Tutorial Problems \#8

MAT 267 - Advanced Ordinary Differential Equations - Winter 2016 Christopher J. Adkins

Gaussian Elimination Not much to say here, basically you may use gaussian elimination to simplify systems of equations...
pg. 421 - \# 7 Solve

$$
\frac{d x}{d t}=3 x+2 e^{3 t} \quad \& \quad \frac{d x}{d t}+\frac{d y}{d t}-3 y=\sin 2 t
$$

Solution Let's use elimination (you could solve x, first order linear, then solve the y equation). Rewrite the system in easy notation.

$$
(D-3) x=2 e^{3 t} \quad[1] \quad \& \quad D x+(D-3) y=\sin 2 t \quad[2]
$$

Notice that

$$
(D-3)[2]-D[1] \Longrightarrow(D-3)^{2} y=(D-3) \sin 2 t+6 e^{3 t}=2 \cos (2 t)-3 \sin (2 t)-6 e^{3 t} \quad\left[2^{*}\right]
$$

Now that both equations have been uncoupled, we solve using the techniques we know. By the method of undetermined coefficients, we know that

$$
x(t)=\left(A t+c_{1}\right) e^{3 t}
$$

will solve [1], we just need to find the $A \in \mathbb{R}$ that works. We see

$$
e^{3 t}\left(3\left(A t+c_{1}\right)+A-3 A t-3 c_{1}\right)=A e^{3 t}=2 e^{3 t} \Longrightarrow A=2
$$

Now we solve $\left[2^{*}\right]$, using the same method we know

$$
y(t)=\left(c_{2} t+c_{3}\right) e^{3 t}+A t^{2} e^{3 t}+B \cos (2 t)+C \sin (2 t)
$$

will solve $\left[2^{*}\right]$, the coefficients turn out to be

$$
A=-3 \quad \& \quad B=-\frac{2}{13} \quad \& \quad C=-\frac{3}{13}
$$

It seems we've added an extra constant to the expression, but it can easily be solved using the homogeneous part of [2]. i.e.

$$
x^{\prime}+y^{\prime}-y=e^{3 t}\left(3 c_{1}+c_{2}+3 c_{3}-3 c_{3}\right)=0 \Longrightarrow c_{2}=-3 c_{1}
$$

pg. 421 - \# 22 Solve

$$
\left\{\begin{array}{ccccccc}
(D-1) x & + & 0 & + & 0 & = & 0 \\
-x & + & (D-3) y & + & 0 & = & 0 \\
-x & + & y & + & (D-2) z & = & 0
\end{array}\right.
$$

Solution Notice that we see that $x(t)=c_{1} e^{t}$ from [1]. Next we see that

$$
(D-1)[2]-[1] \Longrightarrow(D-3)(D-1) y=0 \quad[*] \quad \Longrightarrow y=c_{2} e^{3 t}+c_{3} e^{t}
$$

Lastly,

$$
\begin{gathered}
{[3]-[2] \Longrightarrow(D+2) y+(D-2) z=0 \quad[\#]} \\
(D-3)(D-1)[\#]-[*] \Longrightarrow(D-3)(D-1)(D-2) z=0 \Longrightarrow z=c_{4} e^{t}+c_{5} e^{2 t}+c_{6} e^{3 t}
\end{gathered}
$$

Now let's peg down the constants. By equation [2], we see

$$
(D-3) y-x=0 \Longrightarrow\left(c_{3}-3 c_{3}-c_{1}\right) e^{t}=0 \Longrightarrow c_{3}=-\frac{c_{1}}{2}
$$

By equation [3] we see

$$
(D-2) z+y-x=0 \Longrightarrow\left(c_{4}-2 c_{4}-\frac{c_{1}}{2}+c_{1}\right) e^{t}+\left(c_{6}-2 c_{6}-c_{2}\right) e^{3 t}=0 \quad \Longrightarrow c_{4}=-\frac{3 c_{1}}{2} \quad \& \quad c_{6}=-c_{2}
$$

Thus the general solution to the system is

$$
x(t)=c_{1} e^{t}, \quad y(t)=c_{2} e^{3 t}-\frac{c_{1}}{2} e^{t}, \quad z(t)=-\frac{3 c_{1}}{2} e^{t}-c_{2} e^{3 t}+c_{5} e^{2 t} \quad c_{1}, c_{2}, c_{5} \in \mathbb{R}
$$

2×2 Phase Portraits i.e. Drawing a Picture of Possible Solutions to a System. As we saw last time, a very convenient way to classify a system is via the eigenvalues of the associated matrix. The terminology is

$$
\begin{gathered}
\operatorname{sgn}\left(\lambda_{+}\right)=\operatorname{sgn}\left(\lambda_{-}\right) \quad \& \quad \lambda_{+} \neq \lambda_{-} \Longrightarrow \text { node, }\left\{\begin{array}{l}
\lambda_{+}, \lambda_{-}>0 \\
\lambda_{+}, \lambda_{-}<0
\end{array} \Longrightarrow \begin{array}{c}
\text { unstable } \\
\text { asymptotically stable }
\end{array}\right. \\
\lambda_{+}=\lambda_{-} \Longrightarrow \text { improper node, }\left\{\begin{array}{l}
\lambda_{+}, \lambda_{-}>0 \Longrightarrow \\
\lambda_{+}, \lambda_{-}<0 \Longrightarrow
\end{array}\right. \\
\hline \text { asymptatically stable }
\end{gathered}
$$

$\operatorname{sgn}\left(\lambda_{+}\right) \neq \operatorname{sgn}\left(\lambda_{-}\right) \Longrightarrow$ saddle, always unstable

$$
\left.\lambda_{ \pm} \in \mathbb{C} \quad \& \quad \lambda_{+} \neq-\lambda_{-} \text {(i.e. non-zero real part }\right) \Longrightarrow \operatorname{spiral}\left\{\begin{array}{l}
\lambda_{+}+\lambda_{-}>0 \Longrightarrow \\
\lambda_{+}+\lambda_{-}<0 \Longrightarrow
\end{array} \quad\right. \text { unstable }
$$

$$
\lambda_{ \pm} \in \mathbb{C} \quad \& \quad \lambda_{+}=-\lambda_{-} \text {(i.e. complex valued, with zero real part) } \Longrightarrow \text { centre, always stable }
$$

Just as we saw the eigenvectors were important for solving the system, they make drawing the system very simple.

Exercise from Class Notes Draw the phase portrait for

$$
\dot{x}=\left(\begin{array}{cc}
5 & 2 \\
-1 & 3
\end{array}\right) x
$$

Solution First let's find the eigenvalues. We see via the characteristic equation that

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\left|\begin{array}{cc}
5-\lambda & 2 \\
-1 & 3-\lambda
\end{array}\right|=(5-\lambda)(3-\lambda)+2=\lambda^{2}-8 \lambda+17=0 \Longrightarrow \lambda_{ \pm}=4 \pm i
$$

Thus the system is an unstable spiral. We see that the top right entry of the matrix A is 2 , which is positive so the system spins clockwise. Thus we see have that

Exercise from Class Notes Draw the phase portrait for

$$
\frac{d y}{d x}=\frac{x-3 y}{3 x-9 y}
$$

Solution Notice that this is the same as the

$$
\dot{x}=\left(\begin{array}{ll}
1 & -3 \\
3 & -9
\end{array}\right) x
$$

And the eigenvalues of the matrix are given by

$$
P(\lambda)=\left|\begin{array}{cc}
1-\lambda & -3 \\
3 & -9-\lambda
\end{array}\right|=\lambda^{2}+8 \lambda \Longrightarrow \lambda=0,-8
$$

This is a degenerate type of solution, transitioning between a saddle and a node. Regardless, the same procedure applies. Let's find the eigenvalues. We see

$$
\lambda=-8 \Longrightarrow \operatorname{ker}\left(\begin{array}{ll}
9 & -3 \\
3 & -1
\end{array}\right)=\operatorname{span}\binom{1}{3} \Longrightarrow \vec{\lambda}_{-8}=\binom{1}{3}
$$

is the eigenvector for $\lambda=-8$, then

$$
\lambda=0 \Longrightarrow \operatorname{ker}\left(\begin{array}{ll}
1 & -3 \\
3 & -9
\end{array}\right)=\operatorname{span}\binom{3}{1} \Longrightarrow \vec{\lambda}_{0}=\binom{3}{1}
$$

Thus we see the phase portrait is given by

Quiz When the origin is a centre, i.e. the discriminant is negative and $a+d=0$, show that

$$
\frac{d y}{d x}=\frac{a y+b x}{c y+d x}
$$

is an exact equation and integrate it to find the formula for the elliptic integral curves.

Solution In differential form we have

$$
\underbrace{-(a y+b x)}_{=M} d x+\underbrace{(c y+d x)}_{=N} d y=0
$$

We see that

$$
M_{y}=-a \quad \& \quad N_{x}=d \quad \text { then } \quad a+d=0 \Longrightarrow M_{y}=-a=d=N_{x}
$$

so the equation is exact. We have

$$
F(x, y)=\int(-a y-b x) d x \oplus \int(c y+d x) d y=-\frac{b}{2} x^{2}-a x y \oplus \frac{c}{2} y^{2}+d x y=\frac{c y^{2}+2 d x y-b x^{2}}{2}=c o n s t
$$

Since the discriminant is negative, we must have that c and b are opposite signs, which means the above is an equation for an ellipse.

