# Tutorial Problems \#2 

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
Christopher J. Adkins
pg. 90 - \# 7 Solve

$$
\left(x^{4} y^{2}-y\right) d x+\left(x^{2} y^{4}-x\right) d y=0
$$

Solution Notice the symmetry, so lets check if the equation is exact. Let $M=x^{4} y^{2}-y$ and $N=x^{2} y^{4}-x$, then

$$
M_{y}=2 x^{4} y-1 \quad \& \quad N_{x}=2 x y^{4}-1
$$

i.e. it's not exact, but we see

$$
N_{x}-M_{y}=2 x y\left(y^{3}-x^{3}\right) \quad \& \quad x M-y N=-x^{2} y^{2}\left(y^{3}-x^{3}\right)
$$

In a previous exercise we saw that

$$
\mu(x y)=\exp \left(\int \frac{N_{x}-M_{y}}{x M-y N} d(x y)\right)=\exp \left(-2 \int \frac{d(x y)}{x y}\right)=\exp -2 \ln |x y|=\frac{1}{x^{2} y^{2}}
$$

works as an integrating factor provide the function $N_{x}-M_{y} / x M-y N$ depended on $x y$, which in our case does! Thus the ODE becomes

$$
\underbrace{\left(x^{2}-\frac{1}{x^{2} y}\right)}_{=\tilde{M}} d x+\underbrace{\left(y^{2}-\frac{1}{x y^{2}}\right)}_{=\tilde{N}} d y=0
$$

after multiplying by our integrating factor. It's easily seen that the ODE is now exact, so we integrate the components as usual.

$$
\begin{aligned}
F(x, y) & =\int \tilde{M} d x \oplus \int \tilde{N} d y \\
& =\int\left(x^{2}-\frac{1}{x^{2} y}\right) d x \oplus \int\left(y^{2}-\frac{1}{x y^{2}}\right) d y \\
& =\frac{x^{3}}{3}+\frac{1}{x y} \oplus \frac{y^{3}}{3}+\frac{1}{x y} \\
& =\frac{x^{3}+y^{3}}{3}+\frac{1}{x y}
\end{aligned}
$$

Thus the general solution is

$$
\frac{x^{3}+y^{3}}{3}+\frac{1}{x y}=C
$$

pg. 90 - \# 9 Solve

$$
\underbrace{\left(\arctan (x y)+\frac{x y-2 x y^{2}}{1+x^{2} y^{2}}\right)}_{M} d x+\underbrace{\frac{x^{2}-2 x^{2} y}{1+x^{2} y^{2}}}_{N} d y=0
$$

Solution We check if the equation is exact.

$$
M_{y}=\frac{2 x-4 x y}{1+x^{2} y^{2}}-\frac{2 x^{3} y^{2}-4 x^{3} y^{3}}{\left(1+x^{2} y^{2}\right)^{2}}=N_{x}
$$

Since the equation is exact, we may integrate the components and take the linearity independent parts.

$$
\begin{aligned}
F(x, y) & =\int M d x \oplus \int N d y \\
& =x \arctan (x y)-\log \left(x^{2} y^{2}+1\right) \oplus x \arctan (x y)-\log \left(x^{2} y^{2}+1\right) \\
& =x \arctan (x y)-\log \left(x^{2} y^{2}+1\right)
\end{aligned}
$$

Thus the general solution is

$$
x \arctan (x y)-\log \left(x^{2} y^{2}+1\right)=C
$$

pg.103-\# 5 Solve

$$
y^{\prime} \sin y+\sin x \cos y=\sin x
$$

Solution Notice if $z=\cos y$, then $z^{\prime}=-y^{\prime} \sin y$. Thus we're able to rewrite the ODE as

$$
z^{\prime} \underbrace{-\sin x}_{=p} z=\underbrace{-\sin x}_{=g}
$$

In this form the ODE is first order linear. We know the solution is given by

$$
z(x)=\frac{1}{\mu(x)} \int g(x) \mu(x) d x \quad \text { where } \quad \mu(x)=\exp \left(\int p(x) d x\right)=\exp \left(-\int \sin x d x\right)=\exp (\cos x)
$$

Thus

$$
z(x)=e^{-\cos x} \int-\sin x e^{\cos x} d x=e^{-\cos x}\left(e^{\cos x}+C\right)=1+C e^{-\cos x}
$$

In terms of the original function, we have

$$
\cos (y)=1+C e^{-\cos x} \Longrightarrow y(x)=\arccos \left(1+C e^{-\cos x}\right)
$$

Riccati Equation Consider the ODE

$$
y^{\prime}=f(x)+g(x) y+h(x) y^{2}, \quad h(x) \neq 0
$$

If $y_{1}$ is a particular solution of this equation, show that the substitution

$$
y=y_{1}+\frac{1}{u}, \quad y^{\prime}=y_{1}^{\prime}-\frac{1}{u^{2}} u^{\prime}
$$

will transform the equation into the first order linear

$$
u^{\prime}+\left(g+2 h y_{1}\right) u=-h
$$

Solution Using the change of variables suggested, we see

$$
\begin{aligned}
y^{\prime}=f(x)+g(x) y+h(x) y^{2} & \Longrightarrow y_{1}^{\prime}-\frac{1}{u^{2}} u^{\prime}=f(x)+g(x)\left(y_{1}+\frac{1}{u}\right)+h(x)\left(y_{1}+\frac{1}{u}\right)^{2} \\
& \Longrightarrow u^{2} y_{1}^{\prime}-u^{\prime}=u^{2}\left(f(x)+g(x) y_{1}+h(x) y_{1}^{2}\right)+u g(x)+h(x)+2 y_{1} h(x) u \\
& \Longrightarrow-u^{\prime}=\left(g(x)+2 h y_{1}\right) u+h
\end{aligned}
$$

pg.98-28 Solve

$$
y^{\prime}=\frac{1}{x^{2}}-\frac{y}{x}-y^{2}, \quad y_{1}(x)=\frac{1}{x}
$$

Solution This is an Riccati Equation, so we may use the suggested change of variables

$$
y=y_{1}+\frac{1}{u}
$$

We see that $f(x)=\frac{1}{x^{2}}, g(x)=-\frac{1}{x}$ and $h(x)=-1$, thus the resulting equation will be

$$
u^{\prime}+\left(g+2 h y_{1}\right) u=-h \Longrightarrow u^{\prime}+\frac{3}{x} u=1
$$

Now the equation is first order linear, we see a nice integrating factor of $1 / x^{3}$ will do the job. Thus

$$
u(x)=x^{3} \int \frac{1}{x^{3}} d x=\frac{-x+C x^{3}}{2}+\Longrightarrow y(x)=\frac{1}{x}+\frac{2}{-x+C x^{3}}
$$

Infinitely Many Solutions Suppose the domain $D$ is a strip $[a, b] \times \mathbb{R}$, and let $f(x, y)$ be continuous and bounded on $D$. It is possible that more than one integral curve of the equation $\frac{d y}{d x}=f(x, y)$ passes through a given point $\left(x_{0}, y_{0}\right)$ inside the strip, $a<x_{0}<b$. Prove that there are two integral curves $y=\varphi_{1}(x)$ and $y=\varphi_{2}(x)$ of this equation, the maximum and minimum solutions such that:

- $\varphi_{1}\left(x_{0}\right)=\varphi_{2}\left(x_{0}\right)=y_{0} \quad \& \quad \varphi_{2}(x) \leqslant \varphi_{1}(x) \quad \forall x \in[a, b]$
- The entire part of the strip between $\varphi_{2}(x)$ and $\varphi_{1}(x)$ can be completely filled by integral curves passing through $\left(x_{0}, y_{0}\right)$.
- There are no integral curves passing through $\left(x_{0}, y_{0}\right)$ which lie outside of this part of the strip.

Solution Here's a sketch. We'll construct both the max and min solution using approximation lines. We know by the fundamental theorem of calculus that

$$
y^{\prime}=f(x, y) \quad y\left(x_{0}\right)=y_{0} \Longleftrightarrow y(x)=y_{0}+\int_{x_{0}}^{x} f(s, y(s)) d s
$$

By Peano's existence theorem, we know there exists at least 1 integral curve through $\left(x_{0}, y_{0}\right)$ since $f$ is continuous and bounded (gives a uniformly convergent subsequence). Call $y_{\max }$ the largest integral curve and $y_{\min }$ the smallest. Then we have that

$$
y_{\max }-y_{\min }=\int_{x_{0}}^{x}\left[f\left(s, y_{\max }(s)\right)-f\left(s, y_{\min }(s)\right)\right] d s \geqslant 0
$$

These may be constructed using an Euler Approximation on the integral to recursively build the max and min (or use lines and the differential). Any curve in-between may be also created since we may take the any value between the min and max in the recursion.

Quiz Solve

$$
(x-\sin y) d y+\tan y d x=0, \quad y(1)=\pi / 6
$$

Solution Notice we may write this into a first order linear equation for $x$ :

$$
\frac{d x}{d y}=\frac{\sin y-x}{\tan y}=\cos y-\frac{x}{\tan y} \Longrightarrow x^{\prime}+\frac{1}{\tan y} x=\cos y
$$

Thus with integrating factor

$$
\mu(y)=\exp \left[\int \frac{d y}{\tan y}\right]=\exp \ln \sin y=\sin y
$$

Then we know

$$
x(y)=\frac{1}{\mu(y)} \int \mu(y) g(y) d y=\frac{1}{\sin y} \int \cos y \sin y d y=\frac{\sin y}{2}+\frac{C}{\sin y} \quad C \in \mathbb{R}
$$

The initial data implies the constant must be given by

$$
1=x(\pi / 6)=\frac{1}{4}+2 C \Longrightarrow C=\frac{3}{8} \Longrightarrow x(y)=\frac{\sin y}{2}+\frac{3}{8 \sin y}
$$

or

$$
8 x \sin y=4 \sin ^{2} y+3
$$

