Tutorial Problems \#13

MAT 292 - Calculus III - Fall 2014

Solutions

9.2.13. The Fourier series are given by:

$$
\sum_{n=1}^{\infty} b_{n} \sin (n \pi x / L)
$$

where

$$
\begin{aligned}
b_{n} & =-\frac{1}{L} \int_{-L}^{L} x \sin (n \pi x / L) d x \\
& =\left[x \frac{\cos (n \pi x / L)}{n \pi}\right]_{-L}^{L}-\frac{1}{n \pi} \int_{-L}^{L} \cos (n \pi x / L) d x \\
& =\frac{2 L}{n \pi} \cos (n \pi)-\frac{L}{(n \pi)^{2}}[\sin (n \pi x / L)]_{-L}^{L} \\
& =\frac{2 L(-1)^{n}}{n \pi}
\end{aligned}
$$

9.2.extra. The function:

$$
f(x)=\cos (3 x)-\cos (8 x)
$$

has period 2π. So we can take its Fourier expansion in $[-\pi, \pi]$ that will be of the form:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

But the function is already in this form: the only non-zero coefficients will be $a_{3}=1$ and $a_{8}=-1$.

9.6.13.

(a) Follow the procedure in pages 664-666 to obtain the solution

$$
u(x, t)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \cos \left(\frac{n \pi x}{40}\right) e^{-\left(\frac{n \pi}{80}\right)^{2} t}
$$

where

$$
\begin{aligned}
& c_{0}=\frac{2}{40} \int_{0}^{40} \frac{x(60-x)}{30} d x=\frac{400}{9} \\
& c_{n}=\frac{2}{40} \int_{0}^{40} \frac{x(60-x)}{30} \cos \left(\frac{n \pi x}{40}\right) d x
\end{aligned}
$$

(c) As we let $t \rightarrow \infty$, we obtain the steady-state temperature, which is

$$
\lim _{t \rightarrow \infty} u(x, t)=\frac{c_{0}}{2}=\frac{200}{9}
$$

which is the average of the initial temperature of the bar.
(d) The solution has the form:

$$
u(t, x)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} t / 6400} \cos (n \pi x / 40)
$$

so we need to find t such that

$$
\left|u(x, t)-\frac{c_{0}}{2}\right|<1
$$

This is equivalent to

$$
\underbrace{\left|\sum_{n=1}^{\infty}\left[c_{n} e^{-n^{2} \pi^{2} t / 6400} \cos (n \pi x / 40)\right]\right|}_{=S} \leqslant 1 .
$$

The goal is to estimate the series on the left-hand side and try to obtain a geometric series that is larger than the original S.

We have

$$
\begin{aligned}
S & \leqslant \sum_{n=1}^{\infty}\left|c_{n} e^{-n^{2} \pi^{2} t / 6400} \cos (n \pi x / 40)\right| \\
& \leqslant \sum_{n=1}^{\infty}\left|c_{n}\right| e^{-n^{2} \pi^{2} t / 6400} \\
& \leqslant \sum_{n=1}^{\infty}\left|c_{n}\right| e^{-n \pi^{2} t / 6400}
\end{aligned}
$$

where on the last step we used the fact that $n \leqslant n^{2}$.
Then, we need to estimate $\left|c_{n}\right|$:

$$
\begin{aligned}
\left|c_{n}\right| & =\frac{2}{40}\left|\int_{0}^{40} \frac{x(60-x)}{30} \cos \left(\frac{n \pi x}{40}\right) d x\right| \\
& \leqslant \frac{2}{40} \int_{0}^{40}\left|\frac{x(60-x)}{30}\right| d x \\
& \leqslant \frac{1}{20} \max _{x \in[0,40]} \frac{x(60-x)}{30}(40-0) \\
& =\frac{120}{20}=6
\end{aligned}
$$

Then we get

$$
S \leqslant 6 \sum_{n=1}^{\infty} e^{-n \pi^{2} t / 6400}=6 e^{-\pi^{2} t / 6400} \frac{1}{1-e^{-\pi^{2} t / 6400}}=\frac{6}{e^{\pi^{2} t / 6400}-1} .
$$

We now want to check when this quantity is smaller than 1 :

$$
\begin{aligned}
\frac{6}{e^{\pi^{2} t / 6400}-1} & \leqslant 1 \\
e^{\pi^{2} t / 6400} & \geqslant 7 \\
\frac{\pi^{2} t}{6400} & \geqslant \ln 7 \\
t & \geqslant \frac{6400 \ln 7}{\pi^{2}} \approx 1262 \mathrm{~s} .
\end{aligned}
$$

Note. This is not the best t. This is a value for t, after which we can prove that the temperature is within 1^{o} of the steady-state temperature.
Many of the estimates here are not very good, they are just good enough to give us an estimate.
9.6.11a. To find the solution, we need to write

$$
u(x, t)=u_{E}(x)+v(x, t)
$$

where $u_{E}(x)$ is the equilibrium solution and $v(x, t)$ is the offset from equilibrium.
Then, since $u_{E}(x)$ depends on x only, it satisfies $u_{E}^{\prime \prime}(x)=0$, which gives $u_{E}(x)=a x+b$. Using the initial conditions, we deduce that

$$
u_{E}(x)=30-x
$$

Then the offset $v(x, t)$ satisfies

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}} \\
v(0, t)=0 \\
v(30, t)=0 \\
v(x, 0)=x(60-x) / 30-(30-x)=\bar{f}(x)
\end{array}\right.
$$

This is the solution of the Heat Equation with "frozen ends", which we computed in lecture:

$$
v(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{30}\right) e^{\left(\frac{n \pi}{L}\right)^{2} t}
$$

where

$$
b_{n}=\frac{2}{30} \int_{0}^{30} \bar{f}(x) \sin (n \pi x / 30) d x
$$

