Tutorial Problems \#7

MAT 267 - Advanced Ordinary Differential Equations - Fall 2016
Christopher J. Adkins

Solutions

Solving a Linear System with Constant Coefficients Suppose you want to solve

$$
\dot{x}=A x \quad w / \quad x\left(t_{0}\right)=x_{0}
$$

Recall that If A is non-defective (algebraic multiplicity $=$ geometric multiplicity), then there exists $\Lambda \in G L(n, \mathbb{R})$ (i.e. the eigenvectors) and a diagonal matrix D (of the eigenvalues of A) s.t.

$$
A=\Lambda D \Lambda^{-1}
$$

Now since Λ is full of constants, we see that

$$
\dot{x}=A x \Longleftrightarrow \frac{d}{d t}\left(\Lambda^{-1} x\right)=D \Lambda^{-1} x
$$

Thus if we let $y=\Lambda^{-1} x$, the system decouples :

$$
\dot{x}=A x \Longleftrightarrow \dot{y}=D y \Longleftrightarrow y_{i}^{\prime}=\lambda_{i} y \Longrightarrow y_{i}(t)=C_{i} e^{\lambda_{i} t}
$$

Now changing back into x, we obtain that

$$
x=\Lambda y=C_{1} \vec{\lambda}_{1} e^{\lambda_{1} t}+\ldots+C_{n} \vec{\lambda}_{n} e^{\lambda_{n} t}
$$

Thus to solve a non-defective system, we simply need the eigenvalues and eigenvectors of A. If A is defective, we know there exists a Jordan matrix J and a $\Lambda \in G L(n, \mathbb{R})$ s.t.

$$
A=\Lambda J \Lambda^{-1}
$$

Thus the same procedure applies except the system doesn't fully decouple i.e. on the Jordan blocks we have

$$
y_{n}^{\prime}=\lambda y_{n} \quad \& \quad y_{i}^{\prime}=\lambda y_{i}+y_{i+1}
$$

We may solve these inductively to obtain that

$$
y^{(1)}=\left(\begin{array}{c}
e^{\lambda t} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), y^{(2)}=\left(\begin{array}{c}
t e^{\lambda t} \\
e^{\lambda t} \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, y^{(n)}=\left(\begin{array}{c}
t^{n-1} e^{\lambda t} /(n-1)! \\
t^{n-2} e^{\lambda t} /(n-2)! \\
t^{n-3} e^{\lambda t} /(n-3)! \\
\vdots \\
e^{\lambda t}
\end{array}\right),
$$

Thus the solution to the system is simply

$$
x=\Lambda y
$$

Generalized Eigenvectors. Without going into too much detail, the missing eigenvectors are replaced with generalized eigenvectors (you have as many as you're missing from eigenvector deficiency). You want a generalized eigenvector of rank k to satisfy

$$
(A-\lambda 1)^{k} \lambda_{g}^{k}=0 \quad \text { but } \quad(A-\lambda 1)^{k-1} \lambda_{g}^{k} \neq 0
$$

The easiest way to satisfy the above is to just take linear combinations of eigenvectors and generalized eigenvectors (as you move up rank). i.e. take $(A-\lambda 1) \lambda_{g}^{k}=\lambda_{g}^{k-1}$ with the convention that $\lambda_{g}^{0}=\vec{\lambda}$.

Example Solve

$$
\dot{x}=\left(\begin{array}{ccc}
3 & 1 & 0 \\
-1 & 1 & 0 \\
3 & 2 & 2
\end{array}\right) x \quad w / \quad x_{0}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Solution As the above, let's find the eigenvalues of the matrix. We see

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=(2-\lambda)^{2}
$$

Thus we see $\lambda=2$ with algebraic multiplicity of 3 . Now what about the eigenvectors? We see that

$$
\operatorname{ker}(A-1 \lambda)=\operatorname{ker}\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & -1 & 0 \\
3 & 2 & 0
\end{array}\right)=\operatorname{span}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \Longrightarrow \vec{\lambda}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Thus we're missing two eigenvectors (i.e. the geometric multiplicity is only 1)! So we compute generalized eigenvectors. We see

$$
(A-1 \lambda) \vec{\lambda}_{g_{1}}=\vec{\lambda} \Longleftrightarrow \vec{\lambda}_{g_{1}} \in\left\{\left(\begin{array}{c}
1 \\
-1 \\
s
\end{array}\right): s \in \mathbb{R}\right\} \Longrightarrow \vec{\lambda}_{g_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

Next up we see

$$
(A-1 \lambda) \vec{\lambda}_{g_{2}}=\vec{\lambda}_{g_{1}} \Longleftrightarrow \vec{\lambda}_{g_{2}} \in\left\{\left(\begin{array}{c}
-2 \\
3 \\
s
\end{array}\right): s \in \mathbb{R}\right\} \Longrightarrow \vec{\lambda}_{g_{2}}=\left(\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right)
$$

Thus our matrix Λ takes the form

$$
\Lambda=\left(\begin{array}{ccc}
0 & 1 & -2 \\
0 & -1 & 3 \\
1 & 0 & 0
\end{array}\right) \Longrightarrow A=\Lambda \underbrace{\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)}_{=J} \Lambda^{-1}
$$

From our previous computation, we know the general solution is

$$
x(t)=\Lambda\left(c_{1} y^{(1)}+c_{2} y^{(2)}+c_{3} y^{(3)}\right)=\Lambda\left(c_{1}\left(\begin{array}{c}
e^{2 t} \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
t e^{2 t} \\
e^{2 t} \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
t^{2} e^{2 t} / 2 \\
t e^{2 t} \\
e^{2 t}
\end{array}\right)\right)
$$

The initial data implies the constants must satisfy

$$
\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & -2 \\
0 & -1 & 3 \\
1 & 0 & 0
\end{array}\right)\left(c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \Longrightarrow c_{1}=1 \quad c_{2}=2 \quad c_{3}=1
$$

Thus the solution to the IVP is

$$
x(t)=e^{2 t}\left(\begin{array}{c}
t \\
1-t \\
1+2 t+t^{2} / 2
\end{array}\right)
$$

Matrix Exponentials Define via formal power series

$$
\exp (A t)=\sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}
$$

Notice that this solves $\dot{x}=A x$ if A is constant

$$
\dot{x}=\frac{d}{d t} \sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}=\sum_{n=1}^{\infty} \frac{A^{n} t^{n-1}}{(n-1)!}=\sum_{n=0}^{\infty} \frac{A^{n+1} t^{n}}{n!}=A \sum_{n=0}^{\infty} \frac{(A t)^{n}}{n!}=A x
$$

notice that $\exp (A * 0)=1$. Define $\Phi(t)=X(t) X^{-1}(0)$ where X solves $\dot{X}=A X$ aka the fundamental matrix solution, notice that $\phi(0)=1$. By uniqueness of solutions to this problem (See Picard-Lindelöf Theorem), we conclude

$$
\exp (A t)=X(t) X^{-1}(0)
$$

or more generally,

$$
\exp \left(A\left(t-t_{0}\right)\right)=X(t) X^{-1}\left(t_{0}\right)
$$

Matrix Exponential Question Find $e^{A t}$ for

$$
A=\left(\begin{array}{cc}
-1 & -4 \\
1 & 1
\end{array}\right)
$$

Solution Using the techniques we've learned to date, one may show that

$$
X(t)=e^{-t}\left(\begin{array}{cc}
-2 \sin (2 t) & 2 \cos (2 t) \\
\cos (2 t) & \sin (2 t)
\end{array}\right) \quad \text { solves } \quad \dot{X}=A X
$$

Using the above formula, we compute

$$
X(0)=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right) \Longrightarrow X^{-1}(0)=\left(\begin{array}{cc}
0 & 1 \\
1 / 2 & 0
\end{array}\right)
$$

Thus the exponential is given by

$$
e^{A t}=X(t) X^{-1}(0)=e^{-t}\left(\begin{array}{cc}
-2 \sin (2 t) & 2 \cos (2 t) \\
\cos (2 t) & \sin (2 t)
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 / 2 & 0
\end{array}\right)=e^{-t}\left(\begin{array}{cc}
\cos (2 t) & -2 \sin (2 t) \\
\sin (2 t) / 2 & \cos (2 t)
\end{array}\right)
$$

Quiz Question Find $e^{A t}$ for

$$
A=\left(\begin{array}{cc}
5 & 1 \\
-1 & 3
\end{array}\right)
$$

Solution First we solve $\dot{x}=A x$. Find the eigenvalues

$$
P(\lambda)=\left|\begin{array}{cc}
5-\lambda & 1 \\
-1 & 3-\lambda
\end{array}\right|=(\lambda-4)^{2} \Longrightarrow \lambda=4
$$

We look for eigenvectors now, i.e. check out the kernel of $(A-1 \lambda)$

$$
\operatorname{ker}\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)=\operatorname{span}\binom{1}{-1} \Longrightarrow \vec{\lambda}=\binom{1}{-1}
$$

We're missing an eigenvector, so we find a generalized one.

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right) \vec{\lambda}_{g}=\binom{1}{-1} \Longleftrightarrow \vec{\lambda}_{g} \in\left\{\binom{1-s}{s}: s \in \mathbb{R}\right\} \Longrightarrow \vec{\lambda}_{g}=\binom{1}{0}
$$

Thus we have

$$
\Lambda=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) \quad \& \quad J=\left(\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right)
$$

We now pull back the solution to find that the fundamental solution is

$$
X(t)=e^{4 t} \Lambda\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)=e^{4 t}\left(\begin{array}{cc}
1 & t \\
-1 & 1-t
\end{array}\right)
$$

Note that

$$
X(0)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \Longrightarrow X^{-1}(0)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Thus

$$
e^{A t}=X(t) X^{-1}(0)=e^{4 t}\left(\begin{array}{cc}
1 & t \\
-1 & 1-t
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right)=e^{4 t}\left(\begin{array}{cc}
1+t & t \\
-t & 1-t
\end{array}\right)
$$

Alternate Solution Notice that

$$
A^{n}=4^{n-1}\left(\begin{array}{cc}
4+n & n \\
-n & 4-n
\end{array}\right)
$$

Then by definition of the matrix exponential, we see that

$$
e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}=\sum_{n=0}^{\infty}\left(\begin{array}{cc}
4^{n-1}(4+n) / n! & n 4^{n-1} / n! \\
-n 4^{n-1} / n! & 4^{n-1}(4-n) / n!
\end{array}\right) t^{n}
$$

Recall the taylor expansion for the exponential.

$$
e^{a t}=\sum_{n=0}^{\infty} \frac{a^{n} t^{n}}{n!}
$$

Then clearly

$$
\sum_{n=0}^{\infty} \frac{4^{n} t^{n}}{n!}=e^{4 t} \quad \& \quad \sum_{n=0}^{\infty} \frac{n 4^{n-1} t^{n}}{n!}=\sum_{n=1}^{\infty} \frac{4^{n-1} t^{n}}{(n-1)!}=t \sum_{n=1}^{\infty} \frac{4^{n-1} t^{n-1}}{(n-1)!}=t \sum_{n=0}^{\infty} \frac{4^{n} t^{n}}{n!}=t e^{4 t}
$$

So the definition simplifies to

$$
e^{A t}=e^{4 t}\left(\begin{array}{cc}
1+t & t \\
-t & 1-t
\end{array}\right)
$$

