Tutorial Problems \#1

MAT 267 - Advanced Ordinary Differential Equations - Fall 2014
Christopher J. Adkins
pg.56-\# 19 Solve

$$
\left\{\begin{array}{c}
(1-x) d y=x(y+1) d x \\
y(0)=0
\end{array}\right.
$$

Solution The equation is separable, thus

$$
\frac{d y}{y+1}=\frac{x d x}{1-x} \Longrightarrow \int \frac{d y}{y+1}=\int \frac{x d x}{1-x} \Longrightarrow \ln |y+1|=\ln \left|\frac{1}{1-x}\right|+x+C \Longrightarrow y(x)=\frac{\tilde{C} e^{x}}{1-x}-1
$$

is the general solution. The initial condition fixes the constant.

$$
y(0)=0 \Longrightarrow 0=\tilde{C}-1 \Longrightarrow \tilde{C}=1
$$

Thus the solution to the IVP is

$$
y(x)=\frac{e^{x}}{1-x}-1
$$

pg. 69 - \#10 Solve

$$
(3 x-2 y+4) d x-(2 x+7 y-1) d y=0
$$

Solution We know it is possible to convert this to a homogeneous equation, we just need to find the change of variables. We'll use the differential method, i.e. we want u and v such that

$$
3 x-2 y+4=u \quad \& \quad-2 x-7 y+1=v
$$

This implies that

$$
\left\{\begin{array}{c}
d u=3 d x-2 d y \\
d v=-2 d x-7 d y
\end{array} \Longleftrightarrow\binom{d u}{d v}=\left(\begin{array}{cc}
3 & -2 \\
-2 & -7
\end{array}\right)\binom{d x}{d y}\right.
$$

By inverting the matrix we see that

$$
\frac{1}{25}\left(\begin{array}{cc}
7 & -2 \\
-2 & -3
\end{array}\right)\binom{d u}{d v}=\binom{d x}{d y}
$$

Thus the ODE becomes the following in coordinates u and v,

$$
\begin{aligned}
u d x+v d y & =u\left(\frac{7}{25} d u-\frac{2}{25}\right)+v\left(-\frac{2}{25} d u-\frac{3}{25} d v\right) \\
& =\frac{1}{25}[(7 u-2 v) d u+(-2 u-3 v) d v]
\end{aligned}
$$

Now the equation is homogeneous, which we know is possible to solve using $u=t v, d u=t d v+v d t$. Substitute the change of variables again. (note we've dropped the $1 / 25$ since the RHS is 0)

$$
(7 t v-2 v)(t d v+v d t)+(-2 t v-3 v) d v=\left(7 t^{2}-4 t-3\right) v d v+(7 t-2) v^{2} d t=0
$$

This equation is separable, and we see the solution is (using $\omega=7 t^{2}-4 t-3, d \omega=2(7 t-2) d t$)

$$
\int \frac{d v}{v}=\int \frac{(2-7 t) d t}{7 t^{2}-4 t-3}=-\frac{1}{2} \int \frac{d \omega}{\omega} \Longrightarrow \ln \left|v^{2} \omega\right|=C
$$

Now we just back substitute everything to revert to the original coordinates.

$$
\omega v^{2}=\tilde{C} \Longrightarrow 7(v t)^{2}-4 t v^{2}-3 v^{2}=\tilde{C} \Longrightarrow 7 u^{2}-4 u v-3 v^{2}=\tilde{C}
$$

Hence the implicit general solution is

$$
7 y^{2}+(2-4 x) y+3 x^{2}+8 x=\text { Const }
$$

pg. 79 - \#16 Solve

$$
\left\{\begin{array}{c}
\sin x \cos y d x+\cos x \sin y d y=0 \\
y(\pi / 4)=\pi / 4
\end{array}\right.
$$

Solution By the symmetry of the equation, we check if it is exact. i.e

$$
M_{y}=N_{x} \quad \text { where } \quad \underbrace{\sin x \cos y}_{=M} d x+\underbrace{\cos x \sin y}_{=N} d y=0
$$

Clearly

$$
M_{y}=-\sin x \sin y=N_{x}
$$

Thus the equation is exact, the solution is therefore given by a level set of linearity independent factors of the integrated functions. I write this as

$$
\begin{aligned}
F(x, y) & =\int M d x \oplus \int N d y \\
& =\int \sin x \cos y d x \oplus \int \cos x \sin y d y \\
& =-\cos x \cos y \oplus-\cos x \cos y \\
& =-\cos x \cos y
\end{aligned}
$$

Thus the general solution is

$$
\cos x \cos y=C
$$

The initial data implies that

$$
C=\cos (\pi / 4) \cos (\pi / 4)=\frac{1}{2} \Longrightarrow 1=2 \cos x \cos y
$$

is the implicit solution to the IVP.
pg. 91 - \#10 Solve

$$
e^{x}(x+1) d x+\left(y e^{y}-x e^{x}\right) d y=0
$$

Solution The equation has a certain symmetry about it, so we check if it is exact. Letting $M=e^{x}(x+1)$ and $N=y e^{y}-x e^{x}$ we see that

$$
M_{y}=0 \quad \& \quad N_{x}=-e^{x}(x+1)=-M
$$

More specifically, we notice that

$$
\frac{N_{x}-M_{y}}{M}=-1
$$

So we my multiply the equation by an integrating factor to make it exact, namely

$$
\mu(y)=\exp \left(\int \frac{N_{x}-M_{y}}{M} d y\right)=e^{-y}
$$

The ODE with the integrating factor becomes

$$
\underbrace{e^{x-y}(x+1)}_{=\tilde{M}} d x+\underbrace{\left(y-x e^{x-y}\right)}_{=\tilde{N}} d y=0
$$

By construction this is exact! So we integrate the components and add the linearly independent factors.

$$
F(x, y)=\int \tilde{M} d x \oplus \int \tilde{N} d y=\int e^{x-y}(x+1) d x \oplus \int\left(y-x e^{x-y}\right) d y=x e^{x-y} \oplus x e^{x-y}+\frac{y^{2}}{2}=x e^{x-y}+\frac{y^{2}}{2}
$$

Thus the general solution the ODE is

$$
x e^{x-y}+\frac{y^{2}}{2}=C
$$

pg. 97-\# 9 Solve

$$
\tan \theta \frac{d r}{d \theta}-r=\tan ^{2} \theta
$$

Solution Recall for first order linear equations $\left(y^{\prime}(x)+p(x) y(x)=q(x),\right)$ the solution is given by

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) q(x) d x \quad \text { where } \quad \mu(x)=\exp \left(\int p(x) d x\right)
$$

In this case we have

$$
\frac{d r}{d \theta}-\underbrace{\cot \theta}_{=p} r=\underbrace{\tan \theta}_{=q}, \quad \text { with integrating factor } \quad \mu=\exp \left(-\int \cot \theta d \theta\right)=\exp \left(\ln \left|\frac{1}{\sin \theta}\right|\right)=\frac{1}{\sin \theta}
$$

Thus the general solution is given by

$$
y(\theta)=\sin \theta \int \frac{d \theta}{\cos \theta}=\sin \theta(\ln |\sec \theta+\tan \theta|+C)
$$

