
Tutorial Problems #3

MAT 267 – Advanced Ordinary Di↵erential Equations – Fall 2014

Christopher J. Adkins

Solutions

pg.109 - # 2 - Petrov Solve (
xy

0
1 = 2y1 � y2

xy

0
2 = 2y1 � y2

(a) Show if x0 6= 0, the solution exists and is unique on the real axis and if x0 = 0, the solution exists only if

2y1 � y2 = 0 and is not unique.

(b) Show the Wronskian of the linearity independent solutions is Cx with C 6= 0,

Solution We’ll first solve the system. Notice that

xy

0
1 = xy

0
2 =) y

0
1 = y

0
2 when x 6= 0

Thus y1 = y2 + C1 with some constant C1 2 R. Using this, we see the system reduces to

xy

0
1 = 2y1 � y1 � C1 = y1 � C1

This equation is separable, thus
Z

dy1

y1 � C1
=

Z
dx

x

=) ln |y1 � C1| = ln |x|+ C =) y1 = C1 + C2x

Now that we have y1 it’s easy to see that

y2 = 2C1 + C2x

You may write this in vector notation as

y(x) = C1y
(1) + C2y

(2) = C1

 
1

2

!
+ C2x

 
1

1

!

We compute the Wronskian by definition:

W (x) = det(y(1)y(2)) =

�����
1 x

2 x

����� = Cx where C 6= 0

Notice that x0 6= 0 implies the Wronskian is non-zero as long as x remains on x0’s side of zero, hence the two

solutions we found are linearly independent and unique. If x0 = 0, then W (x) = 0 since it is either always
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non-zero or zero, we know the solutions cannot be linearly independent, i.e. y1 = ay2 with some a 2 R. But

this means that we need xy

0
1 = xy

0
2 = axy

0
1 which implies that 2y1 � y2 = 0 for all x. So

y1 = C & y2 = 2C where C 2 R

n-th order ODE’s as first order systems Notice that we have

y

(n) + p

n�1y
(n�1) + . . .+ p0y

(0) = 0 () .

x =

0

BBBBBBB@

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 1

�p0 �p1 . . . . . . �p

n�1

1

CCCCCCCA

x where x =

0

BBBBBBBB@

y

y

0

...

...

y

(n�1)

1

CCCCCCCCA

pg.770 - # 6 Set up a system of first order equations for

y

000 = 2x(y0)2 � 3yy00 + xy, y(0) = 1, y0(0) = �1, y00(0) = 2

Solution Start from the top and let

y1 = y y2 = y

0
1 = y

0
y3 = y

00
1 = y

0
2 = y

00

Then we see that

y

0
3 = y

000 = 2xy22 � 4y1y3 + xy1, y1(0) = 1, y2(0) = �1, y3(0) = 2

or in matrix notation we have that
0

BB@

y

0
1

y

0
2

y

0
3

1

CCA =

0

BB@

0 1 0

0 0 1

x 0 0

1

CCA

0

BB@

y1

y2

y3

1

CCA+

0

BB@

0

0

2xy22 � 4y1y3

1

CCA

Picard Iterations for first order systems Suppose that

(
.

x = F (t, x(t))

x(t0) = x0

x 2 Rn

, F (t, x) : R⇥ C[R]n ! Rn

Then we still have the fundamental theorem of calculus element wise to conclude Picard iterations of the form

�0 = x0 & �

k+1 = x0 +

Z
t

t0

F (s, x(s))ds

where the integral is element wise. Thus the previous existence and uniqueness proof follows if F (t, x) has

Lipschitz functions.

pg.726 - # 9 Find the first few Picard iterates for

dx

dt

= y

2
,

dy

dt

= x+ z,

dz

dt

= z � y, x(0) = 1, y(0) = 0, z(0) = 1
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Solution Note that we may rewrite the above as

.

x =

0

BB@

0 0 0

1 0 1

0 �1 1

1

CCAx+

0

BB@

y

2

0

0

1

CCA x(0) =

0

BB@

1

0

1

1

CCA

Using the above formula for Picard iterations we see

�0 = x0 =

0

BB@

1

0

1

1

CCA

�1 = x0 +

Z
t

0
F (s,�0)ds =

0

BB@

1

0

1

1

CCA+

Z
t

0

0

BB@

0

2

1

1

CCA ds =

0

BB@

1

2t

1 + t

1

CCA

�2 = x0 +

Z
t

0
F (s,�1)ds =

0

BB@

1

0

1

1

CCA+

Z
t

0

0

BB@

4s2

2 + s

1� s

1

CCA ds =

0

BB@

1 + 4t3/3

2t+ t

2
/2

t� t

2
/2

1

CCA

A Helpful Formula to Remember Liouville’s Formula. Let X be the fundamental solution to
.

X = AX

with X(x0) = X0, then you have

detX(x) = detX0 exp

✓Z
x

x0

tr(A(s))ds

◆

Abel’s Formula for the Wronskian of n-th order ODE is now an easy corollary. If y1, . . . , yn solve

y

(n) + p

n�1y
(n�1) + . . .+ p0y

(0) = 0

The Wronskian for the solutions is given by

W [y1, . . . , yn](x) = C exp

✓Z
p

n�1(x)dx

◆

Quiz Question Prove that if �(0) = 0 and �

0(0) exists (and �(x) > 0), then
Z

✏

0

du

�(u)
= 1 for any ✏ > 0

Solution Since �

0(0) exists, we see that

�

0(0) = lim
h!0

�(h)� �(0)

h

= lim
h!0

�(h)

h

2 R

Thus we have that � has leading order

�(x) ⇡ cx

n

n > 1 c 2 R \ {0}

around 0. Fix ✏ > 0, and take 0 ⇡ � << ✏. Now by linearity of the integral we may decompose the integral into

two pieces, specifically Z
✏

0

du

�(u)
=

Z
�

0

du

�(u)
+

Z
✏

�

du

�(u)
>
Z

�

0

du

�(u)
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By limit comparison, we see

Z
�

0

dx

cx

n

= 1 =)
Z

�

0

du

�(u)
= 1 =)

Z
✏

0

du

�(u)
= 1
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