Tutorial Problems \#2

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
Christopher J. Adkins
pg. 90 - \# 7 Solve

$$
\left(x^{4} y^{2}-y\right) d x+\left(x^{2} y^{4}-x\right) d y=0
$$

Solution Notice the symmetry, so lets check if the equation is exact. Let $M=x^{4} y^{2}-y$ and $N=x^{2} y^{4}-x$, then

$$
M_{y}=2 x^{4} y-1 \quad \& \quad N_{x}=2 x y^{4}-1
$$

i.e. it's not exact, but we see

$$
N_{x}-M_{y}=2 x y\left(y^{3}-x^{3}\right) \quad \& \quad x M-y N=-x^{2} y^{2}\left(y^{3}-x^{3}\right)
$$

In a previous exercise we saw that

$$
\mu(x y)=\exp \left(\int \frac{N_{x}-M_{y}}{x M-y N} d(x y)\right)=\exp \left(-2 \int \frac{d(x y)}{x y}\right)=\exp -2 \ln |x y|=\frac{1}{x^{2} y^{2}}
$$

works as an integrating factor provide the function $N_{x}-M_{y} / x M-y N$ depended on $x y$, which in our case does! Thus the ODE becomes

$$
\underbrace{\left(x^{2}-\frac{1}{x^{2} y}\right)}_{=\tilde{M}} d x+\underbrace{\left(y^{2}-\frac{1}{x y^{2}}\right)}_{=\tilde{N}} d y=0
$$

after multiplying by our integrating factor. It's easily seen that the ODE is now exact, so we integrate the components as usual.

$$
\begin{aligned}
F(x, y) & =\int \tilde{M} d x \oplus \int \tilde{N} d y \\
& =\int\left(x^{2}-\frac{1}{x^{2} y}\right) d x \oplus \int\left(y^{2}-\frac{1}{x y^{2}}\right) d y \\
& =\frac{x^{3}}{3}+\frac{1}{x y} \oplus \frac{y^{3}}{3}+\frac{1}{x y} \\
& =\frac{x^{3}+y^{3}}{3}+\frac{1}{x y}
\end{aligned}
$$

Thus the general solution is

$$
\frac{x^{3}+y^{3}}{3}+\frac{1}{x y}=C
$$

pg. 90 - \# 9 Solve

$$
\underbrace{\left(\arctan (x y)+\frac{x y-2 x y^{2}}{1+x^{2} y^{2}}\right)}_{M} d x+\underbrace{\frac{x^{2}-2 x^{2} y}{1+x^{2} y^{2}}}_{N} d y=0
$$

Solution We check if the equation is exact.

$$
M_{y}=\frac{2 x-4 x y}{1+x^{2} y^{2}}-\frac{2 x^{3} y^{2}-4 x^{3} y^{3}}{\left(1+x^{2} y^{2}\right)^{2}}=N_{x}
$$

Since the equation is exact, we may integrate the components and take the linearity independent parts.

$$
\begin{aligned}
F(x, y) & =\int M d x \oplus \int N d y \\
& =x \arctan (x y)-\log \left(x^{2} y^{2}+1\right) \oplus x \arctan (x y)-\log \left(x^{2} y^{2}+1\right) \\
& =x \arctan (x y)-\log \left(x^{2} y^{2}+1\right)
\end{aligned}
$$

Thus the general solution is

$$
x \arctan (x y)-\log \left(x^{2} y^{2}+1\right)=C
$$

pg. 103-\# 5 Solve

$$
y^{\prime} \sin y+\sin x \cos y=\sin x
$$

Solution Notice if $z=\cos y$, then $z^{\prime}=-y^{\prime} \sin y$. Thus we're able to rewrite the ODE as

$$
z^{\prime} \underbrace{-\sin x}_{=p} z=\underbrace{-\sin x}_{=g}
$$

In this form the ODE is first order linear. We know the solution is given by

$$
z(x)=\frac{1}{\mu(x)} \int g(x) \mu(x) d x \quad \text { where } \quad \mu(x)=\exp \left(\int p(x) d x\right)=\exp \left(-\int \sin x d x\right)=\exp (\cos x)
$$

Thus

$$
z(x)=e^{-\cos x} \int-\sin x e^{\cos x} d x=e^{-\cos x}\left(e^{\cos x}+C\right)=1+C e^{-\cos x}
$$

In terms of the original function, we have

$$
\cos (y)=1+C e^{-\cos x} \Longrightarrow y(x)=\arccos \left(1+C e^{-\cos x}\right)
$$

Picard Iterations Suppose you have a first order IVP. Using the fundamental theorem of calculus we see

$$
\left\{\begin{array}{c}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array} \Longleftrightarrow y(t)=y_{0}+\int_{t_{0}}^{t} f(s, y(s)) d s\right.
$$

i.e the solution to the ODE is a solution to the integral equation. If we consider the RHS as an operator on our solution

$$
T[g]=y_{0}+\int_{t_{0}}^{t} f(s, g(s)) d s
$$

then existence of a solution to the ODE is equivalent to find a fixed point under this operator. i.e. $T[y]=y$. To show there exists some fixed point, lets try to define an approximating sequence that approaches such a point. Define the sequence as (Picard iterations)

$$
\phi_{0}=y_{0} \quad \& \quad \phi_{k+1}=y_{0}+\int_{t_{0}}^{t} f\left(s, \phi_{k}(s)\right) d s
$$

Its easy to show this limit converges if f is continuous (limits check out) and f is Lipschitz (allows us to bring the limit in the integral, i.e. $\left.\lim \int=\int \lim \right)$. Furthermore, one may show that T is a contraction map which allows us to apply the Banach Fixed point theorem to conclude the existence and uniqueness of y.
pg.726-\#4 Find the first 3 Picard iterations of

$$
\left\{\begin{array}{c}
y^{\prime}=1+x y \\
y(1)=2
\end{array}\right.
$$

Solution From the above, we see that $t_{0}=1$ and $y_{0}=2$, so $\phi_{0}=2$..

$$
\begin{gathered}
\phi_{1}=2+\int_{1}^{t} f\left(s, \phi_{0}\right) d s=2+\int_{1}^{t}(1+2 s) d s=t^{2}+t \\
\phi_{2}=2+\int_{1}^{t} f\left(s, \phi_{1}(s)\right) d s=2+\int_{1}^{t}\left(1+s\left(s^{2}+s\right)\right) d s=\frac{t^{4}}{4}+\frac{t^{3}}{3}+t+\frac{5}{12} \\
\phi_{3}=2+\int_{1}^{t} f\left(s, \phi_{2}(s)\right) d s=2+\int_{1}^{t}\left(1+s\left(\frac{s^{4}}{4}+\frac{s^{3}}{3}+s+\frac{5}{12}\right)\right) d s=\frac{t^{6}}{24}+\frac{t^{5}}{15}+\frac{t^{3}}{3}+\frac{5 t^{2}}{24}+t+\frac{7}{20}
\end{gathered}
$$

These are the first 3 Picard iterations. Notice that in practice they're almost like building up a series expansion of the solution.

