Tutorial Problems \#5

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
 Christopher J. Adkins

Solutions

Reduction of Order Via Differential Operators Let $D=\frac{d}{d x}$ be our differential operator. Then any n-th order linear non-homogeneous equation may be written as

$$
L(D)[y(x)]=f(x) \quad \text { where } \quad L(D)=D^{n}+a_{n-1} D^{n-1}+\ldots+a_{0} \quad\left(D^{n}=\frac{d^{n}}{d x^{n}}\right)
$$

with $a_{i} \in \mathbb{R}$. Factor L into a product of it's roots (which may be complex and we'll deal with later), i.e.

$$
L(D)=\left(D-\lambda_{1}\right) \ldots\left(D-\lambda_{n}\right)
$$

Notice this factorization is not possible if a_{i} are functions since the differential operator isn't commutative $\left(D_{1} D_{2}=D_{2} D_{1}\right)$. Thus, if we let $y_{n}=\left(D-\lambda_{n}\right) y$ and $y_{i}=\left(D-\lambda_{i}\right) y_{i+1}$ we effectively reduce the n-th order equations into n first order equations (which we know how to handle)
pg. 267-\# 28 Solve (using reduction of order)

$$
y^{\prime \prime}+y^{\prime}=x^{2}+2 x
$$

Solution We see that if $L=D^{2}+D$, then

$$
L(D)[y(x)]=x^{2}+2 x
$$

is the ODE we're looking to solve. Notice we may use the above method to deduce

$$
L(D)=D(D+1) \Longrightarrow u^{\prime}=x^{2}+2 x \quad \text { where } \quad(D+1) y=u
$$

The above ODE in u is separable, thus

$$
u(x)=\int x^{2}+2 x d x=\frac{x^{3}}{3}+x^{2}+C_{1} \quad C_{1} \in \mathbb{R}
$$

We now know

$$
y^{\prime}+y=\frac{x^{3}}{3}+x^{2}+C_{1}
$$

which is a first order linear ODE, we know this may be solved using an integrating factor. We know

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) g(x) d x \quad \text { where } \quad \mu(x)=\exp \left(\int d x\right)=e^{x}
$$

Thus the general solution to the ODE is

$$
y(x)=e^{-x} \int e^{x}\left(\frac{x^{3}}{3}+x^{2}+C_{1}\right) d x=\frac{x^{3}}{3}+C_{2} e^{-x}+C_{1} \quad C_{2} \in \mathbb{R}
$$

The Inverse of a Differential Operator Let's talk about D^{-1} now. Formally we need an operator with the property if $D x=y$, then $x=D^{-1} y$. Intuitively, you should think the integral operator is a natural left inverse for D since

$$
\frac{d}{d x} \int f(x) d x=f(x)
$$

by the fundamental theorem of calculus. Now what about factors of $(D-\lambda)$ we had...using a formal series expansion(notably a geometric series), we may algebraically write

$$
(D-\lambda)^{-1}=-\frac{1}{\lambda(1-D / \lambda)}=-\frac{1}{\lambda}\left[1+\frac{D}{\lambda}+\frac{D^{2}}{\lambda^{2}}+\frac{D^{3}}{\lambda^{3}} \ldots\right]
$$

Convergence of this series is a slight issue at the moment...but for any solution that terminates after a finite number of derivatives we know convergence is guaranteed. Let's revisit the example we just saw.
pg. 267-\# 28 Solve (using Inverse Operators)

$$
y^{\prime \prime}+y^{\prime}=x^{2}+2 x
$$

Solution As we saw before we have

$$
D(D+1) y=x^{2}+2 x \Longrightarrow y_{p}(x)=\frac{1}{D(D+1)}\left(x^{2}+2 x\right)
$$

Notice we'll only be able to pick up the particular solution to the ODE with this method (not the general) since L is not injective in general(i.e. $L\left[y_{h o m}\right]=0$). Expanding the inverse into formal series shows

$$
y_{p}(x)=\frac{1}{D}\left(1+D+D^{2}\right)\left(x^{2}+2 x\right)=\left[\frac{1}{D}-1+D\right]\left(x^{2}+2 x\right)
$$

Thus

$$
y_{p}(x)=\int\left(x^{2}+2 x\right) d x-\left(x^{2}+2 x\right)+\frac{d}{d x}\left(x^{2}+2 x\right)=\frac{x^{3}}{3}+2
$$

You may recover the general solution using your knowledge of homogeneous equation, but seeing the eigenvalues of $\lambda=0$ and $\lambda=-1$, thus 1 and e^{-x} solve the homogeneous problem.

A Special Case, $(D-\lambda)^{-1}$ Applied To $e^{a x}$ Notice in the case of exponential, we may factor out $e^{a x}$ in the formal expansion since

$$
\frac{d^{n}}{d x^{n}} e^{a x}=a^{n} e^{a x}
$$

Thus

$$
\frac{1}{D-\lambda} e^{a x}=-\frac{e^{a x}}{\lambda}\left[1+\frac{a}{\lambda}+\frac{a^{2}}{\lambda^{2}}+\ldots\right]=\frac{e^{a x}}{a-\lambda}
$$

where we side-stepped the notion of convergence once again, but clearly this is an inverse since

$$
(D-\lambda)\left(\frac{1}{D-\lambda} e^{a x}\right)=(D-\lambda) \frac{e^{a x}}{a-\lambda}=e^{a x}
$$

Since this will work with any $a \in \mathbb{C}$ and the inverse raised to integer powers, we've therefore found a way to handle exponentials. The only issue that may occur is if $a=\lambda$ since the expansion isn't defined (in other words, a is an eigenvalue). This can easily be fixed using the exponential shift theorem,

$$
L(D)\left[e^{a x} y\right]=e^{a x} L(D+a)[y]
$$

when $L(x)$ is a polynomial (the proof goes by induction, and also applies to the inverse). Thus if λ is a root of L, i.e. $L(D)=(D-\lambda)^{k} g(D)$, we see that

$$
\frac{1}{(D-\lambda)^{k} g(D)} e^{\lambda x}=e^{\lambda x} \frac{1}{D^{k} g(D+\lambda)} 1=e^{\lambda x} \frac{x^{k}}{k!g(\lambda)}
$$

pg. 282-\# 32 Solve

$$
y^{\prime \prime \prime}+y^{\prime}=\cos x
$$

Solution Well, in terms of D we have that

$$
D(D-i)(D+i) y=\cos x
$$

Now since we've just dealt with exponentials so far, note $e^{i x}=\cos x+i \sin x$, so lets solve

$$
D(D-i)(D+i) y=e^{i x}
$$

and take the real part. Letting $g(D)=D(D+i)$ like the above, we see

$$
y_{p}(x)=\frac{1}{(D-i) g(D)} e^{i x}=e^{i x} \frac{x}{g(i)}=-e^{i x} \frac{x}{2}=-\frac{x \cos x}{2}-i \frac{x \sin x}{2}
$$

Since we just want the real part of the solution, we see the particular solution to the ODE is

$$
y_{p}(x)=-\frac{x \cos x}{2}
$$

Noting that the eigenvalues of the equation are $\lambda=0, \pm i$, we have that

$$
y(x)=C_{1}+C_{2} \cos x+C_{3} \sin x-\frac{x \cos x}{2}
$$

is the general solution.

Partial Fraction Decomposition with Differential Operators As you've probably seen before with polynomials, you may decompose

$$
\frac{1}{\left(D+\lambda_{1}\right)\left(D+\lambda_{2}\right)}=\frac{c_{1}}{D+\lambda_{1}}+\frac{c_{2}}{D+\lambda_{2}}
$$

Let's see how this would apply to the previous example.
pg. 282-\# 32 Solve (using partial fractions)

$$
y^{\prime \prime \prime}+y^{\prime}=\cos x
$$

Solution Using what we saw before, let's try to decompose into pieces:

$$
\frac{1}{D(D-i)(D+i)}=\frac{c_{1}}{D}+\frac{c_{2}}{D-i}+\frac{c_{3}}{D+i}
$$

This implies we need

$$
(D-i)(D+i) c_{1}+D(D+i) c_{2}+D(D-i) c_{3}=1 \Longrightarrow\left\{\begin{array}{c}
c_{1}+c_{2}+c_{3}=0 \\
c_{2}-c_{3}=0 \\
c_{1}=1
\end{array} \Longrightarrow c_{2}=-\frac{1}{2}, c_{3}=-\frac{1}{2}\right.
$$

Thus

$$
\frac{1}{D(D-i)(D+i)}=\frac{1}{D}-\frac{1}{2(D-i)}-\frac{1}{2(D+i)}
$$

Now if we apply this to $e^{i x}$, we see

$$
\frac{1}{D(D-i)(D+i)} e^{i x}=\frac{e^{i x}}{i}-\frac{x e^{i x}}{2}-\frac{e^{i x}}{4 i}+C=\frac{3}{4 i} e^{i x}-\frac{x e^{i x}}{2}+C
$$

If we take the real part of this solution we see the following particular solution

$$
y_{p}(x)=\frac{3}{4} \sin x-\frac{x \cos x}{2}+C
$$

Quiz Find the partial solution using any inverse operator method for

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2\left(e^{-2 x}+x^{2}\right)
$$

Solution We see that

$$
L(D)=(D+2)(D+1)
$$

Thus we want to solve

$$
y_{p}(x)=\frac{1}{(D+2)(D+1)}\left(2 e^{-2 x}+2 x^{2}\right)
$$

For the exponential, we may use what we've previous talked about to find that we have $L=(D+2) g(D)$, hence

$$
y_{p_{e}}(x)=\frac{2 x e^{-2 x}}{g(-2)}=-2 x e^{-2 x}
$$

For the polynomial, we have that

$$
y_{p_{p}}(x)=\frac{1}{(D+2)(D+1)} 2 x^{2}=\frac{1}{2}\left(1-\frac{D}{2}+\frac{D^{2}}{4}\right)\left(1-D+D^{2}\right) 2 x^{2}=\frac{1}{2}\left(1-\frac{3 D}{2}+\frac{7 D^{2}}{4}\right) 2 x^{2}
$$

Thus we see

$$
y_{p_{p}}(x)=x^{2}-3 x+\frac{3}{2}
$$

So

$$
y_{p}(x)=-2 x e^{-2 x}+x^{2}-3 x+\frac{7}{2}
$$

is a particular solution.

