Tutorial Problems \#10

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
Christopher J. Adkins

Taylor Series Method Example Solve using a series solution to 4th order:

$$
\left\{\begin{array}{c}
x^{2} y^{\prime \prime}-2 x y^{\prime}+\log (x) y=0 \\
y(1)=0 \\
y^{\prime}(1)=1 / 2
\end{array}\right.
$$

Solution Recall that Taylor's Theorem states that $y \in C^{\infty}\left(B_{\epsilon}\left(x_{0}\right)\right)$ may be represented around some x_{0} as

$$
y(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

The initial data gives us the first two terms in the series, the third is easily found from the ODE:

$$
y^{\prime \prime}=\frac{2}{x} y^{\prime}-\frac{\log (x)}{x} y \Longrightarrow y^{\prime \prime}(1)=1
$$

Differentiating the ODE will give the 3rd order term:

$$
y^{(3)}=\frac{2}{x} y^{\prime \prime}-\frac{2}{x^{2}} y^{\prime}-\frac{1}{x^{2}} y+\frac{\log (x)}{x^{2}} y-\frac{\log (x)}{x} y^{\prime} \Longrightarrow y^{(3)}(1)=1
$$

If you differentiate once again, and check the value at $x_{0}=1$, we'll see

$$
y^{(4)}(1)=-1
$$

Plugging these values into the series expansion gives

$$
y(x)=\frac{(x-1)}{2}+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{4}}{24}+\mathcal{O}\left((x-1)^{5}\right)
$$

which is the series solution to 4 th order.

Recurrence Equation Method Example Solve using a series solution to 5th order:

$$
\left\{\begin{array}{c}
y^{\prime \prime}-x y^{\prime}-y=\sin x \\
y(0)=a_{0} \\
y^{\prime}(0)=a_{1}
\end{array}\right.
$$

Solution Suppose that

$$
y(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

solves the ODE. To find what the coefficients are, we substitute $y(x)$ into the ODE. First we solve the Homogenous part to the solution, i.e. $y^{\prime \prime}-x y^{\prime}-y=0$. We see

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}-y & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}-(n+1) a_{n}\right) x^{n} \\
& =0
\end{aligned}
$$

By linear independence of our x^{n} 's, we see the equation must have all of it's coefficients identically zero. i.e.

$$
a_{n+2}=\frac{a_{n}}{n+2} \quad \forall n \in \mathbb{N}
$$

This is called our recurrence equation for our series solution. One may easily check that we have

$$
y(x)=a_{0}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\mathcal{O}\left(x^{6}\right)\right)+a_{1}\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+\mathcal{O}\left(x^{7}\right)\right)
$$

is the homogenous solution to 5 th order. To solve the non-homogenous solution, recall that sine has the following expansion

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Thus, reusing our previous computation, we want coefficients such that:

$$
2 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}-(n+1) a_{n}\right) x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Since the right hand side only has odd coefficients, this forces all the even coefficients to die i.e. $a_{2 n}=0$ for all $n \in \mathbb{N}$. Thus the above becomes

$$
\sum_{n=0}^{\infty}\left((2 n+3)(2 n+2) a_{2 n+3}-(2 n+2) a_{2 n+1}\right) x^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

i.e.

$$
(2 n+3)(2 n+2) a_{2 n+3}-(2 n+2) a_{2 n+1}=\frac{(-1)^{n}}{(2 n+1)!} \quad \forall n \in \mathbb{N}
$$

As an explicit example here, take $n=0$, we see

$$
6 a_{3}-2 a_{1}=1 \Longrightarrow a_{3}=\frac{1}{6}+\frac{a_{1}}{3}
$$

For $n=1$ we have

$$
20 a_{5}-4 a_{3}=-\frac{1}{6} \Longrightarrow a_{5}=-\frac{1}{40}+\frac{a_{1}}{15}
$$

These terms with a_{1} can be tossed into the homogenous solution, giving us that

$$
y(x)=a_{0}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\mathcal{O}\left(x^{6}\right)\right)+a_{1}\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+\mathcal{O}\left(x^{7}\right)\right)+\frac{x^{3}}{6}-\frac{x^{5}}{40}+\mathcal{O}\left(x^{7}\right)
$$

is the general solution to the ODE up to 5 th order.

First Order ODE, Series Methods Solve using a series solution to 4th order:

$$
\left\{\begin{array}{c}
y^{\prime}=\sin (x y)+x^{2} \\
y(0)=3
\end{array}\right.
$$

Solution You could use Taylor Series and differentiate the ODE here, but lets try to brute force with series.
Note that

$$
\sin (x)=x-\frac{x^{3}}{6}+\mathcal{O}\left(x^{5}\right)
$$

If we suppose that

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

plugging this into the ODE gives

$$
\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=x \sum_{n=0}^{\infty} x^{n}-\frac{1}{6}\left(x \sum_{n=0}^{\infty} a_{n} x^{n}\right)^{3}+x^{2}+\mathcal{O}\left(x^{5}\right)
$$

A quick expansion of the cubed series shows we have

$$
\left(x \sum_{n=0}^{\infty} a_{n} x^{n}\right)^{3}=a_{0}^{3} x^{3}+2\left(a_{0}^{2} a_{1}+a_{0} a_{1}^{2}\right) x^{4}+\mathcal{O}\left(x^{5}\right)
$$

If we read things off term by term now, we obtain:

$$
\begin{align*}
a_{1} & =0 \tag{1}\\
2 a_{2} & =a_{0} \tag{x}\\
3 a_{3} & =\left(a_{1}+1\right) \tag{2}\\
4 a_{4} & =a_{2}-\frac{a_{0}^{3}}{6} \tag{3}\\
5 a_{5} & =a_{3}-\frac{a_{0}^{2} a_{1}+a_{0} a_{1}^{2}}{3} \tag{4}
\end{align*}
$$

Solving these equations yield

$$
a_{0}=3, \quad a_{1}=0, \quad a_{2}=\frac{3}{2}, \quad a_{3}=\frac{1}{3}, \quad a_{4}=-\frac{3}{4}
$$

Thus our solution to 4 th order is

$$
y(x)=3+\frac{3 x^{2}}{2}+\frac{x^{3}}{3}-\frac{3 x^{4}}{4}+\mathcal{O}\left(x^{5}\right)
$$

First Order Systems, Series Methods Solve using a series solution to 4th order:

$$
\left\{\begin{array}{c}
x^{\prime}=e^{t}+y, \quad y^{\prime}=e^{-t}+x \\
x(0)=0, \quad y(0)=0
\end{array}\right.
$$

Solution Suppose that

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \quad \& \quad x(t)=\sum_{n=1}^{\infty} b_{n} t^{n}
$$

and note

$$
e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}
$$

If we substitute the series into the system, we obtain the following from the first component:

$$
b_{1}+2 b_{2} t+3 b_{3} t^{2}+4 b_{4} t^{3}+\mathcal{O}\left(t^{4}\right)=\underbrace{1+t+\frac{t^{2}}{2}+\frac{t^{3}}{6}+\ldots}_{e^{t}}+\underbrace{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\mathcal{O}\left(t^{4}\right)}_{y}
$$

This gives us the following relations

$$
\begin{align*}
b_{1} & =1+a_{0} \tag{1}\\
2 b_{2} & =1+a_{1} \tag{t}\\
3 b_{3} & =\frac{1}{2}+a_{2} \tag{2}\\
4 b_{4} & =\frac{1}{6}+a_{3} \tag{3}
\end{align*}
$$

Now the second component:

$$
a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+\mathcal{O}\left(t^{4}\right)=\underbrace{1-t+\frac{t^{2}}{2}-\frac{t^{3}}{6}+\ldots}_{e^{-t}}+\underbrace{b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+\mathcal{O}\left(t^{4}\right)}_{x}
$$

This gives:

$$
\begin{align*}
a_{1} & =1+b_{0} \tag{1}\\
2 a_{2} & =-1+b_{1} \tag{t}\\
3 a_{3} & =\frac{1}{2}+b_{2} \tag{2}\\
4 a_{4} & =-\frac{1}{6}+b_{3} \tag{3}
\end{align*}
$$

Since we're given $a_{0}=0$ and $b_{0}=0$, it's easy to find that

$$
\begin{array}{ll}
a_{1}=1, & a_{2}=0,
\end{array} a_{3}=\frac{2}{9}, \quad a_{4}=0, ~ l a b=\frac{1}{6}, \quad b_{4}=\frac{1}{6}
$$

Plugging these into their respective series will give the system solution to 4 th order. i.e.

$$
y(t)=x+\frac{2 x^{3}}{9}+\mathcal{O}\left(x^{5}\right) \quad \& \quad x(t)=x+x^{2}+\frac{x^{3}}{6}+\frac{x^{4}}{6}+\mathcal{O}\left(x^{5}\right)
$$

Quiz Question Solve using a series solution to 4 th order:

$$
\left\{\begin{array}{c}
y^{\prime}=y^{2}-x y \\
y(0)=2
\end{array}\right.
$$

Solution This is set up very nicely for using Taylor Series. We know

$$
y(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!} x^{n}
$$

is a solution. To find the coefficients, we use the ODE. We have

$$
y^{\prime}=y^{2}-x y \Longrightarrow y^{\prime}(0)=4
$$

Differentiating the ODE gives

$$
y^{\prime \prime}=2 y y^{\prime}-y-x y^{\prime} \Longrightarrow y^{\prime \prime}(0)=2 * 2 * 4-2=14
$$

We rinse and repeat

$$
y^{(3)}=2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}-2 y^{\prime}-x y^{\prime \prime} \Longrightarrow y^{(3)}(0)=2 * 2 * 14+2 *(4)^{2}-2 * 4=80
$$

One more time!

$$
y^{(4)}=2 y y^{\prime \prime \prime}+6 y^{\prime} y^{\prime \prime}-3 y^{\prime \prime}-x y^{\prime \prime \prime} \Longrightarrow y^{(4)}(0)=2 * 2 * 80+6 * 4 * 14-3 * 14=614
$$

Thus our solution to 4 th order is

$$
y(x)=2+4 x+7 x^{2}+\frac{40 x^{3}}{3}+\frac{307 x^{4}}{12}+\mathcal{O}\left(x^{5}\right)
$$

