Tutorial Problems \#3

MAT 267 - Advanced Ordinary Differential Equations - Spring 2016
 Christopher J. Adkins

pg.109-\# 2-Petrov Solve

$$
\left\{\begin{array}{l}
x y_{1}^{\prime}=2 y_{1}-y_{2} \\
x y_{2}^{\prime}=2 y_{1}-y_{2}
\end{array}\right.
$$

(a) Show if $x_{0} \neq 0$, the solution exists and is unique on the real axis and if $x_{0}=0$, the solution exists only if $2 y_{1}-y_{2}=0$ and is not unique.
(b) Show the Wronskian of the linearity independent solutions is $C x$ with $C \neq 0$,

Solution We'll first solve the system. Notice that

$$
x y_{1}^{\prime}=x y_{2}^{\prime} \Longrightarrow y_{1}^{\prime}=y_{2}^{\prime} \quad \text { when } \quad x \neq 0
$$

Thus $y_{1}=y_{2}+C_{1}$ with some constant $C_{1} \in \mathbb{R}$. Using this, we see the system reduces to

$$
x y_{1}^{\prime}=2 y_{1}-y_{1}-C_{1}=y_{1}-C_{1}
$$

This equation is separable, thus

$$
\int \frac{d y_{1}}{y_{1}-C_{1}}=\int \frac{d x}{x} \Longrightarrow \ln \left|y_{1}-C_{1}\right|=\ln |x|+C \Longrightarrow y_{1}=C_{1}+C_{2} x
$$

Now that we have y_{1} it's easy to see that

$$
y_{2}=2 C_{1}+C_{2} x
$$

You may write this in vector notation as

$$
y(x)=C_{1} y^{(1)}+C_{2} y^{(2)}=C_{1}\binom{1}{2}+C_{2} x\binom{1}{1}
$$

We compute the Wronskian by definition:

$$
W(x)=\operatorname{det}\left(y^{(1)} y^{(2)}\right)=\left|\begin{array}{ll}
1 & x \\
2 & x
\end{array}\right|=C x \quad \text { where } \quad C \neq 0
$$

Notice that $x_{0} \neq 0$ implies the Wronskian is non-zero as long as x remains on x_{0} 's side of zero, hence the two solutions we found are linearly independent and unique. If $x_{0}=0$, then $W(x)=0$ since it is either always
non-zero or zero, we know the solutions cannot be linearly independent, i.e. $y_{1}=a y_{2}$ with some $a \in \mathbb{R}$. But this means that we need $x y_{1}^{\prime}=x y_{2}^{\prime}=a x y_{1}^{\prime}$ which implies that $2 y_{1}-y_{2}=0$ for all x. So

$$
y_{1}=C \quad \& \quad y_{2}=2 C \quad \text { where } \quad C \in \mathbb{R}
$$

n-th order ODE's as first order systems Notice that we have

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{0} y^{(0)}=0 \Longleftrightarrow \dot{x}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & & 1 \\
-p_{0} & -p_{1} & \ldots & \ldots & -p_{n-1}
\end{array}\right) x \quad \text { where } \quad x=\left(\begin{array}{c}
y \\
y^{\prime} \\
\vdots \\
\vdots \\
y^{(n-1)}
\end{array}\right)
$$

HW-1 Give an example of an equation $y^{\prime}=f(x, y)$ with continuous f on \mathbb{R}^{2} and a sequence of Euler Curves $y_{\epsilon_{k}}(x)$ with $\epsilon_{k} \rightarrow 0$, defined on some interval $\left[x_{0}-\delta, x_{0}+\delta\right]$ passing through a point $\left(x_{0}, y_{0}\right)$, such that the sequence $y_{\epsilon_{k}}(x)$ does not converge on $\left[x_{0}-\delta, x_{0}+\delta\right]$

Solution Consider $y^{\prime}=\sqrt{|y|}$, it is clearly condition on \mathbb{R}^{2}. Then take the sequence of alternating max and min of $f(x, y)$ built around the point $\left(x_{0}, 0\right)$ for any $x_{0} \geqslant 0$. As we've seen the minimizing limit inferior gives

$$
y(x)=0
$$

in the limit, but the upper limit is given by

$$
y(x)=\left\{\begin{array}{cl}
\frac{1}{4}\left(x-x_{0}\right)^{2} & x \geqslant x_{0} \\
0 & x<x_{0}
\end{array}\right.
$$

Thus

$$
\max _{x \in\left[x_{0}-\delta, x_{0}+\delta\right]}\left|\lim \sup y_{\epsilon_{k}}-\liminf y_{\epsilon_{k}}\right|=\delta^{2} / 4
$$

HW-2 Suppose that a function $f(x, y)$ satisfies the condition of Osgood's theorem,

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant \varphi\left(\left|y_{1}-y_{2}\right|\right)
$$

on the domain D which is convex, and suppose that $\varphi(0)=0$ and $\varphi^{\prime}(0)=0$. Prove that f doesn't depend on y.

Solution By the Mean Value Theorem (have a convex domain), we have

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|=\left|\frac{\partial f}{\partial y}(x, \xi(x))\right|\left|y_{1}-y_{2}\right| \leqslant \varphi\left(\left|y_{1}-y_{2}\right|\right)
$$

Then we have that by taking the limit as $y_{1} \rightarrow y_{2}=y$

$$
\left|\frac{\partial f}{\partial y}(x, y(x))\right| \leqslant \lim _{y_{1} \rightarrow y_{2}} \frac{\varphi\left(\left|y_{1}-y_{2}\right|\right)}{\left|y_{1}-y_{2}\right|}=\lim _{h \rightarrow 0} \frac{\varphi(h)-\varphi(0)}{h}=\varphi^{\prime}(0)=0
$$

which implies that f doesn't depend on y.

Picard Iterations for first order systems Suppose that

$$
\left\{\begin{array}{c}
\dot{x}=F(t, x(t)) \quad x \in \mathbb{R}^{n}, \quad F(t, x): \mathbb{R} \times C[\mathbb{R}]^{n} \rightarrow \mathbb{R}^{n} \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

Then we still have the fundamental theorem of calculus element wise to conclude Picard iterations of the form

$$
\phi_{0}=x_{0} \quad \& \quad \phi_{k+1}=x_{0}+\int_{t_{0}}^{t} F(s, x(s)) d s
$$

where the integral is element wise. Thus the previous existence and uniqueness proof follows if $F(t, x)$ has Lipschitz functions.
pg. 726 - \# 9 Find the first few Picard iterates for

$$
\frac{d x}{d t}=y^{2}, \frac{d y}{d t}=x+z, \frac{d z}{d t}=z-y, \quad x(0)=1, y(0)=0, z(0)=1
$$

Solution Note that we may rewrite the above as

$$
\dot{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right) x+\left(\begin{array}{c}
y^{2} \\
0 \\
0
\end{array}\right) \quad x(0)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Using the above formula for Picard iterations we see

$$
\begin{gathered}
\phi_{0}=x_{0}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \\
\phi_{1}=x_{0}+\int_{0}^{t} F\left(s, \phi_{0}\right) d s=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\int_{0}^{t}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) d s=\left(\begin{array}{c}
1 \\
2 t \\
1+t
\end{array}\right) \\
\phi_{2}=x_{0}+\int_{0}^{t} F\left(s, \phi_{1}\right) d s=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\int_{0}^{t}\left(\begin{array}{c}
4 s^{2} \\
2+s \\
1-s
\end{array}\right) d s=\left(\begin{array}{c}
1+4 t^{3} / 3 \\
2 t+t^{2} / 2 \\
t-t^{2} / 2
\end{array}\right)
\end{gathered}
$$

A Helpful Formula to Remember Liouville's Formula. Let X be the fundamental solution to $\dot{X}=A X$ with $X\left(x_{0}\right)=X_{0}$, then you have

$$
\operatorname{det} X(x)=\operatorname{det} X_{0} \exp \left(\int_{x_{0}}^{x} \operatorname{tr}(A(s)) d s\right)
$$

Abel's Formula for the Wronskian of n-th order ODE is now an easy corollary. If y_{1}, \ldots, y_{n} solve

$$
y^{(n)}+p_{n-1} y^{(n-1)}+\ldots+p_{0} y^{(0)}=0
$$

The Wronskian for the solutions is given by

$$
W\left[y_{1}, \ldots, y_{n}\right](x)=C \exp \left(\int p_{n-1}(x) d x\right)
$$

Quiz Prove that if $\phi(0)=0$ and $\phi^{\prime}(0)$ exists (and $\left.\phi(x)>0\right)$, then

$$
\int_{0}^{\epsilon} \frac{d u}{\phi(u)}=\infty \quad \text { for any } \quad \epsilon>0
$$

Solution Since $\phi^{\prime}(0)$ exists, fix $\epsilon^{\prime}>0$, then for some $\delta>0, x \in(0, \delta)$ implies

$$
\left|\frac{\phi(x)}{x}-\phi^{\prime}(0)\right|<\epsilon^{\prime} \Longrightarrow 0<\phi(x)<x\left(\phi^{\prime}(0)+\epsilon^{\prime}\right)=c x
$$

Thus we have

$$
\frac{1}{c x} \leqslant \frac{1}{\phi(x)}
$$

This implies that

$$
\infty=\int_{0}^{\delta} \frac{d x}{c x} \leqslant \int_{0}^{\delta} \frac{d x}{\phi(x)} \Longrightarrow \int_{0}^{\epsilon} \frac{d u}{\phi(u)}=\infty
$$

Alternate Solution Since $\phi^{\prime}(0)$ exists, we see that

$$
\phi^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\phi(h)-\phi(0)}{h}=\lim _{h \rightarrow 0} \frac{\phi(h)}{h}=c \in \mathbb{R}
$$

Thus we have that ϕ has leading order

$$
\phi(x) \approx c x^{n} \quad, n \geqslant 1 \quad c \in \mathbb{R} \backslash\{0\}
$$

around 0 . Thus

$$
x^{n}<x \quad \forall n \in[1, \infty) \quad \text { when } \quad x \in[0,1) \Longrightarrow \phi(x)<a x \quad a \in \mathbb{R} \backslash\{0\}, x \in[0, \delta)
$$

for some $\delta<1$. By limit comparison we know

$$
\frac{1}{x} \sim \frac{1}{\phi(x)}
$$

so

$$
\int_{0}^{\epsilon} \frac{d x}{x}=\infty \Longrightarrow \int_{0}^{\epsilon} \frac{d u}{\phi(u)}=\infty
$$

