Tutorial Problems \#6

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
Christopher J. Adkins

Variation of Parameters Suppose you know y_{1} and y_{2} solve $y^{\prime \prime}+p y^{\prime}+q y=0$. Is there a way to easily solve the non-homogeneous equation?

$$
y^{\prime \prime}+p y^{\prime}+q y=g
$$

Yes!!! It turns out that if we try $y=A(t) y_{1}+B(t) y_{2}$ (i.e. vary the parameters) it is a solution if

$$
A(t)=-\int \frac{y_{2} g}{W\left[y_{1}, y_{2}\right]} d t \quad \& \quad B(t)=\int \frac{y_{1} g}{W\left[y_{1}, y_{2}\right]} d t
$$

This is easily deduced from a straightforward computation assuming $A^{\prime} y_{1}+B^{\prime} y_{2}=0$.
pg. 240-\# 5 Solve

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\cos e^{-x}
$$

Solution First solve the homogenous part. i.e. notice that

$$
L(D)=(D-2)(D-1)
$$

Thus $\lambda=1,2$ are the eigenvalues and we have that

$$
y_{1}(x)=e^{2 x} \quad \& \quad y_{2}(x)=e^{x}
$$

are the fundamental solutions. To now solve the non-homogeneous equation, we may use variation of parameters but we first need the Wronskian

$$
W\left[y_{1}, y_{2}\right](x)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=-e^{3 x}
$$

Using the formula we see that

$$
\begin{aligned}
A(x) & =\int \frac{e^{x} \cos e^{-x}}{e^{3 x}} d x \\
& =-\int u \cos u d u \quad \text { where } \quad u=e^{-x} \\
& =-u \sin u-\cos u+C_{1} \\
& =-e^{-x} \sin e^{-x}-\cos e^{-x}+C_{1} \\
B(x) & =\int \frac{e^{2 x} \cos \left(e^{-x}\right)}{-e^{3 x}} d x \\
& =\int \cos u d x \quad \text { where } \quad u=e^{-x} \\
& =\sin u+C_{2} \\
& =\sin e^{-x}+C_{2}
\end{aligned}
$$

Thus, we have the general solution as

$$
y(x)=A(x) y_{1}+B(x) y_{2}=C_{1} e^{2 x}+C_{2} e^{x}-e^{2 x} \cos e^{-x}
$$

Variation of Parameters in Higher Order Equations In general, if we have a first order system $\dot{x}=$ $A x+g$. You'll find that the fundamental solution X to $X=A X$ allows us to write the solution as

$$
x(t)=X(t) c+X(t) \int_{t_{0}}^{t} X^{-1}(s) g(s) d(s)
$$

Indeed since

$$
\dot{x}=\underbrace{\dot{X} c+\dot{X} \int_{t_{0}}^{t} X^{-1}(s) g(s) d(s)}_{\dot{X}=A X}+X\left(X^{-1} g\right)=A\left(X c+X \int_{t_{0}}^{t} X^{-1}(s) g(s) d(s)+g=A x+g\right.
$$

Notice we easily recover the formula we've been using in the 2 nd order case since $\operatorname{det} X=W\left[y_{1}, y_{2}\right]$ and

$$
g=\binom{0}{g} \quad \& \quad X=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right) \quad \Longrightarrow \quad X^{-1} g=\frac{1}{W\left[y_{1}, y_{2}\right]}\left(\begin{array}{cc}
y_{2}^{\prime} & -y_{2} \\
y_{1}^{\prime} & y_{1}
\end{array}\right)\binom{0}{g}=\frac{1}{W}\binom{-y_{2} g}{y_{1} g}
$$

Reduction of Order when a solution is known If you know y_{1} solves $y^{\prime \prime}+p y^{\prime}+q y=0$, then you may find y_{2} by setting $y_{2}=\nu(x) y_{1}(x)$ with a straight forward computation for $\nu(x)$. A nice way to go about find ν is though the Wronskian, since

$$
W\left[y_{1}, y_{2}\right]=C \exp \left(-\int p(x) d x\right)
$$

by Abel's theorem, and then by definition we have

$$
W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \Longleftrightarrow \frac{W\left[y_{1}, y_{2}\right]}{y_{1}^{2}}=\frac{y_{2}^{\prime}}{y_{1}}-\frac{y_{2} y_{1}^{\prime}}{y_{1}^{2}}=\frac{d}{d x}\left(\frac{y_{2}}{y_{1}}\right)
$$

Thus we see

$$
y_{2}=y_{1} \int \frac{W\left[y_{1}, y_{2}\right]}{y_{1}^{2}} d x
$$

pg. 246 - \#16 Solve

$$
x^{2} y^{\prime \prime}-2 y=2 x^{2} \quad \text { given } \quad y_{1}=x^{2}
$$

Solution In standard form the ODE is

$$
y^{\prime \prime}-\frac{2}{x^{2}} y=2
$$

Using the above, we know

$$
y_{2}=y_{1} \int \frac{W}{y_{1}^{2}} d x
$$

So we compute Wronskian via Abel's theorem

$$
W\left[y_{1}, y_{2}\right]=c_{1} \exp \left(-\int p(x) d x\right)=c_{1}
$$

Now using the reduction of order formula we see

$$
y_{2}(x)=x^{2} \int \frac{d x}{x^{4}}=\frac{1}{x}
$$

So the second fundamental solution to the ODE is $y_{2}=1 / x$. Now that we have both solutions, let's use variation of parameters to solve the non-homogeneous part. i.e. $y(x)=A(x) y_{1}+B(x) y_{2}$. We need to compute the the explicit Wronskian for our given fundamental solutions. We see

$$
W\left[y_{1}, y_{2}\right](x)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=-3
$$

Now we use the variation of parameters formula

$$
\begin{aligned}
A(x) & =-\int \frac{y_{2} g}{W} d x \\
& =\frac{2}{3} \int \frac{d x}{x} \\
& =\frac{2}{3} \log x+c_{1} \\
B(x) & =\int \frac{y_{1} g}{W} d x \\
& =-\frac{2}{3} \int x^{2} d x \\
& =-\frac{2}{9} x^{3}+c_{2}
\end{aligned}
$$

Putting everything together now shows

$$
y(x)=c_{1} x^{2}+\frac{c_{2}}{x}+\frac{2}{3} x^{2} \log (x)
$$

pg. 329-\#5 Prove conservation of energy for the undamped helical spring $\left(m x^{\prime \prime}=-k x\right)$. i.e.

$$
E=\frac{1}{2} k x^{2}+\frac{1}{2} m v^{2} \quad \text { where } \quad v=\frac{d x}{d t}
$$

Solution Suppose that $x^{\prime} \neq 0$, then we have

$$
m x^{\prime \prime}=-k x \Longrightarrow m x^{\prime \prime} x^{\prime}=-k x x^{\prime} \Longrightarrow \frac{1}{2} m \frac{d}{d t}\left(x^{\prime}\right)^{2}=-\frac{1}{2} k \frac{d}{d t} x^{2} \Longrightarrow \frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=E \in \mathbb{R}
$$

pg. 343-\#5 Solve

$$
\frac{d^{2} y}{d t^{2}}+\omega_{0}^{2} y=F \sin \left(\omega_{0} t\right) \quad y(0)=y_{0}, v(0)=v_{0}
$$

Solution Clearly the homogeneous part is

$$
y_{\text {hom }}(t)=c_{1} \underbrace{\cos \left(\omega_{0} t\right)}_{=y_{1}}+c_{2} \underbrace{\sin \left(\omega_{0} t\right)}_{=y_{2}}
$$

Via variation of parameters, we see the solution to the non-homogeneous equation is given by $A(t) y_{1}+B(t) y_{2}$ where (noting $W\left[y_{1}, y_{2}\right]=1$)

$$
\begin{aligned}
A(t) & =-F \int \sin ^{2}\left(\omega_{0} t\right) d t \\
& =-F \int \frac{1-\cos (2 u)}{2 \omega_{0}} d u \\
& =-\frac{F t}{2 \omega_{0}}-\frac{F \sin \left(2 \omega_{0} t\right)}{4 \omega_{0}} \\
& =-\frac{F t}{2 \omega_{0}}-\frac{F \sin \left(\omega_{0} t\right) \cos \left(\omega_{0} t\right)}{2 \omega_{0}} \\
B(t) & =F \int \cos \left(\omega_{0} t\right) \sin \left(\omega_{0} t\right) d t \\
& =-\frac{F \cos ^{2}\left(\omega_{0} t\right)}{2 \omega_{0}}
\end{aligned}
$$

Putting it all together we see

$$
y(t)=c_{1} \cos \left(\omega_{0}\right) t+c_{2} \sin \left(\omega_{0} t\right)-\frac{F t}{2 \omega_{0}} \cos \left(\omega_{0} t\right)
$$

