
Tutorial Problems #5

MAT 267 – Advanced Ordinary Di↵erential Equations – Winter 2016

Christopher J. Adkins

Solutions

Reduction of Order Via Di↵erential Operators Let D = d

dx

be our di↵erential operator. Then any n-th

order linear non-homogeneous equation may be written as

L(D)[y(x)] = f(x) where L(D) = D

n + a

n�1D
n�1 + . . .+ a0

✓
D

n =
d

n

dx

n

◆

with a

i

2 R. Factor L into a product of it’s roots (which may be complex and we’ll deal with later), i.e.

L(D) = (D � �1) . . . (D � �

n

)

Notice this factorization is not possible if a

i

are functions since the di↵erential operator isn’t commutative

(D1D2 = D2D1). Thus, if we let y

n

= (D � �

n

)y and y

i

= (D � �

i

)y
i+1 we e↵ectively reduce the n-th order

equations into n first order equations (which we know how to handle)
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y

00 + y

0 = x

2 + 2x

Solution We see that if L = D

2 +D, then

L(D)[y(x)] = x

2 + 2x

is the ODE we’re looking to solve. Notice we may use the above method to deduce

L(D) = D(D + 1) =) u

0 = x

2 + 2x where (D + 1)y = u

The above ODE in u is separable, thus

u(x) =

Z
x

2 + 2xdx =
x

3

3
+ x

2 + C1 C1 2 R

We now know

y

0 + y =
x

3

3
+ x

2 + C1

which is a first order linear ODE, we know this may be solved using an integrating factor. We know

y(x) =
1

µ(x)

Z
µ(x)g(x)dx where µ(x) = exp

✓Z
dx

◆
= e

x

1
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Thus the general solution to the ODE is

y(x) = e

�x

Z
e

x

✓
x

3

3
+ x

2 + C1

◆
dx =

x

3

3
+ C2e

�x + C1 C2 2 R

The Inverse of a Di↵erential Operator Let’s talk about D

�1 now. Formally we need an operator with

the property if Dx = y, then x = D

�1
y. Intuitively, you should think the integral operator is a natural left

inverse for D since
d

dx

Z
f(x)dx = f(x)

by the fundamental theorem of calculus. Now what about factors of (D � �) we had...using a formal series

expansion(notably a geometric series), we may algebraically write

(D � �)�1 = � 1

�(1�D/�)
= � 1

�


1 +

D

�

+
D

2

�

2
+

D

3

�

3
. . .

�

Convergence of this series is a slight issue at the moment...but for any solution that terminates after a finite

number of derivatives we know convergence is guaranteed. Let’s revisit the example we just saw.

pg. 267 - # 28 Solve (using Inverse Operators)

y

00 + y

0 = x

2 + 2x

Solution As we saw before we have

D(D + 1)y = x

2 + 2x =) y

p

(x) =
1

D(D + 1)
(x2 + 2x)

Notice we’ll only be able to pick up the particular solution to the ODE with this method (not the general) since

L is not injective in general(i.e. L[y
hom

] = 0). Expanding the inverse into formal series shows

y

p

(x) =
1

D

�
1 +D +D

2
�
(x2 + 2x) =


1

D

� 1 +D

�
(x2 + 2x)

Thus

y

p

(x) =

Z
(x2 + 2x)dx� (x2 + 2x) +

d

dx

(x2 + 2x) =
x

3

3
+ 2

You may recover the general solution using your knowledge of homogeneous equation, but seeing the eigenvalues

of � = 0 and � = �1, thus 1 and e

�x solve the homogeneous problem.

A Special Case, (D��)�1 Applied To e

ax Notice in the case of exponential, we may factor out eax in the

formal expansion since
d

n

dx

n

e

ax = a

n

e

ax

Thus
1

D � �

e

ax = �e

ax

�


1 +

a

�

+
a

2

�

2
+ . . .

�
=

e

ax

a� �

2
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where we side-stepped the notion of convergence once again, but clearly this is an inverse since

(D � �)

✓
1

D � �

e

ax

◆
= (D � �)

e

ax

a� �

= e

ax

Since this will work with any a 2 C and the inverse raised to integer powers, we’ve therefore found a way to

handle exponentials. The only issue that may occur is if a = � since the expansion isn’t defined (in other words,

a is an eigenvalue). This can easily be fixed using the exponential shift theorem,

L(D)[eaxy] = e

ax

L(D + a)[y]

when L(x) is a polynomial (the proof goes by induction, and also applies to the inverse). Thus if � is a root of

L, i.e. L(D) = (D � �)kg(D) and g(�) 6= 0, we see that

1

(D � �)kg(D)
e

�x = e

�x

1

D

k

g(D + �)
1 = e

�x

x

k

k!g(�)

Note there is a similar version from the Laplace Transform which is defined as

L[y(t)](s) ⌘
Z 1

0
e

st

y(t)dt

which is another useful tool for solving ODE’s. It takes the form L[eatf(t)] = L[f(t� a)].
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y

000 + y

0 = cosx

Solution Well, in terms of D we have that

D(D � i)(D + i)y = cosx

Now since we’ve just dealt with exponentials so far, note e

ix = cosx+ i sinx, so lets solve

D(D � i)(D + i)y = e

ix

and take the real part. Letting g(D) = D(D + i) like the above, we see

y

p

(x) =
1

(D � i)g(D)
e

ix = e

ix

x

g(i)
= �e

ix

x

2
= �x cosx

2
� i

x sinx

2

Since we just want the real part of the solution, we see the particular solution to the ODE is

y

p

(x) = �x cosx

2

Noting that the eigenvalues of the equation are � = 0,±i, we have that

y(x) = C1 + C2 cosx+ C3 sinx� x cosx

2

is the general solution.

Partial Fraction Decomposition with Di↵erential Operators As you’ve probably seen before with

polynomials, you may decompose

1

(D + �1)(D + �2)
=

c1

D + �1
+

c2

D + �2

Let’s see how this would apply to the previous example.

3
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pg. 282 - # 32 Solve (using partial fractions)

y

000 + y

0 = cosx

Solution Using what we saw before, let’s try to decompose into pieces:

1

D(D � i)(D + i)
=

c1

D

+
c2

D � i

+
c3

D + i

This implies we need

(D � i)(D + i)c1 +D(D + i)c2 +D(D � i)c3 = 1 =)

8
>><

>>:

c1 + c2 + c3 = 0

c2 � c3 = 0

c1 = 1

=) c2 = �1

2
, c3 = �1

2

Thus
1

D(D � i)(D + i)
=

1

D

� 1

2(D � i)
� 1

2(D + i)

Now if we apply this to e

ix, we see

1

D(D � i)(D + i)
e

ix =
e

ix

i

� xe

ix

2
� e

ix

4i
+ C =

3

4i
e

ix � xe

ix

2
+ C

If we take the real part of this solution we see the following particular solution

y

p

(x) =
3

4
sinx� x cosx

2
+ C

Quiz Find a partial solution using any inverse operator method for

y

00 + 3y0 + 2y = 2(e�2x + x

2)

Solution We see that

L(D) = (D + 2)(D + 1)

Thus we want to solve

y

p

(x) =
1

(D + 2)(D + 1)
(2e�2x + 2x2)

For the exponential, we may use what we’ve previous talked about to find that we have L = (D+2)g(D), hence

y

pe(x) =
2xe�2x

g(�2)
= �2xe�2x

For the polynomial, we have that

y

pp(x) =
1

(D + 2)(D + 1)
2x2 =

1

2

✓
1� D

2
+

D

2

4

◆�
1�D +D

2
�
2x2 =

1

2

✓
1� 3D

2
+

7D2

4

◆
2x2

Thus we see

y

pp(x) = x

2 � 3x+
3

2

So

y

p

(x) = �2xe�2x + x

2 � 3x+
7

2

is a particular solution.
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