MAT244 - Ordinary Differential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

Full Name:

Last
First

Student \#:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

Out 01	M 2-3 pm	BA1240	Christopher Adkins
Tut 02	M 3-4 pm	BA1240	Fang Shalev Housfater
Tut 05	W 5-6 pm	BA2165	Krishan Rajaratnam

Print out this page, fill it out and attach it to the front of your assignment.

Instructions:

- Due July 20, 2016 at the start of the lecture 13:10pm in BA1170.
- You may collaborate with your classmates but you MUST write up your solutions independently.
- Write your solutions clearly, showing all steps. Do not submit just your rough work. Grading is based on both the correctness and thee presentation of your answer.
- Late assignments will not be accepted without appropriate documentation to explain the lateness (eg. a UofT medical note)
- Assignments may be submitted to the course instructor for remarking up to one week after they are returned. If you request a regrade, please attach a note explaining clearly which part and why you believe it was graded incorrectly.

For grader use:

Q1	Q2	Q3	Q4	Q5	Total

each problem is worth 20 points for a total of 100 .

1) Find the general solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x} \arctan (2 x)
$$

Solution: Since the nonhomogeneity is not of the form of a quasipolynomial, we must use the method of variation of parameters (that works for any nonhomogeneity). To do this, we first compute the solution of the homogeneous equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

Plugging in $y=e^{\lambda x}$ gives an equation for λ :

$$
\lambda^{2}-4 \lambda+4=0
$$

or by factoring, $(\lambda-2)^{2}=0$. Thus $\lambda=2$ is the only eigenvalue and we have by the usual trick the general solution to the homogenous problem:

$$
y_{h}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

with c_{1}, c_{2} given by initial conditions. From here, we denote the independent solutions to the homogeneous problem as

$$
\begin{aligned}
& y_{h}^{(1)}=e^{2 x} \\
& y_{h}^{(2)}=x e^{2 x}
\end{aligned}
$$

Computing the Wronskian of these solutions, we get

$$
\begin{aligned}
W & =\operatorname{det}\left(\begin{array}{cc}
y_{h}^{(1)} & y_{h}^{(2)} \\
y_{h}^{(1)^{\prime}} & y_{h}^{(2)^{\prime}}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & (1+2 x) e^{2 x}
\end{array}\right) \\
& =e^{4 x}(1+2 x-2 x) \\
& =e^{4 x}
\end{aligned}
$$

By variation of parameters, the particular solution is given by

$$
\begin{align*}
y^{(p)} & =-y_{h}^{(1)} \int \frac{y_{h}^{(2)} g}{W}+y_{h}^{(2)} \int \frac{y_{h}^{(1)} g}{W} \\
& =-e^{2 x} \int \frac{x e^{2 x} e^{2 x} \arctan (2 x)}{e^{4 x}}+x e^{2 x} \int \frac{e^{2 x} e^{2 x} \arctan (2 x)}{e^{4 x}} \tag{1}
\end{align*}
$$

The second integral seems easier so let's start with that one and integrate by parts:

$$
\begin{aligned}
\int \frac{e^{2 x} e^{2 x} \arctan (2 x)}{e^{4 x}} & =\int \arctan (2 x) \\
& =x \arctan (2 x)-\int x \frac{2}{1+(2 x)^{2}} \\
& =x \arctan (2 x)-\frac{1}{4} \int \frac{8 x}{1+4 x^{2}} \\
& =x \arctan (2 x)-\frac{1}{4} \ln \left(1+4 x^{2}\right)
\end{aligned}
$$

We use this result in the first integral in (1) to get again by intee

$$
\begin{aligned}
\int \frac{x e^{2 x} e^{2 x} \arctan (2 x)}{e^{4 x}} & =\int x \arctan (2 x) \\
& =\frac{x^{2}}{2} \arctan (2 x)-\int \frac{x^{2}}{1+4 x^{2}} \\
& =\frac{x^{2}}{2} \arctan (2 x)-\frac{1}{4} \int \frac{4 x^{2}+1}{1+4 x^{2}}+\frac{1}{4} \int \frac{1}{1+4 x^{2}} \\
& =\frac{x^{2}}{2} \arctan (2 x)-\frac{x}{4}+\frac{1}{8} \arctan (2 x)
\end{aligned}
$$

Combining these two integrations, we have

$$
y^{(p)}=-e^{2 x}\left(-\frac{x}{4}+\frac{1}{8} \arctan (2 x)+\frac{x^{2}}{2} \arctan (2 x)\right)+x e^{2 x}\left(x \arctan (2 x)-\frac{1}{4} \ln \left(1+4 x^{2}\right)\right)
$$

The general solution is composed by adding a homogeneous part with constants depending on the initial conditions:

$$
\begin{aligned}
y(x)= & c_{1} e^{2 x}+c_{2} x e^{2 x} \\
& -e^{2 x}\left(-\frac{x}{4}+\frac{1}{8} \arctan (2 x)+\frac{x^{2}}{2} \arctan (2 x)\right)+x e^{2 x}\left(x \arctan (2 x)-\frac{1}{4} \ln \left(1+4 x^{2}\right)\right)
\end{aligned}
$$

2) Consider the equation

$$
\begin{equation*}
4(x+1)^{2} \frac{d^{2} y}{d x^{2}}+10(x+1) \frac{d y}{d x}+\frac{27}{16} y=(x+1)^{3} \tag{2}
\end{equation*}
$$

a) Show that for $x<-1$, (2) this is equivalent to

$$
\begin{equation*}
4 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+\frac{27}{16} y=-e^{3 t} \tag{3}
\end{equation*}
$$

where $t=\ln |x+1|$
Solution: Using $t=\ln |x+1|$ as suggested, we note that for $x<-1, t=\ln (-x-1)$. We now carefully change variables in equation (2) (using the chain rule!):

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x} \\
& =\frac{d y}{d t} \frac{1}{x+1}
\end{aligned}
$$

To compute the second derivative involves applying the product rule so let's be extra careful:

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(\frac{1}{x+1} \frac{d y}{d t}\right) \\
& =-\frac{1}{(x+1)^{2}} \frac{d y}{d t}+\frac{1}{x+1} \frac{d}{d x} \frac{d y}{d t} \\
& =-\frac{1}{(x+1)^{2}} \frac{d y}{d t}+\frac{1}{x+1} \frac{d^{2} y}{d t^{2}} \frac{1}{x+1}
\end{aligned}
$$

the last line follows again from the chain rule. Putting all this information together, we obtain the result as predicted (note the negative on the $\frac{d y}{d t}$ term):

$$
4 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+\frac{27}{16} y=(x+1)^{3}
$$

the only thing left to do is to change the nonhomegeneity to a function of t to be consistent throughout. Since $(x+1)=-(-x-1)$ we have that $(x+1)^{3}=-e^{3 t}$ (just following the rules of exponents.)
Finally we get the equation of constant coefficents that we are asked for:

$$
4 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+\frac{27}{16} y=-e^{3 t}
$$

b) Find the general solution $y(t)$ of (3) (Which method is easier? you decide)

To solve the constant coefficient equation (3), we look for a solution of the form

$$
y(t)=e^{\lambda t}
$$

and get the characteristic equation:

$$
4 \lambda^{2}+6 \lambda+\frac{27}{16}=0
$$

Using the quadratic formula to solve for λ gives

$$
\begin{aligned}
\lambda & =\frac{1}{8}\left(-6 \pm \sqrt{6^{2}-4 * 4 * \frac{27}{16}}\right) \\
& =\frac{1}{8}(-6 \pm \sqrt{36-37}) \\
& =\frac{1}{8}(-6 \pm 3)
\end{aligned}
$$

So that independent solutions $y(t)$ to the homogeneous problem are

$$
y_{h}=c_{1} e^{-\frac{3}{8} t}+c_{2} e^{-\frac{9}{8} t}
$$

Now the nonhomogeneous part $-e^{3 t}$ does not appear in the homogeneous solution, so we look for a particular solution of (3) in the form $y^{(p)}=A e^{3 t}$. Plugging this into (3) gives

$$
\left(4 * 3^{2} A+6 * 3 A+\frac{27}{16} A\right) e^{3 t}=-e^{3 t}
$$

So what if the coefficient on the left hand side is not nice, we call

$$
\begin{equation*}
36+18+\frac{27}{16}=k \tag{4}
\end{equation*}
$$

and the particular solution solves

$$
\begin{aligned}
& k A=-1 \\
& A=\frac{-1}{k}
\end{aligned}
$$

Therefore the general solution to (3) is

$$
y=c_{1} e^{-\frac{3}{8} t}+c_{2} e^{-\frac{9}{8} t}-\frac{1}{k} e^{3 t}
$$

c) Find the solution $y(x)$ of (2) corresponding to $y(x=-2)=y^{\prime}(x=-2)=0$ (Hint: This is much simpler if you use part b) rather than variation of parameters directly on (2). But you can convince yourself that both give the same answer!)

Solution:

As per the hint, we translate the general solution $y(t)$ to the solution of the original equation (2) using the change of variables $t=\ln (-x-1)$. Note that when $x=-2, t=\ln (-x-1)=$ $\ln (2-1)=\ln 1=0$. Therefore the solution in terms of t becomes

$$
\left\{\begin{array}{l}
y(t=0)=c_{1}+c_{2}-\frac{1}{k}=0 \\
y^{\prime}(t=0)=-\frac{3}{8} c_{1}-\frac{9}{8} c_{2}-\frac{3}{k}=0
\end{array}\right.
$$

We can solve this system to obtain c_{1} and c_{2} to get

$$
\begin{aligned}
c_{1} & =\frac{1}{k}-c_{2} \\
c_{2} & =-\frac{27}{6} k \\
c_{1} & =\frac{33}{6} k
\end{aligned}
$$

(Note if you have a complicated constant like $k=36+18+\frac{27}{16}$ there is no shame in hiding it to avoid hideous calculations)
The solution to $y(t)$ thus becomes

$$
y(t)=\frac{33}{6} k e^{-\frac{3}{8} t}-\frac{27}{6} k e^{-\frac{9}{8} t}-\frac{1}{k} e^{3 t}
$$

Recalling the definition $t=\ln (-x-1)$, we have the solution of the nonhomogeneous euler equation as
$y(x)=\frac{33}{6} k|x+1|^{-3 / 8}-\frac{27}{6} k|x+1|^{-9 / 8}+\frac{1}{k}(x+1)^{3}$
(I do not do the variation of parameters directly on euler's equation because it is too much work. Exercise: check that it is the same solution)
3) Draw an accurate phase portrait for the following systems of equations. Justify your portrait (by computing eigenvalues and vectors! If it is a spiral, which direction will it spin?)
a) $\mathbf{y}^{\prime}=A \mathbf{y}$ where $A=\left(\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right)$

Solution: We find the eigenvalues of A by solving the characteristic equation

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I) \\
& =\operatorname{det}\left(\begin{array}{cc}
-\lambda & -3 \\
3 & -\lambda
\end{array}\right) \\
& =\lambda^{2}+3
\end{aligned}
$$

Thus $\lambda^{2}=-9$ and the eigenvalues are purely imaginary: $\lambda= \pm i 3$. To solve for the eigenvector, we set

$$
\left(\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=3 i\binom{\xi_{1}}{\xi_{2}}
$$

In other words, we have

$$
\begin{cases}-3 \xi_{2} & =3 i \xi_{1} \\ 3 \xi_{1} & =3 i \xi_{2}\end{cases}
$$

Both of these equations are the same and reduce to

$$
\xi_{1}=i \xi_{2}
$$

So if we choose $\xi_{2}=1$, then $\xi_{1}=i$ and one of our solutions reads

$$
\xi^{(1)} e^{3 i t}=\binom{i}{1} e^{3 i t}
$$

and the other independent solution is the complex conjugate:

$$
\begin{equation*}
\xi^{(2)} e^{-3 i t}=\binom{-i}{1} e^{-3 i t} \tag{5}
\end{equation*}
$$

By Problem 5 of the midterm we can add and subtract independent solutions to get another pair of indy solutions. For example, we write

$$
\begin{aligned}
\xi^{(1)} e^{3 i t} & =\binom{i}{1} e^{3 i t} \\
& =\binom{i}{1}(\cos (3 t)+i \sin (3 t)) \\
& =\binom{-\sin (3 t)}{\cos (3 t)}+i\binom{\cos (3 t)}{\sin (3 t)}
\end{aligned}
$$

and the other independent solution is the complex conjugate. We can thus add and subtract to obtain independent solutions in terms of only sin and cos (functions I understand unlike $i e^{3 i t}$ and such!).
Thus the general solution can be written as

$$
\begin{equation*}
\mathbf{y}=c_{1}\binom{-\sin (3 t)}{\cos (3 t)}+c_{2}\binom{\cos (3 t)}{\sin (3 t)} \tag{6}
\end{equation*}
$$

The phase portrait is a center that spins counter clockwise (since $a_{21}=3>0$) See Figure 1 for an approximate phase portrait

Figure 1: An approximate phase portrait for the system in 3)a)
b) $\mathbf{y}^{\prime}=A \mathbf{y}$ where $A=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$

Solution:
We find the eigenvalues of A, solving

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
-2 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)^{2}+4 \\
& =\lambda^{2}-2 \lambda+5=0
\end{aligned}
$$

Using the quadratic formula,

$$
\begin{aligned}
\lambda & =\frac{1}{2}(2 \pm \sqrt{4-20}) \\
& =1 \pm \frac{1}{2} \sqrt{-16} \\
& =1 \pm 2 i
\end{aligned}
$$

Finding the eigenvector $\xi^{(1)}$ for $\lambda=1+2 i$, we find:

$$
\begin{align*}
& \left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=(1+2 i)\binom{\xi_{1}}{\xi_{2}} \\
& \left\{\begin{array}{l}
\xi_{1}+2 \xi_{2}=(1+2 i) \xi_{1} \\
-2 \xi_{1}+\xi_{2}=(1+2 i) \xi_{2}
\end{array}\right. \tag{7}
\end{align*}
$$

The first equation in (7) simplifies to

$$
\xi_{2}=i \xi_{1}
$$

and the second to

$$
-\xi_{1}=i \xi_{2}
$$

These equations being a multiple of each other. We can therefore choose $\xi^{(1)}=\binom{1}{i}$ with $\xi^{(2)}$ the complex conjugate. One independent solution to this equation is thus

$$
y_{1}=\binom{1}{i} e^{(1+2 i) t}
$$

Separate y_{1} into its real and imaginary components to get:

$$
\begin{aligned}
y_{1} & =e^{t}\binom{1}{i} e^{2 i t} \\
& =e^{t}\binom{1}{i}(\cos (2 t)+i \sin (2 t)) \\
& =e^{t}\left[\binom{\cos (2 t)}{-\sin (2 t)}+i\binom{\sin (2 t)}{\cos (2 t)}\right]
\end{aligned}
$$

Therefore the general solution can be written only in terms of exponentials and trigonometric functions:

$$
y=e^{t}\left[c_{1}\binom{\cos (2 t)}{-\sin (2 t)}+c_{2}\binom{\sin (2 t)}{\cos (2 t)}\right]
$$

with c_{1}, c_{2} determined by initial conditions. You can recognize this solution as an unstable spiral spinning away from zero. Since the off-diagonal element of A is $a_{21}=-2$, the spiral spins clockwise. See figure 2 for a typical trajectory

Figure 2: An approximate phase portrait for the system in 3)b)
c) $\mathbf{y}^{\prime}=A \mathbf{y}$ where $A=\left(\begin{array}{cc}-6 & -5 \\ 5 & 4\end{array}\right)$

Solution: Finding the eigenvalues of A as usual, we get

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
-6-\lambda & -5 \\
5 & 4-\lambda
\end{array}\right) \\
& =(-6-\lambda)(4-\lambda)+25 \\
& =\lambda^{2}+2 \lambda+1 \\
& =(\lambda+1)^{2}=0
\end{aligned}
$$

Thus $\lambda=-1$ is the only eigenvalue. We find the corresponding eigenvector ξ :

$$
\begin{align*}
& \left(\begin{array}{cc}
-6 & -5 \\
5 & 4
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=-\binom{\xi_{1}}{\xi_{2}} \\
& \begin{cases}-6 \xi_{1}-5 \xi_{2} & =-\xi_{1} \\
5 \xi_{1}+4 \xi_{2} & =-\xi_{2}\end{cases} \tag{8}
\end{align*}
$$

Both equations in (8) reduce to

$$
\xi_{1}+\xi_{2}=0
$$

and we can choose the eigenvector to be $\xi=\binom{1}{-1}$. Thus one solution to this equation is just

$$
y_{1}=\binom{1}{-1} e^{-t}
$$

To find another independent solution, we write

$$
y_{2}=\xi t e^{-t}+\eta e^{-t}
$$

Where $\xi=\binom{1}{-1}$ is our eigenvector and η is a generalized eigenvector solving $(A-\lambda I) \eta=\xi$ In our case this is:

$$
\left(\begin{array}{cc}
-5 & -5 \\
5 & 5
\end{array}\right) \eta=\binom{1}{-1}
$$

Thus we have $5\left(\eta_{1}+\eta_{2}\right)=-1$. We have the freedom to set $\eta_{2}=0$ and write $\eta=\binom{-1 / 5}{0}$. The general solution is therefore

$$
y=c_{1}\binom{1}{-1} e^{-t}+c_{2}\left(\binom{1}{-1} t e^{-t}+\binom{-1 / 5}{0} e^{-t}\right)
$$

See 3 for an approximate phase portrait

Figure 3: An approximate phase portrait for the system in 3)c)
4) a) Find the eigenvalues and eigenvectors of the matrix $\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right)$

We solve for the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & -2-\lambda
\end{array}\right) \\
& =(1-\lambda)(-2-\lambda)-4 \\
& =\lambda^{2}+\lambda-6 \\
& =(\lambda+3)(\lambda-2)
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=-3$, and $\lambda_{2}=2$. We find first $\xi^{(\mathbf{1})}$ corresponding to the eigenvalue λ_{1} :

$$
\begin{align*}
& \left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=-3\binom{\xi_{1}}{\xi_{2}} \\
& \left\{\begin{array}{l}
\xi_{1}+\xi_{2}=-3 \xi_{1} \\
4 \xi_{1}-2 \xi_{2}=-3 \xi_{2}
\end{array}\right. \tag{9}
\end{align*}
$$

Both of the equations in (9) reduce to $4 \xi_{1}+\xi_{2}=0$. Choosing $\xi_{1}=1$, we may set

$$
\xi^{(\mathbf{1})}=\binom{1}{-4}
$$

Similarly, we find the eigenvector $\xi^{(\mathbf{2})}$ corresponding to λ_{2} :

$$
\begin{align*}
& \left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=2\binom{\xi_{1}}{\xi_{2}} \\
& \left\{\begin{array}{l}
\xi_{1}+\xi_{2}=2 \xi_{1} \\
4 \xi_{1}-2 \xi_{2}=2 \xi_{2}
\end{array}\right. \tag{10}
\end{align*}
$$

Both of the equations in (10) reduce to $\xi_{1}-\xi_{2}=0$ so we can choose:

$$
\xi^{(\mathbf{2})}=\binom{1}{1}
$$

b) Use these to compute the special fundamental matrix $e^{\mathbf{A t}}$. (note this matrix is sometimes denoted $\boldsymbol{\Phi}(\mathbf{t})$ in section 7.7. See our derivation in the notes).
Solution: We learned 3 ways to find the special fundamental matrix $e^{A t}$. I will take the second approach but all of them have lead to the same result. By part a), the general solution to $\mathbf{y}^{\prime}=A y$ can be written as

$$
y=c_{1}\binom{1}{-4} e^{-3 t}+c_{2}\binom{1}{1} e^{2 t}
$$

for some c_{1}, c_{2} determined by initial conditions. Similarly, the matrix $e^{A t}$ also solves the same equation:

$$
\frac{d}{d t} e^{A t}=A e^{A t}
$$

with the initial condition $\left.e^{A t}\right|_{t=0}=I$ where I is the identity matrix. Our problem then reduces to finding two solutions corresponding to $y_{0}=\binom{1}{0}$ and $y_{0}=\binom{0}{1}$. We have for the first choice:

$$
\binom{1}{0}=c_{1}\binom{1}{-4}+c_{2}\binom{1}{1}
$$

Solving for c_{1}, c_{2} gives

$$
c_{1}=1 / 5, \quad c_{2}=4 / 5
$$

Similarly, we solve for the constants such that

$$
\binom{0}{1}=c_{1}\binom{1}{-4}+c_{2}\binom{1}{1}
$$

Solving for c_{1}, c_{2} in this case gives

$$
c_{1}=-1 / 5, \quad c_{2}=1 / 5
$$

Thus the special fundamental matrix is

$$
\begin{aligned}
& e^{A t}=\left(1 / 5\binom{1}{-4} e^{-3 t}+4 / 5\binom{1}{1} e^{2 t}, \quad-1 / 5\binom{1}{-4} e^{-3 t}+1 / 5\binom{1}{1} e^{2 t}\right) \\
& =\left(\begin{array}{cc}
1 / 5\left(e^{-3 t}+4 e^{2 t}\right) & 1 / 5\left(-e^{-3 t}+e^{2 t}\right) \\
4 / 5\left(-e^{-3 t}+e^{2 t}\right) & 1 / 5\left(4 e^{-3 t}+e^{2 t}\right)
\end{array}\right)
\end{aligned}
$$

c) Find the solution to the system $\mathbf{y}^{\prime}=\mathbf{A y}$ corresponding to the initial conditions $\mathbf{y}(t=0)=\mathbf{y}^{\mathbf{0}}$:
i) $\mathbf{y}^{\mathbf{0}}=\binom{1}{-1}$, ii) $\mathbf{y}^{\mathbf{0}}=\binom{1}{2}$ iii) $\mathbf{y}^{\mathbf{0}}=\binom{2}{5}$ iv) $\mathbf{y}^{\mathbf{0}}=\binom{0}{1}$

Once we find $e^{A t}$, the problem of solving the system $\mathbf{y}^{\prime}=A \mathbf{y}$ with a given initial condition reduces to matrix multiplication as the solution is just $\mathbf{y}=e^{A t} \mathbf{y}_{\mathbf{0}}$.
For example, if $y_{0}=\binom{1}{-1}$, we get

$$
1 / 5\binom{e^{-3 t}+4 e^{2 t}}{4\left(-e^{-3 t}+e^{2 t}\right)}-1 / 5\binom{-e^{-3 t}+e^{2 t}}{4 e^{-3 t}+e^{2 t}}
$$

If $y_{0}=\binom{1}{2}$ then

$$
y=1 / 5\binom{e^{-3 t}+4 e^{2 t}}{4\left(-e^{-3 t}+e^{2 t}\right)}+2 / 5\binom{-e^{-3 t}+e^{2 t}}{4 e^{-3 t}+e^{2 t}}
$$

If $\mathbf{y}_{\mathbf{0}}=\binom{2}{5}$, then

$$
y=2 / 5\binom{e^{-3 t}+4 e^{2 t}}{4\left(-e^{-3 t}+e^{2 t}\right)}+\binom{-e^{-3 t}+e^{2 t}}{4 e^{-3 t}+e^{2 t}}
$$

Finally if $\mathbf{y}_{\mathbf{0}}=\binom{0}{1}$ then we just take the second column of $e^{A t}$:

$$
y=1 / 5\binom{-e^{-3 t}+e^{2 t}}{4 e^{-3 t}+e^{2 t}}
$$

At this point, you may see the advantage of computing the special fundamental matrix - if you need to solve the same problem for many initial conditions!
5) a) Given a matrix \mathbf{A}, show that the characteristic equation determining its eigenvalues may be written as

$$
\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda+\operatorname{det} \mathbf{A}=0
$$

(where $\operatorname{tr}(\mathbf{A})$ is the trace and $\operatorname{det} \mathbf{A}$ the determinant of \mathbf{A})
If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then the eigenvalues are found by solving

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
& =\lambda^{2}-(a+b) \lambda+a b-c d
\end{aligned}
$$

Now we recognize that $\operatorname{tr}(A)=a+b$ is the sum of diagonal elements of A while $\operatorname{det}(A)=a b-c d$ b) Suppose that the trace and determinant of \mathbf{A} are both positive. Show that the phase portrait of the system $\mathbf{y}^{\prime}=\mathbf{A y}$ is either an unstable node or an unstable spiral. (and no other case is possible) (hint: use part a) of course!)
Solution: Using part a), we have that

$$
\lambda=\frac{1}{2}\left(\operatorname{tr}(A) \pm \sqrt{(\operatorname{tr}(A))^{2}-4 \operatorname{det} A}\right)
$$

If $\operatorname{tr}(A)>0$ and $\operatorname{det}(A)>0$, the result follows immediately: either we have an unstable spiral (when the argument of the square root is negative) and the real part of λ is larger than zero. Else, in the worst case,

$$
\lambda=\frac{1}{2}\left(\operatorname{tr}(A)-\sqrt{(\operatorname{tr}(A))^{2}-4 \operatorname{det} A}\right)>0
$$

since $\operatorname{tr}(A)>\sqrt{\operatorname{tr}(A)^{2}-4 \operatorname{det} A}$ whenever $\operatorname{det}(A)>0$.
c) Let \mathbf{A} be given by

$$
\left(\begin{array}{cc}
\alpha & -2 \\
\beta & 3
\end{array}\right)
$$

where α and β are positive. Find a condition on α, β that result in an unstable node or unstable spiral. Draw an example phase portrait in each case. What happens when $\beta=\frac{1}{8}(\alpha-3)^{2}$? (Hint: Use part b)!)
Here $\operatorname{tr}(A)=\alpha+3$ and $\operatorname{det}(A)=3 \alpha+2 \beta$. The case separating the spiral from the node is the sign of the expression under the square root. That is we have a node if

$$
\begin{aligned}
(\operatorname{tr}(A))^{2} & >4 \operatorname{det}(A) \\
(\alpha+3)^{2} & >4(3 \alpha+2 \beta) \\
\alpha^{2}+6 \alpha+9 & >12 \alpha+8 \beta \\
\alpha^{2}-6 \alpha+9 & >8 \beta \\
(\alpha-3)^{2} & >8 \beta
\end{aligned}
$$

And we have the spiral if

$$
(\alpha-3)^{2}<8 \beta
$$

In the borderline case $\beta=\frac{1}{8}(\alpha-3)^{2}$, there is only 1 eigenvalue and we typically see an improper node.

