
Tutorial Problems #2
MAT 267 – Advanced Ordinary Differential Equations – Fall 2014

Christopher J. Adkins

Solutions

pg.90 - # 7 Solve

(x4y2 − y)dx+ (x2y4 − x)dy = 0

Solution Notice the symmetry, so lets check if the equation is exact. Let M = x4y2 − y and N = x2y4 − x,

then

My = 2x4y − 1 & Nx = 2xy4 − 1

i.e. it’s not exact, but we see

Nx −My = 2xy(y3 − x3) & xM − yN = −x2y2(y3 − x3)

In a previous exercise we saw that

µ(xy) = exp

(∫
Nx −My

xM − yN
d(xy)

)
= exp

(
−2

∫
d(xy)

xy

)
= exp−2 ln |xy| = 1

x2y2

works as an integrating factor provide the function Nx−My/xM −yN depended on xy, which in our case does!

Thus the ODE becomes (
x2 − 1

x2y

)
︸ ︷︷ ︸

=M̃

dx+

(
y2 − 1

xy2

)
︸ ︷︷ ︸

=Ñ

dy = 0

after multiplying by our integrating factor. It’s easily seen that the ODE is now exact, so we integrate the

components as usual.

F (x, y) =

∫
M̃dx⊕

∫
Ñdy

=

∫ (
x2 − 1

x2y

)
dx⊕

∫ (
y2 − 1

xy2

)
dy

=
x3

3
+

1

xy
⊕ y3

3
+

1

xy

=
x3 + y3

3
+

1

xy

Thus the general solution is

x3 + y3

3
+

1

xy
= C
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pg.90 - # 9 Solve (
arctan(xy) +

xy − 2xy2

1 + x2y2

)
︸ ︷︷ ︸

M

dx+
x2 − 2x2y

1 + x2y2︸ ︷︷ ︸
N

dy = 0

Solution We check if the equation is exact.

My =
2x− 4xy

1 + x2y2
− 2x3y2 − 4x3y3

(1 + x2y2)2
= Nx

Since the equation is exact, we may integrate the components and take the linearity independent parts.

F (x, y) =

∫
Mdx⊕

∫
Ndy

=x arctan(xy)− log(x2y2 + 1)⊕ x arctan(xy)− log(x2y2 + 1)

=x arctan(xy)− log(x2y2 + 1)

Thus the general solution is

x arctan(xy)− log(x2y2 + 1) = C

pg.103 - # 5 Solve

y′ sin y + sinx cos y = sinx

Solution Notice if z = cos y, then z′ = −y′ sin y. Thus we’re able to rewrite the ODE as

z′− sinx︸ ︷︷ ︸
=p

z = − sinx︸ ︷︷ ︸
=g

In this form the ODE is first order linear. We know the solution is given by

z(x) =
1

µ(x)

∫
g(x)µ(x)dx where µ(x) = exp

(∫
p(x)dx

)
= exp

(
−
∫

sinxdx

)
= exp(cosx)

Thus

z(x) = e− cos x

∫
− sinxecos xdx = e− cos x(ecos x + C) = 1 + Ce− cos x

In terms of the original function, we have

cos(y) = 1 + Ce− cos x =⇒ y(x) = arccos(1 + Ce− cos x)

Picard Iterations Suppose you have a first order IVP. Using the fundamental theorem of calculus we see{
y′ = f(t, y)

y(t0) = y0
⇐⇒ y(t) = y0 +

∫ t

t0

f(s, y(s))ds

i.e the solution to the ODE is a solution to the integral equation. If we consider the RHS as an operator on our

solution

T [g] = y0 +

∫ t

t0

f(s, g(s))ds
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then existence of a solution to the ODE is equivalent to find a fixed point under this operator. i.e. T [y] = y. To

show there exists some fixed point, lets try to define an approximating sequence that approaches such a point.

Define the sequence as (Picard iterations)

φ0 = y0 & φk+1 = y0 +

∫ t

t0

f(s, φk(s))ds

Its easy to show this limit converges if f is continuous (limits check out) and f is Lipschitz ( allows us to bring

the limit in the integral, i.e. lim
∫

=
∫

lim). Furthermore, one may show that T is a contraction map which

allows us to apply the Banach Fixed point theorem to conclude the existence and uniqueness of y.

pg.726 - # 4 Find the first 3 Picard iterations of{
y′ = 1 + xy

y(1) = 2

Solution From the above, we see that t0 = 1 and y0 = 2, so φ0 = 2..

φ1 = 2 +

∫ t

1

f(s, φ0)ds = 2 +

∫ t

1

(1 + 2s)ds = t2 + t

φ2 = 2 +

∫ t

1

f(s, φ1(s))ds = 2 +

∫ t

1

(1 + s(s2 + s))ds =
t4

4
+
t3

3
+ t+

5

12

φ3 = 2 +

∫ t

1

f(s, φ2(s))ds = 2 +

∫ t

1

(
1 + s

(
s4

4
+
s3

3
+ s+

5

12

))
ds =

t6

24
+
t5

15
+
t3

3
+

5t2

24
+ t+

7

20

These are the first 3 Picard iterations. Notice that in practice they’re almost like building up a series expansion

of the solution.
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