Tutorial Problems \#3

MAT 292 - Calculus III - Fall 2014

Solutions

2.3-\#22 Verify the both $y_{1}(t)=1-t$ and $y_{2}(t)=-t^{2} / 4$ are solutions of the initial value problem

$$
y^{\prime}=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2}, \quad y(2)=-1
$$

Where are these solutions valid? Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of Picard-Lindelöf Theorem.

Solution To check if these are solutions to the IVP, we compute the derivative and see if equality holds true. For y_{1} we have

$$
\text { LHS }=y_{1}^{\prime}=-1, \quad \text { RHS }=\frac{-t+\sqrt{\left(t^{2}+4-4 t\right)}}{2}=\frac{-t+\sqrt{(t-2)^{2}}}{2}=\frac{-t+|t-2|}{2}=\left\{\begin{array}{cc}
-1 & t \geqslant 2 \\
1-t & t<2
\end{array}\right.
$$

For y_{2} we have

$$
L H S=y_{2}^{\prime}=-\frac{t}{2}, \quad R H S=\frac{-t+\sqrt{\left(t^{2}-t^{2}\right)}}{2}=\frac{-t}{2}
$$

We see y_{1} solves the problem on $[2, \infty)$ and y_{2} on \mathbb{R}. This doesn't violate the existence-uniqueness theorem since

$$
f(t, y)=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2} \Longrightarrow \frac{\partial f}{\partial y}=\frac{1}{\sqrt{t^{2}+4 y}} \Longrightarrow \frac{\partial f}{\partial y} \quad \text { isn't continuous(or Lipschitz) around }(2,-1)
$$

Thus the Picard-Lindel" of Theorem does not apply.

Example Consider

$$
\left\{\begin{array}{c}
y^{\prime}=-y^{2} \\
y(0)=-1
\end{array}\right.
$$

Show the solution is unique and exists, then solve the system. Where is the domain of the solution?

Solution Well, $y^{\prime}=f(t, y)$, thus in our case we have

$$
f(t, y)=-y^{2} \Longrightarrow \frac{\partial f}{\partial y}=-2 y
$$

which is continuous. Thus the solution is unique and exists by the Picard-Lindelöf Theorem. The solution to the ODE can be found using separation of variables, i.e.

$$
y^{\prime}=-y^{2} \Longrightarrow \int \frac{d y}{y^{2}}=\int-d t \Longrightarrow \frac{1}{y}=t+C \Longrightarrow \frac{1}{y}=t-1 \Longrightarrow y(t)=\frac{1}{t-1}
$$

The domain is seen to be $(-\infty, 1)$ since we need to satisfy $0 \in(-\infty, 1)$.
2.3-\# 32 Solve

$$
\left\{\begin{array}{rl}
y^{\prime}+2 y & =g(t) \\
y(0) & =0
\end{array} \quad, \quad \text { where } \quad g(t)=\left\{\begin{array}{cc}
1 & 0 \leqslant t \leqslant 1 \\
0 & t>1
\end{array}\right.\right.
$$

Solution We know

$$
y(t)=\frac{1}{\mu} \int \mu g d t \quad \text { where } \quad \mu=\exp \left[\int p(t) d t\right]=e^{2 t}
$$

Thus the solution on $[0,1]$ is given by

$$
y(t)=e^{-2 t} \int_{0}^{t} e^{2 s} d s=\frac{1-e^{-2 t}}{2}
$$

The solution on $t>1$ is given by

$$
y(t)=C e^{-2 t}
$$

Since we'd like a continuous solution, we find C by setting both pieces equal to each other at $t=1$.

$$
C e^{-2}=\frac{1-e^{-2}}{2} \Longrightarrow C=\frac{e^{2}-1}{2}
$$

Thus a piecewise solution to the ODE is given by

$$
y(t)=\left\{\begin{array}{cc}
\frac{1-e^{-2 t}}{2} & 0 \leqslant t \leqslant 1 \\
\frac{e^{2(1-t)}-e^{-2 t}}{2} & t>1
\end{array}\right.
$$

2.3-\#34 Consider

$$
\left\{\begin{array}{c}
y^{\prime}+p(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Write this in definite form. Using the definite form, assume $p \geqslant p_{0}>0$ for all $t \geqslant t_{0}$ and $|g(t)| \leqslant M$ for all $t \geqslant t_{0}$. Show that $y(t)$ is bounded. Also construct an example.

Solution To do this, let's define our integrating factor to satisfy $\mu\left(t_{0}\right)=1$, i.e.

$$
\mu(t)=\exp \left[\int_{t_{0}}^{t} p(s) d s\right]
$$

Thus we may write

$$
y(t)=\frac{1}{\mu(t)}\left[\int_{t_{0}}^{t} \mu(s) g(s) d s+y\left(t_{0}\right)\right]
$$

One may combine the integrating factor into the integral by recalling that

$$
\int_{t}^{t_{0}} f(\xi) d \xi+\int_{t_{0}}^{s} f(\xi) d \xi=\int_{t}^{s} f(\xi) d \xi
$$

and the additivity of the exponential. i.e.

$$
\frac{1}{\mu(t)}\left[\int_{t_{0}}^{t} \mu(s) g(s) d s+y\left(t_{0}\right)\right]=\int_{t_{0}}^{t} \frac{\mu(s)}{\mu(t)} g(s)+\frac{y\left(t_{0}\right)}{\mu(t)}
$$

where

$$
\frac{\mu(s)}{\mu(t)}=\frac{\exp \left[\int_{t_{0}}^{s} p(\xi) d \xi\right]}{\exp \left[\int_{t_{0}}^{t} p(\xi) d \xi\right]}=\exp \left[\int_{t_{0}}^{s} p(\xi) d \xi-\int_{t_{0}}^{t} p(\xi) d \xi\right]=\exp \left[-\int_{s}^{t} p(\xi) d \xi\right]
$$

Thus we may write

$$
y(t)=\int_{t_{0}}^{t} g(s) \exp \left[-\int_{s}^{t} p(\xi) d \xi\right] d s+y\left(t_{0}\right) \exp \left[-\int_{t_{0}}^{t} p(\xi) d \xi\right]
$$

Now if we assume $p \geqslant p_{0}>0$ and $|g(t)| \leqslant M$, we easily have that $-p \leqslant-p_{0}<0$, thus

$$
\exp \left[\int_{t_{0}}^{t}-p(\xi) d \xi\right] \leqslant \exp \left[\int_{t_{0}}^{t}-p_{0} d \xi\right]=e^{-p_{0}\left(t-t_{0}\right)}
$$

This bound shows the second terms is bounded by

$$
\left|y\left(t_{0}\right) \exp \left[-\int_{t_{0}}^{t} p(\xi) d \xi\right]\right| \leqslant\left|y\left(t_{0}\right)\right|, \quad \forall t \geqslant t_{0}
$$

To bound the first term, notice that

$$
\left|\int_{t_{0}}^{t} g(s) \exp \left[-\int_{s}^{t} p(\xi) d \xi\right] d s\right| \leqslant M \int_{t_{0}}^{t} \exp \left[-\int_{s}^{t} p(\xi) d \xi\right] d s
$$

since $|g| \leqslant M$. Using the previous bound, we see that

$$
M \int_{t_{0}}^{t} \exp \left[-\int_{s}^{t} p(\xi) d \xi\right] d s \leqslant M \int_{t_{0}}^{t} e^{-p_{0}(t-s)} d s=M e^{-p_{0} t} \int_{t_{0}}^{t} e^{p_{0} s} d s=\frac{M\left(1-e^{-p_{0}\left(t-t_{0}\right)}\right)}{p_{0}} \leqslant \frac{M}{p_{0}}
$$

Putting both bounds together with the triangle inequality we see

$$
|y(t)| \leqslant \frac{M}{p_{0}}+\left|y\left(t_{0}\right)\right|, \quad \forall t \geqslant t_{0}
$$

For an example, take $g(t)=e^{-t}(\leqslant 1), y(0)=y_{0}$ and $p(t)=1(\geqslant 1)$.

Picard Iterations Consider

$$
y^{\prime}=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

Describe how to do the Picard Iteration Method here. Then assume $\phi_{n} \rightarrow \phi$, and show that ϕ is a solution of the IVP.

Solution Notice by the fundamental theorem of Calculus we may write

$$
y(t)=y\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, y(s)) d s
$$

To approximate the answer to this integral equation, take the approximating sequence

$$
\phi_{0}=y_{0}, \quad \phi_{k+1}=y_{0}+\int_{t_{0}}^{t} f\left(s, \phi_{k}(s)\right) d s
$$

This is why the Picard Iteration works if f is nice enough. If we assume that our approximation converges to some answer ϕ, we see this implies that

$$
\phi(t)=y_{0}+\int_{t_{0}}^{t} f(s, \phi(s)) d s
$$

This solves the IVP by differentiating the integral equation.

