MAT244H1 - Introduction to Ordinary Differential Equations Summer 2016

Term Test - June 24, 2016, 2-4pm

Time allotted: 120 minutes.
Aids permitted: None.

Full Name:

Family Given

Student ID:

Signature:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

Out 01	M $2-3 \mathrm{pm}$	BA1240	Christopher Adkins
Out 02	M 3-4 pm	BA1240	Fang Shalev Housfater
Tut 05	W $5-6 \mathrm{pm}$	BA2165	Krishan Rajaratnam

Instructions

- Please have your student card ready for inspection, turn off all cellular phones, and read all the instructions carefully.
- DO NOT start the test until instructed to do so.
- This test contains 15 pages (including this title page). Make sure you have all of them.
- You can use pages $9-10$ or the back of any page for rough work or extra space. If you continue a question on a different page, clearly indicate this.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Bonus	Total
$/ 20$	$/ 30$	$/ 20$	$/ 25$	$/ 20$	$/ 20$	$/ 15$	$/ 135$

1)a) [10 marks] Solve this differential equation for $y(x)$:

$$
-y^{\prime}+x y=x y^{2}, \quad y(x=0)=\frac{1}{\pi+1}
$$

b) [10 marks] Now solve this differential equation for $y(x)$:

$$
y^{\prime}+x y=x \quad y(x=0)=\pi+1
$$

Solution:
a) We rewrite the equation as

$$
\begin{aligned}
-y^{\prime} & =x\left(y^{2}-y\right) \\
\frac{y^{\prime}}{y-y^{2}} & =x
\end{aligned}
$$

and integrate both sides with respect to x. On the RHS:

$$
\int x d x=\frac{x^{2}}{2}+c
$$

On the LHS, we use partial fractions to write

$$
\begin{aligned}
\frac{1}{y(1-y)} & =\frac{A}{y}+\frac{B}{1-y} \\
& =\frac{A+(B-A) y}{y(1-y)}
\end{aligned}
$$

Thus $A=1$ and $B=1$. Changing the variable of integration from x to $y(x), d y=y^{\prime}(x)$, we have on the LHS

$$
\begin{aligned}
\int \frac{y^{\prime}}{y-y^{2}} & =\int\left(\frac{1}{y}+\frac{1}{1-y}\right) d y \\
& =\ln |y|-\ln |1-y| \\
& =\ln \left|\frac{y}{1-y}\right|
\end{aligned}
$$

Near our initial condition, $y(0)=\frac{1}{\pi+1}, y>0$ and $1-y>0$, so we can remove the absolute values and put

$$
\begin{aligned}
\ln \left(\frac{y}{1-y}\right) & =\frac{x^{2}}{2}+c \\
\frac{y}{1-y} & =k e^{\frac{x^{2}}{2}}
\end{aligned}
$$

with $k=e^{c}$ set by initial conditions. Rearranging to solve for $y(x)$:

$$
\begin{aligned}
y(x) & =k e^{\frac{x^{2}}{2}}-y(x) k e^{\frac{x^{2}}{2}} \\
y(x)\left(1+k e^{\frac{x^{2}}{2}}\right) & =k e^{\frac{x^{2}}{2}} \\
y(x) & =\frac{k e^{\frac{x^{2}}{2}}}{1+k e^{\frac{x^{2}}{2}}}
\end{aligned}
$$

Plugging the initial condition,

$$
\begin{aligned}
\frac{1}{1+\pi} & =\frac{k}{1+k} \\
k & =\frac{1}{\pi}
\end{aligned}
$$

b) Here we use an integrating factor $\mu=e^{\int x d x}=e^{\frac{x^{2}}{2}}$. Thus

$$
\begin{aligned}
\left(y e^{\frac{x^{2}}{2}}\right)^{\prime} & =x e^{\frac{x^{2}}{2}} \\
y(x) e^{\frac{x^{2}}{2}} & =\int x e^{\frac{x^{2}}{2}} d x \\
y(x) & =1+c e^{-\frac{x^{2}}{2}}
\end{aligned}
$$

where c is set by initial conditions. So

$$
\begin{aligned}
y(0) & =1+c \\
& =\pi+1
\end{aligned}
$$

and $c=\pi$. Finally,

$$
y(x)=1+\pi e^{-\frac{x^{2}}{2}}
$$

2) a) [10 marks] Find the general solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

b) [20 marks] Find the general solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=x+e^{-x}
$$

Solution: a) Guessing the solution of the form $y=e^{r x}$, we get the characteristic equation:

$$
\begin{gathered}
r^{2}+2 r+1=0 \\
(r+1)^{2}
\end{gathered}
$$

So $r=-1$ is a double root and the independent solutions are $y_{1}=e^{-x}$ and $y_{2}=x e^{-x}$. The general solutions is

$$
y(x)=c_{1} e^{-x}+c_{2} x e^{-x}
$$

with c_{1}, c_{2} set by initial conditions.
b) We just need to find one particular solution Y_{p} to solve

$$
Y_{p}^{\prime \prime}+2 Y_{p}^{\prime}+Y_{p}=x+e^{-x}
$$

As the right hand side has 2 parts we split $Y_{p}=Y_{p, 1}+Y_{p, 2}$ where $Y_{p, 1}$ solves

$$
Y_{p, 1}^{\prime \prime}+2 Y_{p, 1}^{\prime}+Y_{p, 1}=x
$$

and $Y_{p, 2}$ solves

$$
Y_{p, 2}^{\prime \prime}+2 Y_{p, 2}^{\prime}+Y_{p, 2}=e^{-x}
$$

Finding $Y_{p, 1}$ is easy. We guess $Y_{p, 1}=A x+B$ and solve for A, B. We have

$$
\begin{aligned}
& Y_{p, 1}=A x+B \\
& Y_{p, 1}^{\prime}=A \\
& Y_{p, 1}^{\prime \prime}=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
Y_{p, 1}^{\prime \prime}+2 Y_{p, 1}^{\prime}+Y_{p, 1} & =2 A+A x+B \\
& =x
\end{aligned}
$$

Therefore $A=1$ and $2 A+B=0$ so that $B=-2$. We conclude that

$$
Y_{p, 1}=x-2
$$

For $Y_{p, 2}$ we can guess neither $A e^{-x}$ nor $A x e^{-x}$ both of these functions appearing in the homogeneous solutions. We thus guess $Y_{p, 2}=A x^{2} e^{-x}$ and compute

$$
\begin{aligned}
& Y_{p, 2}=A x^{2} e^{-x} \\
& Y_{p, 2}^{\prime}=A\left(2 x-x^{2}\right) e^{-x} \\
& Y_{p, 2}^{\prime \prime}=A\left(2-4 x+x^{2}\right) e^{-x}
\end{aligned}
$$

Plugging in the equation:

$$
\begin{aligned}
Y_{p, 2}^{\prime \prime}+2 Y_{p, 2}^{\prime}+y_{p, 2} & =\left((A-2 A+A) x^{2}+(-4 A+4 A) x+2 A\right) e^{-x} \\
& =e^{-x}
\end{aligned}
$$

So $A=\frac{1}{2}$. Combining $Y_{p, 1}$ and $Y_{p, 2}$, we have a particular solution to the whole equation:

$$
Y_{p}=x-2+\frac{1}{2} x^{2} e^{-x}
$$

The general solution is obtained by adding a homogeneous part:

$$
y(x)=c_{1} e^{-x}+c_{2} x e^{-x}+x-2+\frac{1}{2} x^{2} e^{-x}
$$

where c_{1} and c_{2} are also set by initial conditions.
3) Suppose that the growth of population N is modeled by

$$
\frac{d N}{d t}=N^{3}-3 N^{2}+2 N
$$

a) [10 marks] Find and classify all equilibrium points (stable? unstable?)
b) [10 marks] Sketch graphs of solutions passing through the points $N(t=0)=\frac{1}{2}, N(t=25)=\frac{3}{2}$ and $N(t=100)=4$.
Solutions:
a) Letting $f(N)=N^{3}-3 N^{2}+2 N$ be the right hand side, the equilibrium points are the zeros of f. Factoring

$$
\begin{aligned}
f(N) & =N\left(N^{2}-3 N+2\right) \\
& =N(N-1)(N-2)
\end{aligned}
$$

Thus $N=0, N=1$ and $N=2$ are the equilibrium points. To check their stability, we look at how the plot of $f(N)$ crosses the N axis at the given equilibrium point. One way to check this is to see what the derivative of f is doing. Since

$$
f^{\prime}(N)=3 N^{2}-6 N+2
$$

We have $f^{\prime}(0)=2>0, f^{\prime}(1)=-1<0$ and $f^{\prime}(2)=2>0$. Thus $N=0$ and $N=2$ are unstable while $N=1$ is a stable equilibrium point.

If $N(0)=\frac{1}{2}$ then $0<N<1$ and solutions tend to $N=1$ asymptotically as it is the stable point $(N(t) \rightarrow 1$ as $t \rightarrow \infty)$.
If $N(25)=\frac{3}{2}$, then $1<N<2$. As $t \rightarrow 0, N(t) \rightarrow N_{0}$ with $1<N_{0}<2$. As $t \rightarrow \infty, N(t) \rightarrow 1$ as $N=1$ is the stable equilibrium point.
If $N(100)=4$, then as $t \rightarrow 0, N \rightarrow N_{0}>3$ (since solutions can't cross equilibrium lines by uniqueness). As $t \rightarrow \infty, N(t) \rightarrow \infty$ as well, since $f(N)=\frac{d N}{d t}>0$ for any $N>3$.

4) [25 marks] The average human has 20 litres of bodily fluid in them and will die if the level of alcohol in their bodily fluid exceeds 5%. Suppose a sober person starts drinking 40% alcohol at the rate of 0.5 litres/hr. This person is also excreting bodily fluids at the same rate of 0.5 litres/hr. Assuming the alcohol mixes instantly with the bodily fluids, how long does it take this person to die?
We let $Q(t)$ denote the amount of alcohol in the person's body at t hours after they start drinking. Since they are sober initially: $Q(0)=0$. At the time of death t_{D}, the amount is 5% of 20 litres that is $Q\left(t_{D}\right)=1$. Now we find the differential equation satisfied by Q to solve for t_{D}.
The rate of alcohol coming in is constant and is given by 40% of 0.5 litres per hour that is

$$
\text { rate in }=0.4 \times 0.5=0.2
$$

The rate of alcohol coming out is variable and depends on the amount already present: $\frac{Q(t)}{20}$. Therefore

$$
\text { rate out }=\frac{Q(t)}{20} \times 0.5=\frac{Q(t)}{40}
$$

Finally we solve

$$
\begin{aligned}
\frac{d Q}{d t} & =0.2-\frac{Q(t)}{40}, \quad Q(0)=0 \\
\frac{d Q}{d t}+\frac{1}{40} Q(t) & =0.2
\end{aligned}
$$

This is a standard linear equation. We use the integrating factor $\mu=e^{t / 40}$ to write

$$
\begin{aligned}
\left(Q(t) e^{t / 40}\right)^{\prime} & =0.2 e^{t / 40} \\
Q(t) e^{t / 40} & =\int 0.2 e^{t / 40} d t \\
Q(t) e^{t / 40} & =40 \times 0.2 e^{t / 40}+c \\
Q(t) & =8+c e^{-t / 40}
\end{aligned}
$$

Imposing the initial conditions to solve for c, we get

$$
\begin{aligned}
Q(0) & =0=8+c \\
c & =-8
\end{aligned}
$$

Finally we find the time of death t_{D}, that is when $Q\left(t_{D}\right)=1$:

$$
\begin{aligned}
Q\left(t_{D}\right) & =8\left(1-e^{-t_{D} / 40}\right)=1 \\
e^{-t_{D} / 40} & =\frac{7}{8} \\
t_{D}=-40 \ln \left(\frac{7}{8}\right) &
\end{aligned}
$$

For curiosity, if you had a calculator you would find $t_{D} \approx 5.3$ hours.
5) [20 marks] Suppose $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{1}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are given continuous functions of x. Prove that $u_{1}=y_{1}-y_{2}$ and $u_{2}=y_{1}+y_{2}$ are also linearly independent solutions of (1)
Solution: Recall that the condition for linear independence of any two functions y_{1} and y_{2} is that the Wronskian $W \neq 0$ where

$$
W=\operatorname{det}\left(\begin{array}{cc}
y_{1} & y_{2} \\
y 1^{\prime} & y_{2}^{\prime}
\end{array}\right)
$$

We check that u_{1} and u_{2} are linearly independent

$$
\begin{aligned}
W_{\left[u_{1}, u_{2}\right]}= & \operatorname{det}\left(\begin{array}{ll}
u_{1} & u_{2} \\
u_{1}^{\prime} & u_{2}^{\prime}
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{ll}
\left(y_{1}-y_{2}\right) & \left(y_{1}+y_{2}\right) \\
\left(y_{1}^{\prime}-y_{2}^{\prime}\right) & \left(y_{1}^{\prime}+y_{2}^{\prime}\right)
\end{array}\right) \\
= & \left(y_{1}-y_{2}\right)\left(y_{1}^{\prime}+y_{2}^{\prime}\right)-\left(y_{1}+y_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right) \\
= & y_{1} y_{1}^{\prime}+y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}-y_{2} y_{2}^{\prime} \\
& -y_{1} y_{1}^{\prime}+y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}+y_{2} y_{2}^{\prime} \\
= & 2\left(y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}\right) \\
= & 2 \operatorname{det}\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}
\end{array}\right) \\
= & 2 W_{\left[y_{1}, y_{2}\right]}
\end{aligned}
$$

And by assumption, y_{1} and y_{2} are linearly independent and therefore $W_{\left[y_{1}, y_{2}\right]} \neq 0$. The same is therefore true for $W_{\left[u_{1}, u_{2}\right]}$ and so u_{1}, u_{2} are linearly independent functions.
6) Consider the Legendre equation for $y(x)$:

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{2}
\end{equation*}
$$

a) [5 marks] Show that the function $y(x)=x$ solves this equation
b) [15 marks] Find another independent solution to this equation.

Solution:
a) If $y(x)=x$, then $y^{\prime}(x)=1$ and $y^{\prime \prime}(x)=0$ so that

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=-2 x+2 x=0
$$

and $y(x)=x$ is a solution.
b) One way to look for an independent solution is to write $y=x v(x)$ and try solving for $v(x)$. This is called reduction of order. We then compute

$$
\begin{aligned}
y & =x v(x) \\
y^{\prime} & =v(x)+x v^{\prime}(x) \\
y^{\prime \prime} & =2 v^{\prime}(x)+x v^{\prime \prime}(x)
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y & =\left(1-x^{2}\right)\left(2 v^{\prime}+x v^{\prime \prime}\right)-2 x\left(v+x v^{\prime}\right)+2 x v \\
& =x\left(1-x^{2}\right) v^{\prime \prime}+2\left(1-x^{2}\right) v^{\prime}-2 x^{2} v^{\prime}-2 x v+2 x v \\
& =x\left(1-x^{2}\right) v^{\prime \prime}+2\left(1-2 x^{2}\right) v^{\prime}=0
\end{aligned}
$$

Note that all the terms with no derivative in v cancelled and we have reduced to a first order system. We can rewrite the last equation as

$$
\begin{aligned}
\frac{v^{\prime \prime}}{v^{\prime}} & =\frac{-2\left(1-2 x^{2}\right)}{x\left(1-x^{2}\right)} \\
& =\frac{-2\left(1-x^{2}\right)+2 x^{2}}{x\left(1-x^{2}\right)} \\
& =\frac{-2}{x}+\frac{2 x^{2}}{x\left(1-x^{2}\right)} \\
& =\frac{-2}{x}+\frac{2 x}{1-x^{2}}
\end{aligned}
$$

Integrating both sides with respect to x : on the LHS set $v^{\prime}=v^{\prime}(x)$ so that $d v^{\prime}=v^{\prime \prime}(x) d x$ and

$$
\int \frac{v^{\prime \prime}}{v^{\prime}} d x=\ln v^{\prime}
$$

On the right hand side we integrate:

$$
\begin{aligned}
\int\left(\frac{-2}{x}+\frac{2 x}{1-x^{2}}\right) d x & =-2 \ln x-\ln \left(1-x^{2}\right) \\
& =\ln \left(\frac{1}{x^{2}\left(1-x^{2}\right)}\right)
\end{aligned}
$$

Therefore

$$
v^{\prime}(x)=\frac{1}{x^{2}\left(1-x^{2}\right)}
$$

In problem 1)a), we have done already the partial fraction decomposition for the right hand side (just replace y by x^{2}) therefore

$$
\begin{aligned}
v^{\prime}(x) & =\frac{1}{x^{2}}+\frac{1}{1-x^{2}} \\
v(x) & =\int\left(\frac{1}{x^{2}}+\frac{1}{1-x^{2}}\right) d x \\
v(x) & =-\frac{1}{x}+\int \frac{d x}{1-x^{2}}
\end{aligned}
$$

If you don't remember the final integral, my favorite method is trig substitution. Say $x=\sin \theta$, so that $1-x^{2}=\cos ^{2} \theta$ then $d x=\cos \theta d \theta$ and we have

$$
\begin{aligned}
\int \frac{d x}{1-x^{2}} & =\int \frac{\cos \theta d \theta}{\cos ^{2} \theta} \\
& =\int \sec \theta \\
& =\ln (\sec \theta+\tan \theta)
\end{aligned}
$$

Since $x=\sin \theta$, we have $\sec \theta=\frac{1}{\sqrt{1-x^{2}}}$ and $\tan \theta=\frac{x}{\sqrt{1-x^{2}}}$. Thus

$$
\int \frac{d x}{1-x^{2}}=\ln \left(\frac{1+x}{\sqrt{1-x^{2}}}\right)
$$

To summarize, we have that

$$
v(x)=-\frac{1}{x}+\ln \left(\frac{1+x}{\sqrt{1-x^{2}}}\right)
$$

We recall our ansatz: to look for a solution in the form $y(x)=x v(x)$. Therefore

$$
y(x)=-1+x \ln \left(\frac{1+x}{\sqrt{1-x^{2}}}\right)
$$

is another linearly independent solution

BONUS

a) [5 marks] Solve this differential equation for $y(x)$.

$$
y^{\prime}=(x+y)^{2}, \quad y(0)=1
$$

(Hint: it is neither separable nor homogenous)
Solution:
The idea is to make a change of variables that resembles the right hand side. Setting $v(x)=x+y(x)$, we compute

$$
\begin{aligned}
v^{\prime}(x) & =y^{\prime}(x)+1 \\
& =v^{2}+1
\end{aligned}
$$

This is now a separable equation so

$$
\begin{aligned}
\frac{v^{\prime}}{v^{2}+1} & =1 \\
\arctan v & =x+c \\
v(x) & =\tan (x+c)
\end{aligned}
$$

Solving for $y(x)=v(x)-x$ we have

$$
y(x)=\tan (x+c)-x
$$

where c is from the initial condition $y(0)=1$:

$$
\begin{equation*}
y(0)=\tan c=1 \Longrightarrow c=\frac{\pi}{4} \tag{3}
\end{equation*}
$$

b) [10 marks] Show that the solution $y(t)$ to

$$
y^{\prime \prime}+\omega_{0}^{2} y=\cos (\omega t), \quad y^{\prime}(0)=0, \quad y(0)=2 A
$$

can be written as

$$
y=2 A \cos \left(\frac{\omega_{0}+\omega}{2} t\right) \cos \left(\frac{\omega_{0}-\omega}{2} t\right)
$$

so long as $\omega_{0} \neq \omega$. What is the value of A ? Draw a sketch of this solution when $\left|\omega_{0}-\omega\right|$ is really small. Explain what happens as $\omega \rightarrow \omega_{0}$.
Solution: If $\omega \neq \omega_{0}$, we use the method of undetermined coefficients- and look for a particular solution of the form $Y_{p}=A \cos (\omega t)+B \sin (\omega t)$. We compute then

$$
\begin{aligned}
Y_{p} & =A \cos (\omega t)+B \sin (\omega t) \\
Y_{p}^{\prime} & =-\omega A \sin (\omega t)+\omega B \cos (\omega t) \\
Y_{p}^{\prime \prime} & =-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t)
\end{aligned}
$$

Plugging into the equation, we have

$$
\begin{aligned}
Y_{p}^{\prime \prime}+\omega_{0}^{2} Y_{p} & =A\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+B\left(\omega_{0}^{2}-\omega^{2}\right) \sin (\omega t) \\
& =\cos (\omega t)
\end{aligned}
$$

Therefore $A=\frac{1}{\omega_{0}^{2}-\omega^{2}}$ while $B=0$. The general solution is now

$$
y(t)=c_{1} \sin \left(\omega_{0} t\right)+c_{2} \cos \left(\omega_{0} t\right)+A \cos (\omega t)
$$

where c_{1} and c_{2}, we impose by the boundary conditions:

$$
\begin{aligned}
y^{\prime}(0) & =\omega_{0} c_{1}=0 \Longrightarrow c_{1}=0 \\
y(0) & =c_{2}+A=2 A \Longrightarrow c_{2}=A
\end{aligned}
$$

Therefore this solution reads

$$
\begin{aligned}
y(t) & =A\left(\cos \left(\omega_{0} t\right)+\cos (\omega t)\right) \\
& =2 A \cos \left(\frac{\omega+\omega_{0}}{2} t\right) \cos \left(\frac{\omega_{0}-\omega}{2} t\right)
\end{aligned}
$$

the last line being a standard trig identity and $A=\frac{1}{\omega_{0}^{2}-\omega^{2}}$.

As $\omega \rightarrow \omega_{0}$, we can no longer guess $Y_{p}=A \cos (\omega t)+B \sin (\omega t)$. Instead, we find resonant solutions of the form $Y_{p}=C t \sin \left(\omega_{0} t\right)$ that grow without bound as $t \rightarrow \infty$.

Use for extra space if needed

Use for extra space if needed

