Tutorial Problems \#10

MAT 292 - Calculus III - Fall 2014

Solutions

5.1-\# 15 Find the Laplace Transform of

$$
f(t)=\left\{\begin{array}{cc}
0, & 0 \leqslant t \leqslant 1 \\
1, & 1<t \leqslant 2 \\
0, & 2<t
\end{array}\right.
$$

Solution By direct computation we have

$$
\mathcal{L}\{f(t)\}=\int_{1}^{2} e^{-s t} d t=\left.\frac{-1}{s} e^{-s t}\right|_{1} ^{2}=\frac{e^{-s}-e^{-2 s}}{s}
$$

5.1-\# 16 Find the Laplace Transform of

$$
f(t)=\left\{\begin{array}{cc}
0, & 0 \leqslant t \leqslant 1 \\
e^{-t}, & 1<t
\end{array}\right.
$$

Solution Again, by direct computation we have

$$
\mathcal{L}\{f(t)\}=\int_{1}^{\infty} e^{-s t} e^{-t} d t=\int_{1}^{\infty} e^{-(s+1) t} d t=\left.\frac{-1}{s+1} e^{-(s+1) t}\right|_{1} ^{\infty}=\frac{e^{-(s+1)}}{s+1}
$$

5.1- \# 37 Consider the Laplace transform of t^{p}, where $p>-1$.
(a) Referring to Problem 36, show that

$$
\mathcal{L}\left\{t^{p}\right\}=\int_{0}^{\infty} e^{-s t} t^{p} d t=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x=\frac{\Gamma(p+1)}{s^{p+1}} . \quad s>0
$$

【Proceed with the change of variables $x=s t$, treating s as a positive constant (otherwise we'll have orientation issues). We obtain

$$
\mathcal{L}\left\{t^{p}\right\}=\int_{0}^{\infty} e^{-s t} t^{p} d t=\int_{0}^{\infty} e^{-x}\left(\frac{x}{s}\right)^{p} \frac{1}{s} d x=\frac{1}{s^{p+1}} \int_{0}^{\infty} e^{-x} x^{p} d x
$$

Following Problem 36 gives us the integral formulation for the Gamma function, hence

$$
\mathcal{L}\left\{t^{p}\right\}=\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0
$$

（b）Let p be a positive integer n in a）．Show that

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0
$$

【If p is a positive integer n ，by Problem 36 we know that

$$
\Gamma(p+1)=n!
$$

Using our above formula，now shows that

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{\Gamma(n+1)}{s^{n+1}}=\frac{n!}{s^{n+1}}, \quad s>0
$$

（c）Show that

$$
\mathcal{L}\left\{t^{-1 / 2}\right\}=\frac{2}{\sqrt{s}} \int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\frac{\pi}{2}}, \quad s>0
$$

【Again，by problem 36，we know that $\Gamma(1 / 2)=\sqrt{\pi}$ ，hence if $p=-1 / 2$ we have

$$
\mathcal{L}\left\{t^{-1 / 2}\right\}=\frac{\Gamma(1 / 2)}{s^{1 / 2}}=\sqrt{\frac{\pi}{s}}, \quad s>0
$$

（d）Show that

$$
\mathcal{L}\left\{t^{1 / 2}\right\}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}
$$

【One more time by problem 36，we have that $p \Gamma(p)=\Gamma(p+1)$ for $p>0$ ．So we have

$$
\mathcal{L}\left\{t^{1 / 2}\right\}=\frac{\Gamma(3 / 2)}{s^{3 / 2}}=\frac{\Gamma(1 / 2)}{2 s^{3 / 2}}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}, \quad s>0
$$

5．2－\＃ 11 Let $F(s)=\mathcal{L}\{f(t)\}$ ，where $f(t)$ is piecewise continuous and of exponential order on $[0, \infty)$ ．Show that

$$
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)
$$

Solution Recall that we have

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)
$$

via integration by parts since $f(t)$ is piecewise continuous and of exponential order．Define

$$
g(t)=\int_{0}^{t} f(\tau) d \tau \Longrightarrow g^{\prime}(t)=f(t)
$$

Hence，by plugging this into the above formula we have

$$
\mathcal{L}\{f(t)\}=s \mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\} \Longrightarrow \mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}
$$

5．2－\＃28 The Laplace transforms of certain functions can be found conveniently form their Taylor series expansions．Using the Taylor series for $\sin t$

$$
\sin t=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+1}}{(2 n+1)!}
$$

and assuming that the Laplace transform of this series can be computed term by term，verify that

$$
\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}, \quad s>1
$$

Solution By linearity, we have that

$$
\mathcal{L}\{\sin t\}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \mathcal{L}\left\{t^{2 n+1}\right\}
$$

Luckily, we previous did a question that gave us a nice formula for this! Recalling

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathcal{L}\left\{t^{2 n+1}\right\}=\frac{(2 n+1)!}{s^{2 n+2}}
$$

Plugging this into the above form, we have

$$
\mathcal{L}\{\sin t\}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{s^{2 n+2}}=\frac{1}{s^{2}} \sum_{n=0}^{\infty}\left(-\frac{1}{s^{2}}\right)^{n}
$$

Recall the geometric series formula

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

clearly, if $x=-1 / s^{2}$, then

$$
\frac{1}{1+s^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{s^{2 n+2}}=\mathcal{L}\{\sin t\}
$$

as desired.
5.2-\#29 For each of the following initial value problems, use Theorem 5.2.4 to find the differential equation satisfied by $F(s)=\mathcal{L}\{f(t)\}$, where $y=f(t)$ is the solution of the given initial value problem.

$$
y^{\prime \prime}-t y=0 ; \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution Theorem 5.2.4 states that for f piecewise continuous of exponential order a, then

$$
\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} F^{(n)}(s), \quad s>a
$$

where $F^{(n)}=d^{n} / d x^{n} \mathcal{L}\{f(t)\}$. Clearly we have

$$
\mathcal{L}\left\{y^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)=s^{2} F(s)-s
$$

and

$$
\mathcal{L}\{t y(t)\}=-F^{\prime}(s)
$$

Hence

$$
\mathcal{L}\left\{y^{\prime \prime}-t y\right\}=\mathcal{L}\left\{y^{\prime \prime}\right\}-\mathcal{L}\{t y\}=s^{2} F(s)+F^{\prime}(s)=s
$$

is the ODE we're looking for.
5.3-\# $\mathbf{1 7}$ Use the linearity of \mathcal{L}^{-1} with partial fraction expansion and Table 5.3.1 to find the inverse Laplace transform of the given function:

$$
F(s)=\frac{1-2 s}{s^{2}+4 s+5}
$$

Solution Well, by glancing at the table, we see it's a pretty good idea to complete the square in the dominator, so we do.

$$
s^{2}+4 s+5=(s+2)^{2}+1
$$

Hence we may rewrite $F(s)$ as

$$
F(s)=\frac{1-2 s}{s^{2}+4 s+5}=5\left(\frac{1}{(s+2)^{2}+1}\right)-2\left(\frac{s+2}{(s+2)^{2}+1}\right)
$$

Noting that

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}+1}\right\}=e^{-2 t} \sin (t) \quad \& \quad \mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+1}\right\}=e^{-2 t} \cos (t)
$$

by the table, we have

$$
\mathcal{L}^{-1}\{F(s)\}=e^{-2 t}(5 \sin t-2 \cos t)
$$

5.3-\# 24 Use the linearity of \mathcal{L}^{-1} with partial fraction expansion and Table 5.3.1 to find the inverse Laplace transform of the given function:

$$
F(s)=\frac{s^{2}+3}{\left(s^{2}+2 s+2\right)^{2}}
$$

Solution Rewrite the fraction as follows

$$
F(s)=\frac{s^{2}+3}{\left(s^{2}+2 s+2\right)^{2}}=\frac{(s+1)^{2}+1-2 s+1}{\left((s+1)^{2}+1\right)^{2}}=\frac{1}{(s+1)^{2}+1}-\frac{2 s-1}{\left((s+1)^{2}+1\right)^{2}}
$$

Now the table manages the first term, and we see that the other term looks like some sort of derivative. So we try

$$
-\frac{d}{d s}\left(A \frac{1}{(s+1)^{2}+1}+B \frac{s+1}{(s+1)^{2}+1}\right)=\frac{2 A(s+1)+B s(s+2)}{\left((s+1)^{2}+1\right)^{2}}
$$

We have to complete the square on the top for B, so

$$
B \frac{s(s+2)}{\left((s+1)^{2}+1\right)^{2}}=B \frac{(s+1)^{2}+1-2 s}{\left((s+1)^{2}+1\right)^{2}}=B \frac{1}{(s+1)^{2}+1}-B \frac{2 s}{\left.(s+1)^{2}+1\right)^{2}}
$$

Hence, comparing with our original expansion we see $(B=3 / 2$ and $A=1)$

$$
F(s)=\left(\frac{5}{2}+\frac{d}{d s}\right)\left(\frac{1}{(s+1)^{2}+1}\right)+\frac{3}{2} \frac{d}{d s}\left(\frac{s+1}{(s+1)^{2}+1}\right)
$$

Comparing with the table gives

$$
\Longrightarrow \mathcal{L}^{-1}\{F(s)\}=\left(\frac{5}{2}-t\right) e^{-t} \sin t-\frac{3}{2} t e^{-t} \cos t
$$

