Tutorial Problems \#1

MAT 267 - Advanced Ordinary Differential Equations - Winter 2016 Christopher J. Adkins
pg.56-\# 19 Solve

$$
\left\{\begin{array}{c}
(1-x) d y=x(y+1) d x \\
y(0)=0
\end{array}\right.
$$

Solution The equation is separable, thus

$$
\frac{d y}{y+1}=\frac{x d x}{1-x} \Longrightarrow \int \frac{d y}{y+1}=\int \frac{x d x}{1-x} \Longrightarrow \ln |y+1|=\ln \left|\frac{1}{1-x}\right|+x+C \Longrightarrow y(x)=\frac{\tilde{C} e^{x}}{1-x}-1
$$

is the general solution. The initial condition fixes the constant.

$$
y(0)=0 \Longrightarrow 0=\tilde{C}-1 \Longrightarrow \tilde{C}=1
$$

Thus the solution to the IVP is

$$
y(x)=\frac{e^{x}}{1-x}-1
$$

pg. 69 - \#6 Solve

$$
(x+y) d x+(2 x+2 y-1) d y=0
$$

Solution We see the lines in the equation are parallel since

$$
u=x+y \Longrightarrow 2 u-1=2 x+2 y-1
$$

Thus we make the change of variables u as above, we see $d u=d x+d y$ and

$$
(1-u) d x+(2 u-1) d u=0
$$

is a separable equation. Thus the implicit solution is given by

$$
\begin{gathered}
\int d x=\int \frac{1-2 u}{1-u} d u=\int \frac{1}{1-u}
\end{gathered}+\int\left(2-\frac{2}{1-u}\right) d u \Longrightarrow x+C=\ln |1-u|+2 u-2 \ln |1-u|
$$

pg. 69 - \#10 Solve

$$
(3 x-2 y+4) d x-(2 x+7 y-1) d y=0
$$

Solution We know it is possible to convert this to a homogeneous equation, we just need to find the change of variables. We'll use the differential method, i.e. we want u and v such that

$$
3 x-2 y+4=u \quad \& \quad-2 x-7 y+1=v
$$

This implies that

$$
\left\{\begin{array}{c}
d u=3 d x-2 d y \\
d v=-2 d x-7 d y
\end{array} \Longleftrightarrow\binom{d u}{d v}=\left(\begin{array}{cc}
3 & -2 \\
-2 & -7
\end{array}\right)\binom{d x}{d y}\right.
$$

By inverting the matrix we see that

$$
\frac{1}{25}\left(\begin{array}{cc}
7 & -2 \\
-2 & -3
\end{array}\right)\binom{d u}{d v}=\binom{d x}{d y}
$$

Thus the ODE becomes the following in coordinates u and v,

$$
\begin{aligned}
u d x+v d y & =u\left(\frac{7}{25} d u-\frac{2}{25}\right)+v\left(-\frac{2}{25} d u-\frac{3}{25} d v\right) \\
& =\frac{1}{25}[(7 u-2 v) d u+(-2 u-3 v) d v]
\end{aligned}
$$

Now the equation is homogeneous, which we know is possible to solve using $u=t v, d u=t d v+v d t$. Substitute the change of variables again. (note we've dropped the $1 / 25$ since the RHS is 0)

$$
(7 t v-2 v)(t d v+v d t)+(-2 t v-3 v) d v=\left(7 t^{2}-4 t-3\right) v d v+(7 t-2) v^{2} d t=0
$$

This equation is separable, and we see the solution is (using $\omega=7 t^{2}-4 t-3, d \omega=2(7 t-2) d t$)

$$
\int \frac{d v}{v}=\int \frac{(2-7 t) d t}{7 t^{2}-4 t-3}=-\frac{1}{2} \int \frac{d \omega}{\omega} \Longrightarrow \ln \left|v^{2} \omega\right|=C
$$

Now we just back substitute everything to revert to the original coordinates.

$$
\omega v^{2}=\tilde{C} \Longrightarrow 7(v t)^{2}-4 t v^{2}-3 v^{2}=\tilde{C} \Longrightarrow 7 u^{2}-4 u v-3 v^{2}=\tilde{C}
$$

Hence the implicit general solution is

$$
7 y^{2}+(2-4 x) y+3 x^{2}+8 x=\text { Const }
$$

pg. 79 - \#16 Solve

$$
\left\{\begin{array}{c}
\sin x \cos y d x+\cos x \sin y d y=0 \\
y(\pi / 4)=\pi / 4
\end{array}\right.
$$

Solution By the symmetry of the equation, we check if it is exact. i.e

$$
M_{y}=N_{x} \quad \text { where } \underbrace{\sin x \cos y}_{=M} d x+\underbrace{\cos x \sin y}_{=N} d y=0
$$

Clearly

$$
M_{y}=-\sin x \sin y=N_{x}
$$

Thus the equation is exact, the solution is therefore given by a level set of linearity independent factors of the integrated functions. I write this as

$$
\begin{aligned}
F(x, y) & =\int M d x \oplus \int N d y \\
& =\int \sin x \cos y d x \oplus \int \cos x \sin y d y \\
& =-\cos x \cos y \oplus-\cos x \cos y \\
& =-\cos x \cos y
\end{aligned}
$$

Thus the general solution is

$$
\cos x \cos y=C
$$

The initial data implies that

$$
C=\cos (\pi / 4) \cos (\pi / 4)=\frac{1}{2} \Longrightarrow 1=2 \cos x \cos y
$$

is the implicit solution to the IVP.
pg.79-\#12 Solve

$$
x \sqrt{x^{2}+y^{2}} d x-\frac{x^{2} y}{y-\sqrt{x^{2}+y^{2}}} d y=0
$$

Solution Notice we may rewrite the 2nd component since

$$
-\frac{x^{2} y}{y-\sqrt{x^{2}+y^{2}}}=-\frac{x^{2} y}{y-\sqrt{x^{2}+y^{2}}} \frac{y+\sqrt{x^{2}+y^{2}}}{y+\sqrt{x^{2}+y^{2}}}=-\frac{x^{2} y^{2}+x^{2} y \sqrt{x^{2}+y^{2}}}{y^{2}-x^{2}-y^{2}}=y^{2}+y \sqrt{x^{2}+y^{2}}
$$

It's easy to check that the equation is exact since

$$
M_{y}=\frac{x y}{\sqrt{x^{2}+y^{2}}}=N_{x}
$$

Thus solution is given by

$$
\begin{aligned}
F(x, y) & =\int M d x \oplus \int N d y \\
& =\int x \sqrt{x^{2}+y^{2}} d x \oplus \int\left(y^{2}+y \sqrt{x^{2}+y^{2}}\right) d y \\
& =\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2} \oplus \frac{y^{3}}{3}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2} \\
& =\frac{\left(x^{2}+y^{2}\right)^{3 / 2}+y^{3}}{3}
\end{aligned}
$$

Thus the implicit solution is given by

$$
\left(x^{2}+y^{2}\right)^{3 / 2}+y^{3}=\text { const }
$$

Quiz Solve

$$
y d y+x d x=3 x y^{2} d x, \quad y(2)=1
$$

Solution Rewrite the ODE to

$$
y d y=x\left(3 y^{2}-1\right) d x
$$

Clearly this equation is separable, thus the implicit solution is given by

$$
\int \frac{y}{3 y^{2}-1} d y=\int x d x \Longrightarrow \frac{1}{6} \ln \left|3 y^{2}-1\right|=\frac{x^{2}}{2}+C \Longrightarrow 3 y^{2}-1=\tilde{C} e^{3 x^{2}} \Longrightarrow y= \pm \sqrt{\bar{C} e^{3 x^{2}}+\frac{1}{3}}
$$

The initial data implies that we need the + sign, and

$$
\bar{C}=\frac{2 e^{-12}}{3} \Longrightarrow y=\frac{1}{\sqrt{3}} \sqrt{2 e^{3\left(x^{2}-4\right)}+1}
$$

