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each problem is worth 20 points for a total of 100.

1) Find the general solution to

y

00 � 4y0 + 4y = e

2x arctan (2x)

Solution: Since the nonhomogeneity is not of the form of a quasipolynomial, we must use the method

of variation of parameters (that works for any nonhomogeneity). To do this, we first compute the

solution of the homogeneous equation

y

00 � 4y0 + 4y = 0

Plugging in y = e

�x gives an equation for �:

�

2 � 4�+ 4 = 0

or by factoring, (�� 2)2 = 0. Thus � = 2 is the only eigenvalue and we have by the usual trick the

general solution to the homogenous problem:

y

h

= c1e
2x + c2xe

2x

with c1, c2 given by initial conditions. From here, we denote the independent solutions to the

homogeneous problem as

y

(1)
h

= e

2x

y

(2)
h

= xe

2x

Computing the Wronskian of these solutions, we get

W = det

 
y

(1)
h

y

(2)
h

y

(1)
h

0
y

(2)
h

0

!

= det

 
e

2x
xe

2x

2e2x (1 + 2x) e2x

!

= e

4x (1 + 2x� 2x)

= e

4x

By variation of parameters, the particular solution is given by

y
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h

Z
y
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h

g
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(2)
h

Z
y
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h
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= �e
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Z
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e

2x arctan (2x)

e

4x
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2x

Z
e

2x
e

2x arctan (2x)

e

4x
(1)



The second integral seems easier so let’s start with that one and integrate by parts:

Z
e

2x
e

2x arctan (2x)

e

4x
=

Z
arctan (2x)

= x arctan (2x)�
Z

x

2

1 + (2x)2

= x arctan (2x)� 1

4

Z
8x

1 + 4x2

= x arctan (2x)� 1

4
ln
�
1 + 4x2

�

We use this result in the first integral in (1) to get again by intee

Z
xe

2x
e

2x arctan (2x)

e

4x
=

Z
x arctan (2x)

=
x

2

2
arctan (2x)�

Z
x

2

1 + 4x2

=
x

2

2
arctan (2x)� 1

4

Z
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+

1

4

Z
1

1 + 4x2

=
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2
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4
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Combining these two integrations, we have

y

(p) = �e

2x

✓
�x

4
+

1

8
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x

2

2
arctan (2x)

◆
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✓
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4
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�
1 + 4x2

�◆

The general solution is composed by adding a homogeneous part with constants depending on the

initial conditions:

y(x) = c1e
2x + c2xe

2x

� e

2x

✓
�x

4
+

1

8
arctan (2x) +

x

2

2
arctan (2x)

◆
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✓
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4
ln
�
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�◆

2) Consider the equation

4 (x+ 1)2
d

2
y

dx

2
+ 10 (x+ 1)

dy

dx

+
27

16
y = (x+ 1)3 (2)

a) Show that for x < �1, (2) this is equivalent to



4
d

2
y

dt

2
+ 6

dy

dt

+
27

16
y = �e

3t (3)

where t = ln |x+ 1|
Solution: Using t = ln |x+ 1| as suggested, we note that for x < �1, t = ln (�x� 1). We now

carefully change variables in equation (2) (using the chain rule!):

dy

dx

=
dy

dt

dt

dx

=
dy

dt

1

x+ 1

To compute the second derivative involves applying the product rule so let’s be extra careful:

d

2
y

dx

2
=

d

dx

✓
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dx

◆

=
d

dx

✓
1

x+ 1

dy

dt

◆

= � 1

(x+ 1)2
dy

dt

+
1

x+ 1

d

dx

dy

dt

= � 1

(x+ 1)2
dy

dt

+
1

x+ 1

d

2
y

dt

2

1

x+ 1

the last line follows again from the chain rule. Putting all this information together, we obtain the

result as predicted (note the negative on the dy

dt

term):

4
d

2
y

dt

2
+ 6

dy

dt

+
27

16
y = (x+ 1)3

the only thing left to do is to change the nonhomegeneity to a function of t to be consistent

throughout. Since (x + 1) = �(�x � 1) we have that (x + 1)3 = �e

3t (just following the rules of

exponents.)

Finally we get the equation of constant coe�cents that we are asked for:

4
d

2
y

dt

2
+ 6

dy

dt

+
27

16
y = �e

3t

b) Find the general solution y(t) of (3) (Which method is easier? you decide)

To solve the constant coe�cient equation (3), we look for a solution of the form

y(t) = e

�t



and get the characteristic equation:

4�2 + 6�+
27

16
= 0

Using the quadratic formula to solve for � gives

� =
1

8

 
�6±

r
62 � 4 ⇤ 4 ⇤ 27

16

!

=
1

8

�
�6±

p
36� 37

�

=
1

8
(�6± 3)

So that independent solutions y(t) to the homogeneous problem are

y

h

= c1e
� 3

8 t + c2e
� 9

8 t

Now the nonhomogeneous part �e

3t does not appear in the homogeneous solution, so we look for a

particular solution of(3) in the form y

(p) = Ae

3t. Plugging this into (3) gives

✓
4 ⇤ 32A+ 6 ⇤ 3A+

27

16
A

◆
e

3t = �e

3t

So what if the coe�cient on the left hand side is not nice, we call

36 + 18 +
27

16
= k (4)

and the particular solution solves

kA = �1

A =
�1

k

Therefore the general solution to (3) is

y = c1e
� 3

8 t + c2e
� 9

8 t � 1

k

e

3t

c) Find the solution y(x) of (2) corresponding to y(x = �2) = y

0(x = �2) = 0 (Hint: This is much

simpler if you use part b) rather than variation of parameters directly on (2). But you can convince

yourself that both give the same answer!)



Solution:

As per the hint, we translate the general solution y(t) to the solution of the original equation

(2) using the change of variables t = ln (�x� 1). Note that when x = �2, t = ln (�x� 1) =

ln (2� 1) = ln 1 = 0. Therefore the solution in terms of t becomes

8
<

:
y(t = 0) = c1 + c2 � 1

k

= 0

y

0(t = 0) = �3
8c1 �

9
8c2 �

3
k

= 0

We can solve this system to obtain c1 and c2 to get

c1 =
1

k

� c2

c2 = �27

6
k

c1 =
33

6
k

(Note if you have a complicated constant like k = 36 + 18 + 27
16 there is no shame in hiding it to

avoid hideous calculations )

The solution to y(t) thus becomes

y(t) =
33

6
ke

� 3
8 t � 27

6
ke

� 9
8 t � 1

k

e

3t

Recalling the definition t = ln (�x� 1), we have the solution of the nonhomogeneous euler equation

as

y(x) = 33
6 k |x+ 1|�3/8 � 27

6 k |x+ 1|�9/8 + 1
k

(x+ 1)3

(I do not do the variation of parameters directly on euler’s equation because it is too much work.

Exercise: check that it is the same solution)

3) Draw an accurate phase portrait for the following systems of equations. Justify your portrait

(by computing eigenvalues and vectors! If it is a spiral, which direction will it spin?)

a) y0 = Ay where A =

 
0 �3

3 0

!

Solution: We find the eigenvalues of A by solving the characteristic equation



0 = det (A� �I)

= det

 
�� �3

3 ��

!

= �

2 + 3

Thus �2 = �9 and the eigenvalues are purely imaginary: � = ±i3. To solve for the eigenvector, we

set

 
0 �3

3 0

! 
⇠1

⇠2

!
= 3i

 
⇠1

⇠2

!

In other words, we have

8
<

:
�3⇠2 = 3i⇠1

3⇠1 = 3i⇠2

Both of these equations are the same and reduce to

⇠1 = i⇠2

So if we choose ⇠2 = 1, then ⇠1 = i and one of our solutions reads

⇠

(1)
e

3it =

 
i

1

!
e

3it

and the other independent solution is the complex conjugate:

⇠

(2)
e

�3it =

 
�i

1

!
e

�3it (5)

By Problem 5 of the midterm we can add and subtract independent solutions to get another pair

of indy solutions. For example, we write



⇠

(1)
e

3it =

 
i

1

!
e

3it

=

 
i

1

!
(cos (3t) + i sin (3t))

=

 
� sin (3t)

cos (3t)

!
+ i

 
cos (3t)

sin (3t)

!

and the other independent solution is the complex conjugate. We can thus add and subtract to

obtain independent solutions in terms of only sin and cos (functions I understand unlike ie

3it and

such!).

Thus the general solution can be written as

y = c1

 
� sin (3t)

cos (3t)

!
+ c2

 
cos (3t)

sin (3t)

!
(6)

The phase portrait is a center that spins counter clockwise (since a21 = 3 > 0) See Figure 1 for an

approximate phase portrait

Figure 1: An approximate phase portrait for the system in 3)a)

b) y0 = Ay where A =

 
1 2

�2 1

!

Solution:

We find the eigenvalues of A, solving



det (A� �I) = det

 
1� � 2

�2 1� �

!

= (1� �)2 + 4

= �

2 � 2�+ 5 = 0

Using the quadratic formula,

� =
1

2

�
2±

p
4� 20

�

= 1± 1

2

p
�16

= 1± 2i

Finding the eigenvector ⇠(1) for � = 1 + 2i, we find:

 
1 2

�2 1

! 
⇠1

⇠2

!
= (1 + 2i)

 
⇠1

⇠2

!

8
<

:
⇠1 + 2⇠2 = (1 + 2i) ⇠1

�2⇠1 + ⇠2 = (1 + 2i) ⇠2
(7)

The first equation in (7) simplifies to

⇠2 = i⇠1

and the second to

�⇠1 = i⇠2

These equations being a multiple of each other. We can therefore choose ⇠

(1) =

 
1

i

!
with ⇠

(2) the

complex conjugate. One independent solution to this equation is thus

y1 =

 
1

i

!
e

(1+2i)t

Separate y1 into its real and imaginary components to get:



y1 = e

t

 
1

i

!
e

2it

= e

t

 
1

i

!
(cos (2t) + i sin (2t))

= e

t

" 
cos (2t)

� sin (2t)

!
+ i

 
sin (2t)

cos (2t)

!#

Therefore the general solution can be written only in terms of exponentials and trigonometric

functions:

y = e

t

"
c1

 
cos (2t)

� sin (2t)

!
+ c2

 
sin (2t)

cos (2t)

!#

with c1, c2 determined by initial conditions. You can recognize this solution as an unstable spiral

spinning away from zero. Since the o↵-diagonal element of A is a21 = �2, the spiral spins clockwise.

See figure 2 for a typical trajectory

Figure 2: An approximate phase portrait for the system in 3)b)

c) y0 = Ay where A =

 
�6 �5

5 4

!

Solution: Finding the eigenvalues of A as usual, we get



det (A� �I) = det

 
�6� � �5

5 4� �

!

= (�6� �) (4� �) + 25

= �

2 + 2�+ 1

= (�+ 1)2 = 0

Thus � = �1 is the only eigenvalue. We find the corresponding eigenvector ⇠:

 
�6 �5

5 4

! 
⇠1

⇠2

!
= �

 
⇠1

⇠2

!

8
<

:
�6⇠1 � 5⇠2 = �⇠1

5⇠1 + 4⇠2 = �⇠2

(8)

Both equations in (8) reduce to

⇠1 + ⇠2 = 0

and we can choose the eigenvector to be ⇠ =

 
1

�1

!
. Thus one solution to this equation is just

y1 =

 
1

�1

!
e

�t

To find another independent solution, we write

y2 = ⇠te

�t + ⌘e

�t

Where ⇠ =

 
1

�1

!
is our eigenvector and ⌘ is a generalized eigenvector solving (A� �I) ⌘ = ⇠ In

our case this is:

 
�5 �5

5 5

!
⌘ =

 
1

�1

!

Thus we have 5 (⌘1 + ⌘2) = �1. We have the freedom to set ⌘2 = 0 and write ⌘ =

 
�1/5

0

!
. The

general solution is therefore



y = c1

 
1

�1

!
e

�t + c2

  
1

�1

!
te

�t +

 
�1/5

0

!
e

�t

!

See 3 for an approximate phase portrait

Figure 3: An approximate phase portrait for the system in 3)c)

4) a) Find the eigenvalues and eigenvectors of the matrix A =

 
1 1

4 �2

!

We solve for the eigenvalues:

det (A� �I) = det

 
1� � 1

4 �2� �

!

= (1� �) (�2� �)� 4

= �

2 + �� 6

= (�+ 3) (�� 2)

Thus the eigenvalues are �1 = �3, and �2 = 2. We find first ⇠(1) corresponding to the eigenvalue

�1:

 
1 1

4 �2

! 
⇠1

⇠2

!
= �3

 
⇠1

⇠2

!

8
<

:
⇠1 + ⇠2 = �3⇠1

4⇠1 � 2⇠2 = �3⇠2
(9)



Both of the equations in (9) reduce to 4⇠1 + ⇠2 = 0. Choosing ⇠1 = 1, we may set

⇠

(1) =

 
1

�4

!

Similarly, we find the eigenvector ⇠(2) corresponding to �2:

 
1 1

4 �2

! 
⇠1

⇠2

!
= 2

 
⇠1

⇠2

!

8
<

:
⇠1 + ⇠2 = 2⇠1

4⇠1 � 2⇠2 = 2⇠2
(10)

Both of the equations in (10) reduce to ⇠1 � ⇠2 = 0 so we can choose:

⇠

(2) =

 
1

1

!

b) Use these to compute the special fundamental matrix e

At. (note this matrix is sometimes denoted

�(t) in section 7.7. See our derivation in the notes).

Solution: We learned 3 ways to find the special fundamental matrix e

At. I will take the second

approach but all of them have lead to the same result. By part a), the general solution to y0 = Ay

can be written as

y = c1

 
1

�4

!
e

�3t + c2

 
1

1

!
e

2t

for some c1, c2 determined by initial conditions. Similarly, the matrix e

At also solves the same

equation:
d

dt

e

At = Ae

At

with the initial condition e

At

��
t=0

= I where I is the identity matrix. Our problem then reduces to

finding two solutions corresponding to y0 =

 
1

0

!
and y0 =

 
0

1

!
. We have for the first choice:

 
1

0

!
= c1

 
1

�4

!
+ c2

 
1

1

!



Solving for c1, c2 gives

c1 = 1/5, c2 = 4/5

Similarly, we solve for the constants such that

 
0

1

!
= c1

 
1

�4

!
+ c2

 
1

1

!

Solving for c1, c2 in this case gives

c1 = �1/5, c2 = 1/5

Thus the special fundamental matrix is

e

At =

 
1/5

 
1

�4

!
e

�3t + 4/5

 
1

1

!
e

2t
, �1/5

 
1

�4

!
e

�3t + 1/5

 
1

1

!
e

2t

!

=

 
1/5 (e�3t + 4e2t) 1/5 (�e

�3t + e

2t)

4/5 (�e

�3t + e

2t) 1/5 (4e�3t + e

2t)

!

c) Find the solution to the system y0 = Ay corresponding to the initial conditions y(t = 0) = y0:

i) y0 =

 
1

�1

!
, ii) y0 =

 
1

2

!
iii) y0 =

 
2

5

!
iv) y0 =

 
0

1

!

Once we find e

At, the problem of solving the system y0 = Ay with a given initial condition reduces

to matrix multiplication as the solution is just y = e

Aty0.

For example, if y0 =

 
1

�1

!
, we get

1/5

 
e

�3t + 4e2t

4 (�e

�3t + e

2t)

!
� 1/5

 
�e

�3t + e

2t

4e�3t + e

2t

!

If y0 =

 
1

2

!
then

y = 1/5

 
e

�3t + 4e2t

4 (�e

�3t + e

2t)

!
+ 2/5

 
�e

�3t + e

2t

4e�3t + e

2t

!

If y0 =

 
2

5

!
, then



y = 2/5

 
e

�3t + 4e2t

4 (�e

�3t + e

2t)

!
+

 
�e

�3t + e

2t

4e�3t + e

2t

!

Finally if y0 =

 
0

1

!
then we just take the second column of eAt:

y = 1/5

 
�e

�3t + e

2t

4e�3t + e

2t

!

At this point, you may see the advantage of computing the special fundamental matrix - if you need

to solve the same problem for many initial conditions!

5) a) Given a matrix A, show that the characteristic equation determining its eigenvalues may be

written as

�

2 � tr (A)�+ detA = 0

(where tr (A) is the trace and detA the determinant of A)

If A =

 
a b

c d

!
then the eigenvalues are found by solving

det (A� �I) = det

 
a� � b

c d� �

!

= �

2 � (a+ b)�+ ab� cd

Now we recognize that tr(A) = a+ b is the sum of diagonal elements of A while det (A) = ab� cd

b) Suppose that the trace and determinant of A are both positive. Show that the phase portrait of

the system y0 = Ay is either an unstable node or an unstable spiral. (and no other case is possible)

(hint: use part a) of course!)

Solution: Using part a), we have that

� =
1

2

✓
tr (A)±

q
(tr (A))2 � 4 detA

◆

If tr(A) > 0 and det(A) > 0, the result follows immediately: either we have an unstable spiral

(when the argument of the square root is negative) and the real part of � is larger than zero. Else,

in the worst case,

� =
1

2

✓
tr(A)�

q
(tr (A))2 � 4 detA

◆
> 0



since tr(A) >
p

tr(A)2 � 4 detA whenever det(A) > 0.

c) Let A be given by

 
↵ �2

� 3

!

where ↵ and � are positive. Find a condition on ↵, � that result in an unstable node or unstable

spiral. Draw an example phase portrait in each case. What happens when � = 1
8 (↵� 3)2? (Hint:

Use part b)!)

Here tr(A) = ↵+3 and det(A) = 3↵+2�. The case separating the spiral from the node is the sign

of the expression under the square root. That is we have a node if

(tr(A))2 > 4 det(A)

(↵ + 3)2 > 4 (3↵ + 2�)

↵

2 + 6↵ + 9 > 12↵ + 8�

↵

2 � 6↵ + 9 > 8�

(↵� 3)2 > 8�

And we have the spiral if

(↵� 3)2 < 8�

In the borderline case � = 1
8 (↵� 3)2, there is only 1 eigenvalue and we typically see an improper

node.


