MAT244 - Ordinary Differential Equations - Summer 2016
Assignment 2  Due: July 20, 2016
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Indicate which Tutorial Section you attend by filling in the appropriate circle:
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Print out this page, fill it out and attach it to the front of your assign-
ment.

Instructions:
e Due July 20, 2016 at the start of the lecture 13:10pm in BA1170.

e You may collaborate with your classmates but you MUST write up your solutions indepen-

dently.

e Write your solutions clearly, showing all steps. Do not submit just your rough work. Grading

is based on both the correctness and thee presentation of your answer.

e Late assignments will not be accepted without appropriate documentation to explain the

lateness (eg. a UofT medical note)

e Assignments may be submitted to the course instructor for remarking up to one week after
they are returned. If you request a regrade, please attach a note explaining clearly which part

and why you believe it was graded incorrectly.

For grader use:

Q1| Q2| Q3| Q4| Q5| Total




each problem is worth 20 points for a total of 100.

1) Find the general solution to

y" — 4y + 4y = €** arctan (2z)

Solution: Since the nonhomogeneity is not of the form of a quasipolynomial, we must use the method
of variation of parameters (that works for any nonhomogeneity). To do this, we first compute the

solution of the homogeneous equation

y' — 4y +4y=0
Plugging in y = e gives an equation for \:
N =4 +4=0

or by factoring, (A — 2)2 = 0. Thus A = 2 is the only eigenvalue and we have by the usual trick the

general solution to the homogenous problem:

yp = c1€*® + coxe™

with ¢, ¢y given by initial conditions. From here, we denote the independent solutions to the

homogeneous problem as

1 x
ny ) _ 2
y = we™

Computing the Wronskian of these solutions, we get

(1) (2)
W = det (yh , U )
(1) (2)
Yn, Yn

62:5 xe?x
= det
2e* (14 2x)e*®

=" (14 2z — 2z)

— 64:1:

By variation of parameters, the particular solution is given by

(2) (1)
/ Yy g e Y g
W h W
ee

z/x 22022 arctan (27) 233/62””629” arctan (2x)
= —¢ + xe

y® = —yt)
’ ede (1)

64z



The second integral seems easier so let’s start with that one and integrate by parts:

2z 2x t 2
/6 ¢ al"if an( 17) = /arctan (25(])
edr
2

= rarctan (2z) — /J:—2
1+ (2z)

1 8
zzarctan(Q:B)—Z/1+Z 5
x

1
= x arctan (2z) — 1 In (1 + 42%)

We use this result in the first integral in (1) to get again by intee

2x 2w t 2
/xe e azC an( x) — /xarctan (2$)
e X

2 2
= % arctan (2z) — / °

1+ 422

x? tan (22) 1/4:c2+1+1/ 1
= — I‘ n —_— —_
g MRS = T 4 T 1) 11422

2
1
= % arctan (2z) — % + 3 arctan (2z)

Combining these two integrations, we have

1 2 1
y?) = —% (—% + 3 arctan (2x) + % arctan (293)) + ze” ($ arctan (2x) — 2 In (1+ 4352))

The general solution is composed by adding a homogeneous part with constants depending on the

initial conditions:

y(x) = c1e* + cyze™

1 2 1
— e (—2 + 3 arctan (2x) + % arctan (237)) + ze*® (m arctan (2x) — 1 In (1+ 4x2))

2) Consider the equation

2

d dy 27
4(x+1)2d—;é+10(x+1)£+1—6y:(x—|—1)3 2)

a) Show that for z < —1, (2) this is equivalent to



d?y dy 27
4— 46—+ —y=—e 3
e TR TL A )
where ¢t = In |z + 1|
Solution: Using ¢ = In |x + 1| as suggested, we note that for z < —1, ¢t = In(—z — 1). We now

carefully change variables in equation (2) (using the chain rule!):

dy _ dy dt

dv  dt dx
_dy 1
Cdtx+1

To compute the second derivative involves applying the product rule so let’s be extra careful:

d*y _d (dy
dz?  dx \ dx

_d 1 dy
Cdx \z+1dt

L dy 1 ddy
(x4+1)dt x4 1ldxdt
1 dy 1 &’y 1

w41)pdt  zrldEzl

the last line follows again from the chain rule. Putting all this information together, we obtain the

. : d .
result as predicted (note the negative on the % term):

d>y dy 27 5
Y LYy
TR T TU A )

the only thing left to do is to change the nonhomegeneity to a function of ¢ to be consistent
throughout. Since (z + 1) = —(—z — 1) we have that (x + 1)* = —e3 (just following the rules of
exponents.)

Finally we get the equation of constant coefficents that we are asked for:

d*y  dy 27
4—= +6— + —y=—e
T TR T

b) Find the general solution y(t) of (3) (Which method is easier? you decide)

To solve the constant coefficient equation (3), we look for a solution of the form

y(t) = e



and get the characteristic equation:

27
AN+ 61+ —==0
oA+ 16

Using the quadratic formula to solve for A gives

27
—6+ 2 _4x4x—
< 6 \/6 * *16>

(—6 + /36 — 37)

(—6 £ 3)

\ =

0|~ — 0|

So that independent solutions y(t) to the homogeneous problem are

_ 3¢ _9¢
Y = C1€ 8 + coe 8

Now the nonhomogeneous part —e* does not appear in the homogeneous solution, so we look for a

particular solution of(3) in the form y®) = Ae. Plugging this into (3) gives

27
(4 *3%2A+6%3A+ 1—6A> et = —e3t

So what if the coefficient on the left hand side is not nice, we call

27
36 + 18 + 6= k (4)

and the particular solution solves

kA = -1

-1

A=—

k

Therefore the general solution to (3) is
-3¢ _oy Loy
Yy=ce 8 +coe B8 —Ee

¢) Find the solution y(x) of (2) corresponding to y(x = —2) = y/(z = —2) = 0 (Hint: This is much
simpler if you use part b) rather than variation of parameters directly on (2). But you can convince

yourself that both give the same answer!)



Solution:
As per the hint, we translate the general solution y(¢) to the solution of the original equation
(2) using the change of variables ¢ = In(—x — 1). Note that when x = =2, t = In(—z —1) =

In(2—1) =In1=0. Therefore the solution in terms of ¢t becomes

We can solve this system to obtain ¢; and ¢y to get

1
C1 = 2 Co
27
Cy = —gk
33
CcCl = Ek

(Note if you have a complicated constant like k& = 36 + 18 + % there is no shame in hiding it to
avoid hideous calculations )

The solution to y(t) thus becomes

: 2 ¢ 1.
y(t) = ?;—Bkegt — gkegt - Ee‘”

Recalling the definition ¢ = In (—z — 1), we have the solution of the nonhomogeneous euler equation
as
-3/8 -9/8 3
y(@) = Bkle+ 175 - Tk |z + 17 + Lz +1)
(I do not do the variation of parameters directly on euler’s equation because it is too much work.

Exercise: check that it is the same solution)

3) Draw an accurate phase portrait for the following systems of equations. Justify your portrait
(by computing eigenvalues and vectors! If it is a spiral, which direction will it spin?)

0 -3

3 0

Solution: We find the eigenvalues of A by solving the characteristic equation

a) y' = Ay where A =



0 = det (A — AI)

-\ =3
= det

=X +3
Thus A\?> = —9 and the eigenvalues are purely imaginary: A\ = #i3. To solve for the eigenvector, we
set
0 -3
&\ _ % &
30/ \& 3
In other words, we have
=38 = 3i&
3 =3

Both of these equations are the same and reduce to

§1 = i&

So if we choose & = 1, then & = 7 and one of our solutions reads

and the other independent solution is the complex conjugate:

5(2)6731‘15 _ <_12> o3t (5>

By Problem 5 of the midterm we can add and subtract independent solutions to get another pair

of indy solutions. For example, we write



5(1)63“ _ Z) oBit

— i) (cos (3t) + isin (3t))

_ [ —sin (3t)> L (c?s (315))
cos (3t) sin (3t)

and the other independent solution is the complex conjugate. We can thus add and subtract to

obtain independent solutions in terms of only sin and cos (functions I understand unlike e and
such!).

Thus the general solution can be written as

. — sin (3t) . [ €% (3t)
oo < cos (3t) ) e <sin (3t)> ®)

The phase portrait is a center that spins counter clockwise (since az; = 3 > 0) See Figure 1 for an

approximate phase portrait

>h
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Figure 1: An approximate phase portrait for the system in 3)a)
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b)y/:AyWhereA:( ) 1)

Solution:

We find the eigenvalues of A, solving



1—A 2
det(A—)J)zdet( )

—2 1-—A
=(1-))?*+4
= A2 —2XA4+5=0

Using the quadratic formula,

A= % (24 V4 —20)
= 1%_—%\/—16

=1+£2

Finding the eigenvector £ for A = 1 + 2i, we find:

() () - Q)
-2 1) \& &2
&1 + 2 =(1+20)&

=26 + & = (1+2i)&

The first equation in (7) simplifies to

& =16
and the second to

—& =&

These equations being a multiple of each other. We can therefore choose ¢V = <

complex conjugate. One independent solution to this equation is thus

1 4
Y = <> e(1+2z)t
]

Separate y; into its real and imaginary components to get:

1
> with £ the
i



1 .
Y = et e?zt
1

= 1) (cos (2t) + isin (2t))

1

_ ot —< cos (2t) ) g <sin (2t)>]
|\ —sin (22) cos (2t)

Therefore the general solution can be written only in terms of exponentials and trigonometric

y= e [01 ( cos (2t) > Lo (Sin (2t))]
— sin (2t) cos (2t)

with ¢;, co determined by initial conditions. You can recognize this solution as an unstable spiral

functions:

spinning away from zero. Since the off-diagonal element of A is as; = —2, the spiral spins clockwise.

See figure 2 for a typical trajectory

(“ﬂ gf&.bl@ /

Figure 2: An approximate phase portrait for the system in 3)b)

—6 —5
5 4
Solution: Finding the eigenvalues of A as usual, we get

c)y' = Ay where A =



—-6—-X =5
det (A — A\I) = det
) 4— )\

—(—6-X)(4—X\) +25
=\ +2\+1
= (A +1)°=0

Thus A = —1 is the only eigenvalue. We find the corresponding eigenvector &:

)6

=661 =58 =&
(8)
56 +46 =6
Both equations in (8) reduce to
§1+8&=0

and we can choose the eigenvector to be £ = ( ) . Thus one solution to this equation is just

To find another independent solution, we write

Yo = Ete™ +me!

1
Where ¢ = (

1) is our eigenvector and 7 is a generalized eigenvector solving (A — AI)n = ¢ In

) ()

-1/5
Thus we have 5 (1, +1,) = —1. We have the freedom to set 17, = 0 and write n = ( O/ ) The

our case this is:

general solution is therefore



(el ()

See 3 for an approximate phase portrait
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Figure 3: An approximate phase portrait for the system in 3)c)

1 1
4) a) Find the eigenvalues and eigenvectors of the matrix A = <4 2)

We solve for the eigenvalues:

1—A 1
det(A—/\I):det( )

4 —2-\
—(1-XN)(-2-))—14
=XN+XA-6
=(A+3)(A—2)

Thus the eigenvalues are \; = —3, and Ay = 2. We find first £ corresponding to the eigenvalue

)\12
()0
4 =2/ \& &2
&1+ & = —3&
46 — 28 = =38



Both of the equations in (9) reduce to 4&; + & = 0. Choosing & = 1, we may set

1
) _
- ()

Similarly, we find the eigenvector £ corresponding to Ao

()2
4 =2) \& S
S1+& = 2§

46 — 28 =26

(10)

Both of the equations in (10) reduce to & — & = 0 so we can choose:

2 _ (1
- ()

b) Use these to compute the special fundamental matrix eAt. (

note this matrix is sometimes denoted
®(t) in section 7.7. See our derivation in the notes).
Solution: We learned 3 ways to find the special fundamental matrix e. I will take the second

approach but all of them have lead to the same result. By part a), the general solution to y’ = Ay

1 1
y=c e 4 ¢y o2
—4 1

for some ¢y, ¢o determined by initial conditions. Similarly, the matrix e

can be written as

t also solves the same

equation:
d At
—e™t = Ae
dt

At = [ where [ is the identity matrix. Our problem then reduces to

with the initial condition e o

1 0
finding two solutions corresponding to yy = (()) and yp = <1> . We have for the first choice:

o)== ()= ()



Solving for ¢y, ¢y gives

01:1/5, 62:4/5

Similarly, we solve for the constants such that

Solving for ¢y, ¢o in this case gives

61:—1/5, 02:1/5

Thus the special fundamental matrix is

e = (1/5 (_14) e 3t +4/5 (1) e?, —1/5 (_14> et +1/5 (1) 62t>

_ (1/5 (73 4 4e*) 1/5(_6—3t+62t)>

4/5(—e 3t +e?)  1/5 (473 4 )

c) Find the solution to the system y’ = Ay corresponding to the initial conditions y(t = 0) = y°:

O e

Once we find e, the problem of solving the system y’ = Ay with a given initial condition reduces

to matrix multiplication as the solution is just y = e?tys.

1
For example, if yq = ( 1), we get
1/5 —1/5
4 (_e—3t + e2t> 46_3t + th

1
If yo = then
Yo <2>
2
If yo = (5>, then



e—3t +4€2t _e—3t _|_ th
y=2/5 +
4 (_6—3t + th) 46—3t + €2t

0
Finally if yo = (1> then we just take the second column of e?:

3t | 2t
—e ' +e
y=1/5 ,
43t 4 2
At this point, you may see the advantage of computing the special fundamental matrix - if you need

to solve the same problem for many initial conditions!

5) a) Given a matrix A, show that the characteristic equation determining its eigenvalues may be

written as

N —tr(A)A+det A =0
(where tr (A) is the trace and det A the determinant of A)

b
If A= (a d) then the eigenvalues are found by solving
c

A b
det (A — M) = det [
c d—\

=N —(a+b)X+ab—cd

Now we recognize that tr(A) = a + b is the sum of diagonal elements of A while det (4) = ab — cd
b) Suppose that the trace and determinant of A are both positive. Show that the phase portrait of
the system y’ = Ay is either an unstable node or an unstable spiral. (and no other case is possible)
(hint: use part a) of course!)

Solution: Using part a), we have that

A= % (tr (4) % \/(tr (4))” — 4det A)

If tr(A) > 0 and det(A) > 0, the result follows immediately: either we have an unstable spiral
(when the argument of the square root is negative) and the real part of A is larger than zero. Else,

in the worst case,

A= (tr(A) — \/(tr (A))? — 4 det A) >0

DO | —



since tr(A) > /tr(A)? — 4 det A whenever det(A) > 0.

c) Let A be given by
a —2
g 3

where o and [ are positive. Find a condition on «, [ that result in an unstable node or unstable
spiral. Draw an example phase portrait in each case. What happens when g = % (v — 3)2? (Hint:
Use part b)!)

Here tr(A) = a+ 3 and det(A) = 3a+26. The case separating the spiral from the node is the sign

of the expression under the square root. That is we have a node if

(tr(A))* > 4det(A)

(o +3)° >4 (3a +20)
a? +6a+9>12a+ 85
o® —6a +9 > 843

(v —3)* >80

And we have the spiral if

(o —3)* < 83

In the borderline case 3 = % (v — 3)2, there is only 1 eigenvalue and we typically see an improper

node.



