
Tutorial Problems #6
MAT 267 – Advanced Ordinary Differential Equations – Winter 2016

Christopher J. Adkins

Solutions

Variation of Parameters Suppose you know y1 and y2 solve y′′ + py′ + qy = 0. Is there a way to easily

solve the non-homogeneous equation?

y′′ + py′ + qy = g

Yes!!! It turns out that if we try y = A(t)y1 +B(t)y2 ( i.e. vary the parameters) it is a solution if

A(t) = −
∫

y2g

W [y1, y2]
dt & B(t) =

∫
y1g

W [y1, y2]
dt

This is easily deduced from a straightforward computation assuming A′y1 +B′y2 = 0.

pg. 240 - # 5 Solve

y′′ − 3y′ + 2y = cos
(
e−x

)
Solution First solve the homogenous part. i.e. notice that

L(D) = (D − 2)(D − 1)

Thus λ = 1, 2 are the eigenvalues and we have that

y1(x) = e2x & y2(x) = ex

are the fundamental solutions. To now solve the non-homogeneous equation, we may use variation of parameters

but we first need the Wronskian

W [y1, y2](x) = y1y
′
2 − y′1y2 = −e3x

Using the formula we see that

A(x) =

∫
ex cos e−x

e3x
dx

=−
∫
u cosudu where u = e−x

=− u sinu− cosu+ C1

=− e−x sin e−x − cos e−x + C1

1



Tutorial #6 – Winter 2016 MAT 267

B(x) =

∫
e2x cos(e−x)

−e3x
dx

=

∫
cosudx where u = e−x

= sinu+ C2

= sin e−x + C2

Thus, we have the general solution as

y(x) = A(x)y1 +B(x)y2 = C1e
2x + C2e

x − e2x cos e−x

Variation of Parameters in Higher Order Equations In general, if we have a first order system
.
x =

Ax+ g. You’ll find that the fundamental solution X to
.

X = AX allows us to write the solution as

x(t) = X(t)c+X(t)

∫ t

t0

X−1(s)g(s)d(s)

Indeed since

.
x =

.

Xc+
.

X

∫ t

t0

X−1(s)g(s)d(s)︸ ︷︷ ︸
.
X=AX

+X(X−1g) = A

(
Xc+X

∫ t

t0

X−1(s)g(s)d(s

)
+ g = Ax+ g

Notice we easily recover the formula we’ve been using in the 2nd order case since detX = W [y1, y2] and

g =

(
0

g

)
& X =

(
y1 y2

y′1 y′2

)
=⇒ X−1g =

1

W [y1, y2]

(
y′2 −y2
y′1 y1

)(
0

g

)
=

1

W

(
−y2g
y1g

)

Reduction of Order when a solution is known If you know y1 solves y′′ + py′ + qy = 0, then you may

find y2 by setting y2 = ν(x)y1(x) with a straight forward computation for ν(x). A nice way to go about find ν

is though the Wronskian, since

W [y1, y2] = C exp

(
−
∫
p(x)dx

)
by Abel’s theorem, and then by definition we have

W [y1, y2] = y1y
′
2 − y′1y2 ⇐⇒

W [y1, y2]

y21
=
y′2
y1
− y2y

′
1

y21
=

d

dx

(
y2
y1

)
Thus we see

y2 = y1

∫
W [y1, y2]

y21
dx

pg.246 - #16 Solve

x2y′′ − 2y = 2x2 given y1 = x2
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Solution In standard form the ODE is

y′′ − 2

x2
y = 2

Using the above, we know

y2 = y1

∫
W

y21
dx

So we compute Wronskian via Abel’s theorem

W [y1, y2] = c1 exp

(
−
∫
p(x)dx

)
= c1

Now using the reduction of order formula we see

y2(x) = x2
∫
dx

x4
=

1

x

So the second fundamental solution to the ODE is y2 = 1/x. Now that we have both solutions, let’s use variation

of parameters to solve the non-homogeneous part. i.e. y(x) = A(x)y1 + B(x)y2. We need to compute the the

explicit Wronskian for our given fundamental solutions. We see

W [y1, y2](x) = y1y
′
2 − y′1y2 = −3

Now we use the variation of parameters formula

A(x) =−
∫
y2g

W
dx

=
2

3

∫
dx

x

=
2

3
log x+ c1

B(x) =

∫
y1g

W
dx

=− 2

3

∫
x2dx

=− 2

9
x3 + c2

Putting everything together now shows

y(x) = c1x
2 +

c2
x

+
2

3
x2 log(x)

pg. 329 - # 5 Prove conservation of energy for the undamped helical spring (mx′′ = −kx). i.e.

E =
1

2
kx2 +

1

2
mv2 where v =

dx

dt

Solution Suppose that x′ 6= 0, then we have

mx′′ = −kx =⇒ mx′′x′ = −kxx′ =⇒ 1

2
m
d

dt
(x′)2 = −1

2
k
d

dt
x2 =⇒ 1

2
mv2 +

1

2
kx2 = E ∈ R
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The Method of Undetermined Coefficients (Guessing the Answer) Suppose we have constant coef-

ficients in some linear differential operator L(D). Let P (x) be an arbitrary polynomial of degree k, then the

following non-homogeneous problems

L(D)y =


P (x)

P (x) exp(ax)

P1(x) cos(bx) + P2(x) sin(bx)

P1(x)eax cos(bx) + P2(x)eax sin(bx)

have a particular solution in the form

yp =


P̃ (x)

P̃ (x) exp(ax)

P̃1(x) cos(bx) + P̃2(x) sin(bx)

P̃1(x)eax cos(bx) + P̃2(x)eax sin(bx)

where P̃ is a polynomial degree of k̃ = k if the fundamental solutions are linearly independent from g(x), or

k̃ > k if the fundamental solutions are dependent ( add factors of x till you’re not dependent). The proof follows

from linearity and linear algebra exploiting the independence of the functions.

pg. 343 - #5 Solve
d2y

dt2
+ ω2

0y = F sin(ω0t) y(0) = y0, v(0) = v0

Solution Clearly the homogeneous part is

yhom(t) = c1 cos(ω0t)︸ ︷︷ ︸
=y1

+c2 sin(ω0t)︸ ︷︷ ︸
=y2

Since the RHS is simple, we know a particular solution takes the form

yp = t[A cos(ω0t) +B sin(ω0t)] = t[Ay1 +By2]

Thus we see

y′p = Ay1 +By2 + t[Ay′1 +By′2] & y′′p = 2(Ay′1 +By′2) + t[Ay′′1 +By′′2 ]

If we substitute this into the ODE, we see

2(Ay′1 +By′2) = F sin(ω0t) =⇒ A = − F

2ω0
& B = 0

Thus the general solution to the ODE is

y = yhom + yp = c1 cos(ω0t) + c2 sin(ω0t)−
Ft

2ω0
cos(ω0t)

The IVP may be solved now, we see that

y = y0 cos(ω0t) +
F + 2ω0v0

2ω2
0

sin(ω0t)−
Ft

2ω0
cos(ω0t)

4



Tutorial #6 – Winter 2016 MAT 267

Quiz A helical spring has a period of 4 sec when a 16-lb weight is attached. If the 16-lb weight is removed

and a weight W is attached, the spring oscillates with a period of 3 sec. Find the weight W .

Solution Since my′′+ ky = 0 in an helical spring and we define the period of the oscillator to be T such that

f(t + T ) = f(t) for all t ∈ R. The solutions take the form y = cos

(√
k
m t+ δ

)
, and cosx has a period of 2π,

thus √
k

mi
Ti = 2π =⇒ mi =

kT 2
i

4π2

using the data given we see

k =
4π2m1

T 2
1

= 4π2 lb

s2

Thus

m2 =
kT 2

2

4π2
= T 2

2 = 9lb
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