. Where is the domain of the solution?

Solution Well, y′ = f(t, y), thus in our case we have

f(t, y) = −y2 =⇒ ∂f

∂y
= −2y
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which is continuous. Thus the solution is unique and exists by the Picard-Lindelöf Theorem. The solution to

the ODE can be found using separation of variables, i.e.

y′ = −y2 =⇒
∫
dy

y2
=

∫
−dt =⇒ 1

y
= t+ C =⇒ 1

y
= t− 1 =⇒ y(t) =

1

t− 1

The domain is seen to be (−∞, 1) since we need to satisfy 0 ∈ (−∞, 1).

2.3 - # 32 Solve {
y′ + 2y = g(t)

y(0) = 0
, where g(t) =

{
1 0 6 t 6 1

0 t > 1

Solution We know

y(t) =
1

µ

∫
µgdt where µ = exp

[∫
p(t)dt

]
= e2t

Thus the solution on [0, 1] is given by

y(t) = e−2t
∫ t

0

e2sds =
1− e−2t

2

The solution on t > 1 is given by

y(t) = Ce−2t

Since we’d like a continuous solution, we find C by setting both pieces equal to each other at t = 1.

Ce−2 =
1− e−2

2
=⇒ C =

e2 − 1

2

Thus a piecewise solution to the ODE is given by

y(t) =

{
1−e−2t

2 0 6 t 6 1
e2(1−t)−e−2t

2 t > 1

2.3 - #34 Consider {
y′ + p(t)y = g(t)

y(t0) = y0

Write this in definite form. Using the definite form, assume p > p0 > 0 for all t > t0 and |g(t)| 6 M for all

t > t0. Show that y(t) is bounded. Also construct an example.

Solution To do this, let’s define our integrating factor to satisfy µ(t0) = 1, i.e.

µ(t) = exp

[∫ t

t0

p(s)ds

]
Thus we may write

y(t) =
1

µ(t)

[∫ t

t0

µ(s)g(s)ds+ y(t0)

]
One may combine the integrating factor into the integral by recalling that∫ t0

t

f(ξ)dξ +

∫ s

t0

f(ξ)dξ =

∫ s

t

f(ξ)dξ

2
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and the additivity of the exponential. i.e.

1

µ(t)

[∫ t

t0

µ(s)g(s)ds+ y(t0)

]
=

∫ t

t0

µ(s)

µ(t)
g(s) +

y(t0)

µ(t)

where

µ(s)

µ(t)
=

exp
[∫ s

t0
p(ξ)dξ

]
exp

[∫ t

t0
p(ξ)dξ

] = exp

[∫ s

t0

p(ξ)dξ −
∫ t

t0

p(ξ)dξ

]
= exp

[
−
∫ t

s

p(ξ)dξ

]
Thus we may write

y(t) =

∫ t

t0

g(s) exp

[
−
∫ t

s

p(ξ)dξ

]
ds+ y(t0) exp

[
−
∫ t

t0

p(ξ)dξ

]
Now if we assume p > p0 > 0 and |g(t)| 6M , we easily have that −p 6 −p0 < 0, thus

exp

[∫ t

t0

−p(ξ)dξ
]
6 exp

[∫ t

t0

−p0dξ
]

= e−p0(t−t0)

This bound shows the second terms is bounded by∣∣∣∣y(t0) exp

[
−
∫ t

t0

p(ξ)dξ

]∣∣∣∣ 6 |y(t0)|, ∀t > t0

To bound the first term, notice that∣∣∣∣∫ t

t0

g(s) exp

[
−
∫ t

s

p(ξ)dξ

]
ds

∣∣∣∣ 6M

∫ t

t0

exp

[
−
∫ t

s

p(ξ)dξ

]
ds

since |g| 6M . Using the previous bound, we see that

M

∫ t

t0

exp

[
−
∫ t

s

p(ξ)dξ

]
ds 6M

∫ t

t0

e−p0(t−s)ds = Me−p0t

∫ t

t0

ep0sds =
M(1− e−p0(t−t0))

p0
6
M

p0

Putting both bounds together with the triangle inequality we see

|y(t)| 6 M

p0
+ |y(t0)|, ∀t > t0

For an example, take g(t) = e−t(6 1), y(0) = y0 and p(t) = 1(> 1).

Picard Iterations Consider

y′ = f(t, y(t)), y(t0) = y0

Describe how to do the Picard Iteration Method here. Then assume φn → φ, and show that φ is a solution of

the IVP.

Solution Notice by the fundamental theorem of Calculus we may write

y(t) = y(t0) +

∫ t

t0

f(s, y(s))ds

To approximate the answer to this integral equation, take the approximating sequence

φ0 = y0, φk+1 = y0 +

∫ t

t0

f(s, φk(s))ds
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This is why the Picard Iteration works if f is nice enough. If we assume that our approximation converges to

some answer φ, we see this implies that

φ(t) = y0 +

∫ t

t0

f(s, φ(s))ds

This solves the IVP by differentiating the integral equation.
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