Tutorial Problems \#4

MAT 267 - Advanced Ordinary Differential Equations - Winter 2016 Christopher J. Adkins

Solutions
n-th Order Linear Differential Equations with Constant Coefficients Always try $e^{\lambda x}$ as a solution to

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y^{(0)}=0
$$

since

$$
\frac{d^{n}}{d x^{n}} e^{\lambda x}=\lambda^{n} e^{\lambda x} \Longrightarrow e^{\lambda x}\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1} \ldots+a_{0}\right)=0
$$

Thus $e^{\lambda x}$ is a solution if (since the exponential is never zero)

$$
P(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1} \ldots+a_{0}=0
$$

i.e. λ is a root of $P(\lambda)$, which is called the characteristic polynomial. By the fundamental theorem of algebra, we know that we'll always find n roots over the complex numbers. Thus we've found n solutions to the ODE

Why Is It Called The Characteristic Equation? Recall from last time, we saw

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \Longleftrightarrow \dot{x}=\underbrace{\frac{1}{a}\left(\begin{array}{cc}
0 & a \\
-c & -b
\end{array}\right)}_{=A} x \quad \text { where } \quad x=\binom{y}{y^{\prime}}
$$

Notice that the characteristic equation, the one that determines the eigenvalues, is the same as the previous polynomial,

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\lambda^{2}+\frac{b}{a} \lambda+\frac{c}{a}=0 \Longrightarrow a \lambda^{2}+b \lambda+c=0
$$

Repeated Roots On can check that you have repeated roots from your characteristic equation. To form a full basis for your solution space, i.e. the fundamental solutions, you can just stick t in front of the exponential for every solution you're missing. i.e. if $P(\lambda)=(\lambda-a)^{3}$, we'd have

$$
y_{1}=e^{a t} \quad \& \quad y_{2}=t e^{a t} \quad \& \quad y_{3}=t^{2} e^{a t}
$$

pg. 220 - \#17 Solve

$$
y^{\prime \prime}-2 a y^{\prime}+a^{2} y=0
$$

Solution The characteristic polynomial for the ODE is

$$
P(\lambda)=\lambda^{2}-2 a \lambda+a^{2}=(\lambda-a)^{2}
$$

i.e. we have a repeated root of $\lambda=a$. Let's try $y(t)=t e^{a t}$ as a solution,

$$
2 a \underbrace{\left(e^{a t}+a^{2} t e^{a t}\right)}_{y^{\prime \prime}}-2 a \underbrace{\left(e^{a t}+a t e^{a t}\right)}_{y^{\prime}}+a^{2} \underbrace{\left(t e^{a t}\right)}_{y}=0
$$

Thus the general solution is given by

$$
y(t)=c_{1} e^{a t}+c_{2} t e^{a t}
$$

Example Solve the IVP

$$
3 y^{\prime \prime \prime}+5 y^{\prime \prime}+y^{\prime}-y=0, \quad y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=-1
$$

Solution The characteristic equation for the ODE is

$$
P(\lambda)=3 \lambda^{3}+5 \lambda^{2}+\lambda-1=(\lambda+1)^{2}(3 \lambda-1)=0 \Longrightarrow \lambda=\frac{1}{3} \quad \& \quad \lambda=-1 \text { (Repeated) }
$$

Thus general solution is given by

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} e^{t / 3}
$$

The initial data implies

$$
\left\{\begin{array}{c}
c_{1}+c_{3}=0 \\
-c_{1}+c_{2}+c_{3} / 3=1 \\
c_{1}+2 c_{2}+c_{3} / 9=-1
\end{array} \Longrightarrow c_{1}=-\frac{9}{16}, c_{2}=\frac{1}{4}, c_{3}=\frac{9}{16}\right.
$$

Hence the solution to the IVP is

$$
y(t)=\frac{9}{16} e^{t / 3}+\left(\frac{t}{4}-\frac{9}{16}\right) e^{-t}
$$

Complex Eigenvalues In the case of complex eigenvalues, it seems we have a complex valued solution...though using Euler's Identity

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

we may rewrite the solution in terms of real valued functions. Let $\lambda_{+}=a+b i$ and $\lambda_{-}=a-b i$, then

$$
\begin{aligned}
y(t)=C e^{\lambda_{+} t}+\bar{C} e^{\lambda_{-} t} & =e^{a t}\left(C e^{i b t}+\bar{C} e^{-i b t}\right) \\
& =e^{a t}((C+\bar{C}) \cos (b t)+i(C-\bar{C}) \sin (b t) \\
& =e^{a t}\left(c_{1} \cos (b t)+c_{2} \sin (b t)\right)
\end{aligned}
$$

Euler Equations Consider

$$
a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \quad x>0
$$

At first glance it seems like a foreign equation, but let's apply the change of variables $x \rightarrow z=\ln (x)$ to the ODE. We see via chain rule that

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x} \Longrightarrow y^{\prime}=\frac{1}{x} \frac{d y}{d z} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{x} \frac{d y}{d t}\right)=-\frac{1}{x^{2}} \frac{d y}{d z}+\frac{1}{x^{2}} \frac{d^{2} y}{d z^{2}}
\end{gathered}
$$

Thus, the ODE in z becomes

$$
a \frac{d^{2} y}{d z^{2}}+(b-a) \frac{d y}{d z}+c y=0
$$

i.e. an ODE with constant coefficients. We know the solutions take exponential form...or in terms of the variable x we have

$$
e^{\lambda z}=e^{\lambda \ln (x)}=e^{\ln \left(x^{\lambda}\right)}=x^{\lambda}
$$

Thus we see trying $y(x)=x^{\lambda}$ will amount to the same ole story.

HW - \#1 Consider the equation

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{1} y^{\prime}+p_{0} y=0
$$

with $p_{j}(x)$ for each $j \in[0, n-1]$ continuous on $[a, b]$. Suppose that y is a solution with infinitely many zeros in the interval $\left[a_{1}, b_{1}\right]$ such that $a<a_{1}<b_{1}<b$. Prove that $y \equiv 0$ on (a, b).

Proof By the Bolzano Weierstrass Theorem, we know the infinite sequence of zeros $\left\{x_{m}\right\}_{m=1}^{\infty}$ has a converging subsequence to $x_{0} \in\left[a_{1}, b_{1}\right]$. By definition of a solution, we require y and it's derivatives to be continuous on $[a, b]$. This leads us to consider the neighbourhood $B_{\delta}\left(x_{0}\right)=\left\{x: x \in\left(x_{0}-\delta, x_{0}+\delta\right)\right\}$ for any $\delta>0$, and check if $y \neq 0$ there. This will only happen if $y^{\prime}\left(x_{0}\right) \neq 0$, but $B_{\delta}\left(x_{0}\right)$ has infinitely many zero's of y, so this means that $y^{\prime}=0$ on $B_{\delta}\left(x_{0}\right)$. Repeating this argument with y^{\prime}, and moving up to higher derivatives, we conclude

$$
y\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)=\ldots=y^{n-1}\left(x_{0}\right)=0
$$

Next we'll show that the trivial solution is the only solution to a null data problem. Define

$$
\xi=\sum_{k=0}^{n-1}\left(y^{(k)}\right)^{2} \geqslant 0
$$

Then the derivative will give us

$$
\xi^{\prime}=2 \sum_{k=0}^{n-1} y^{(k)} y^{(k+1)}
$$

Plug the ODE into the above

$$
\xi^{\prime}=y y^{\prime}+\ldots+y^{(n-2)} y^{(n-1)}+y^{(n-1)}\left(-p_{n-1} y^{(n-1)}-\ldots p_{0} y\right)
$$

Using the Inequality $2 a b \leqslant a^{2}+b^{2}$ and the fact that p_{j} for each j is continuous (we may bound each above), we see

$$
\xi^{\prime} \leqslant K \xi
$$

for some constant K. Gronwall's Inequality now tells us

$$
\xi(x) \leqslant \xi\left(x_{0}\right) e^{K\left(x-x_{0}\right)}=0, \quad x \geqslant x_{0}
$$

A similar bound is found for $\xi^{\prime} \geqslant-K \xi$ (use $2 a b \geqslant-a^{2}-b^{2}$) to conclude that $\xi=0$ for $x<x_{0}$, together these imply that $y \equiv 0$ on $[a, b]$.

Quiz Suppose that vector functions $y^{1}(x), \ldots, y^{n}(x)$ taking values in \mathbb{R}^{n} are linearly independent on the interval $[a, b]$, and all their coordinates are differentiable on $[a, b]$. Show that there exists a matrix function $A(x)=\left(a_{i j}(x)\right)_{1 \leqslant i, j \leqslant n}$ such that $y^{1}(x), \ldots, y^{n}(x)$ are solution of the system $y^{\prime}=A y$ on $[a, b]$.

Solution Define the matrix X to have columns y_{j} :

$$
X(x)=\left(y^{1}, \ldots, y^{n}\right)
$$

Then we'd like this matrix to solve

$$
X^{\prime}=A X
$$

So we now have an equation for the $A(x)$ we'd like to construct, we simply set

$$
X^{\prime}(x) X^{-1}(x)=A(x)
$$

Note the inverse is well defined since all vectors are linearly independent. This is such an A.

