
Answer the following questions. Each is worth 20 points for a total of 100.

1. The Linear Problem

Consider then linear di↵erential equation for y(t)
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(a) Find the general solution to this equation (using integrating factors is helpful)
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The absolute value sign depends on if whether |t| < 1 or |t| > 1.

Case 1: |t| < 1 in this case, suppose we integrate between t0 and t with both |t0|, |t| < 1,

then the fundamental theorem of calculus gives
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Since t0 is arbitrary with magnitude less than one, the general solution is
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where c depends on the initial condition of the system.

Case 2: |t| > 1 There should really be 2 subcases but let’s consider only if t > 1 and

t0 > 1. We have µ(s) = (s2 � 1)1/2 for any s > 1 and so we write
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where we use now u = s

2� 1 for the substitution. Since the starting point t0 is arbitrary

(except that t0 > 1) we have that
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The case where t0 < �1 and t < �1 is handled similarly.

The main point to take away from these calculations is that the solutions will be di↵erent

for |t| < 1 and |t| > 1.

Can we integrate from t0 to t when |t0| < 1 but |t| > 1? that’s a good question

(b) Find the particular solution corresponding to the initial condition

y(t = 0) = 2

Since t0 = 0 in this case, we set µ(t) = 1� t

2 and use the first solution above:
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setting y(0) = 2 gives an equation for c:
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Thuse the particular solution corresponding to y(0) = 2 is
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(c) On which interval of values of t is the solution in part b) valid?

Solution: Clearly the right hand side makes sense only if t 6= ±1. So the interval of

validity is t 2 (�1, 1). You could have expected this by examining when the function

p(t) = �t

1�t

2 is continuous.

2. The Fishery Problem Suppose that you operate a salmon farm where your fish reproduce

at a natural rate with the logistic model with rate r and optimal population P1. Without

external factors the population P obeys the standard equation :

dP
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= r
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. This being a farm, you harvest the fish at a rate A proportional to its population. So

0 < A < r (you don’t want to eat the fish faster than they can reproduce). Thus the equation

for the population becomes

dP

dt
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1
EQ

= 0 and P

2
EQ

= P1
�
1� A

r

�
are equilibrium points. Show that P

1
EQ

is

unstable while P
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is stable. Include a diagram with a few solution curves.

Solution:

For an autonomous system like this one, the equilibrium points are the zeros of the

function
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Here r > 0 and P1 > 0 are parameters. If P < 0 then both terms are negative and

f(P ) < 0 (this case is not physical!).

If 0 < P <

P1
r

(r � A), then f(P ) > 0. By definition, P = 0 is unstable.

Finally, if P >

P1
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(r � A) then f(P ) < 0 and by definition P = P1
r

(r � A) is stable



(a) A sketch of f(P ) showing P = 0 is

unstable while P 2
EQ is stable

(b) Some solution curves from various

values of P0

Figure 1: Sketch of the situation in problem 2

(b) Suppose you want to maximize the yield of fish you eat while keeping the population

stable near the value P

2
EQ

. What value of the catching rate A optimizes the yield Y =

AP? What percentage of fish population do you eat per year at the optimal rate?

Solution: Keeping P stable around the stable point P = P1
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(r � A), we maximize
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To maximize, we set dY
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= 0 and solve for A:
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Therefore if the rate is to be measured in fish per year, we eat a quarter of the fish

3. The Red Tide attacks the fishery Now an unfortunate event happens and a bloom of

algae called a red tide https://en.wikipedia.org/wiki/Red_tide poisons a number of your

fish. The algae poison your fish at a rate R > 0 independent of the current population. The

equation for the fish population is now

dP

dt

= r
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(a) Show that there is a critical rate of poisoning R

crit

= P1
4r (r � A)2 so that if R < R

crit

there are still equilibrium solutions P 1
EQ

< P

2
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such that P 1
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is unstable while P

2
EQ

is

stable. Include a diagram that shows a few solution curves.

Solution: This is again an autonomous system with

f(P ) = r
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Searching for equilibrium points equates to finding points with f(P ) = 0. This can be

written as a quadratic formula:
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Defining R
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Since f(P ) is a parabola that opens downwards, it is easy to check as in part 2)b) that

P

1
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is unstable while P

2
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is stable.

(b) Show that P 1
EQ

> 0. Suppose that you initially had a small number of fish P (t = 0) =

P0 < P

1
EQ

. Prove that all your fish die in finite time. (A diagram might help)

We write the formula for P 1
EQ

as



(a) A sketch of f(P ) showing P 1
EQ is un-

stable while P 2
EQ is stable

(b) Some solution curves from various

values of P0

Figure 2: Sketch of the situation in problem 3
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Since 4 rR

P1(r�A)2
> 0, we can conclude that P 1
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> 0.

If P (t = 0) < P

1
EQ

then it is clear from the diagrams that dP

dt

< 0 for every t > 0. Thus

lim
t!1

P = �1 and there must be some t

F

2 (0,1) with P (t
F

) = 0. See Figure 2 (b)

(c) Typically the food demands remain the same and people continue to fish at the same

rate they did in normal circumstance. Suppose you continue to catch fish at the rate

you obtained in problem 2)b). Prove that if the poisoning rate gets too strong, namely

R >

P1r

16 , all your fish die in finite time no matter how many you had at the start.

(Again a diagram might help)

Solution: One way to approach this problem is to find the value of R for which there are

no equilibrium solutions at all and f(P ) < 0 for any value of P . Taking the fishing rate

A = r

2 from 2)b), we see that such a value is R
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Figure 3: When R > R

crit

, f(P ) < 0 for all values of P . Thus dP

dt

< 0 and lim
t!1

P (t) = �1 for any

initial value P0. All your fish will die.

In this case f(P ) < 0 for any P and we have that for any value P (t = 0) = P0 > 0,
dP

dt

< 0 for all t > 0

lim
t!1

P (t) = �1

and there must be some finite time t

F

with P (t
F

) = 0. See diagram in Figure 3

Incidentally, the fishermen protesting and blocking roads due to an ongoing event of red

tide in southern Chile is the reason we started the course a lecture late.

4. The Exact Problem

(a) Solve the following equation for y(t). Leave the solution in implicit form:
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Thus this equation is exact and its solutions y(t) sketch out a part of a level curve of

some multivariable function  (x, t). We integrate to find  :
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for some constant c that depends on the initial conditions.

(b) Check if the following equation for y(x) is exact:
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If it is not exact, find an integrating factor that makes it exact and solve for y(x). You

can leave the solution in implicit form. (hint: multiply both sides of the equation by an

appropriate function µ(y).)

In this case M(y, x) = y while N(y, x) = 3xy � e
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Therefore it makes no sense to look for a function  (xy) with  
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it exact by multiplying both sides by some µ(y):

yµ+
�
3xyµ� e

�3y
µ

�
dy

dx

= 0.

For this to be exact, we equate

(yµ)
y

= µ+ yµ

0

�
3xyµ� e

�3y
µ

�
x

= 3yµ (3)

Thus µ(y) solves the simple equation

µ+ yµ

0 = 3yµ

µ

0 =
1

y

(�µ+ 3yµ)

µ

0

µ

=
�1

y

+ 3

Integrating both sides with respect to y gives
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Unlike question 1)a), the absolute value matters not at all, it amounts to multiplying

the whole equation by +1 or �1 which can’t a↵ect solutions. We choose µ(y) = 1
y
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So this guy is exact! We solve
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where f(y) is to be determined. On the one hand
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= 3xe3y + f
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On the other hand, from the equation
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Therefore f
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or f(y) = ln 1
y

. To conclude, y(x) solves
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for some constant c depending on the initial conditions.

5. The Uniqueness Problem (Don’t be scared by the many parts, only e) is challenging.)

Consider the nonlinear di↵erential equation

y

0(x) = x arcsin(y) (4)

Note: you may have seen arcsin(y) denoted as sin�1(y) before. It is simply the inverse

function to the sine restricted to [�⇡

2 ,
⇡

2 ].

(a) Show that given the initial condition y(x = 0) = y0 = 0, then y(x) = 0 is a solution to

(4) on its domain

If y(x) = 0 then y

0(x) = 0 for any x while x arcsin (y(x)) = x arcsin 0 = 0 for any x and

this function solves the di↵erential equation.

(b) Suppose that there is another solution y2(x) to (4) with y2(x = 0) = 0 but y2(x) 6= 0

for some other value of x. Because y2 is continuous, show there is some s > 0 so that

|y2(x)| < 1
2 whenever x 2 [�s, s].

Since y2 is continuous, lim
x!0

y2(x) = 0. Thus the values tend to 0 and you can find an

interval around 0 where |y2(x)|  1
2 .

Precisely: given ✏ = 1
2 , there is a � > 0 so that |y2(x)| < 1

2 whenever x 2 (��, �). Then

s = �

2 works.



(c) Using the mean value theorem (and the fact that |y2| < 1
2 for these x values!), show that

arcsin(y2(x))  2p
3
y2(x) for any x 2 [�s, s]

Applying the MVT to arcsin(y) between y1 and y2, we have
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Returning to the mean value theorem (5), we have
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=
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Therefore arcsin (y2(x))  2p
3
y2(x) as needed.

(d) Applying the fundamental theorem of calculus, show that for any x 2 [�s, s]
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From the ODE, y02(x) = x arcsin (y2(x)), we integrate both sides between 0 and some

x 2 [�s, s]:
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On the left hand side,
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On the right hand side,
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The last step follows from the fact that |x|  s and the penultimate step from part (c)

(e) Let F (x) =
R

x

0 |y2(x̃)|dx̃. By part d), we have that F 0(x)  2sp
3
F (x). Using that F (0) = 0,

show F (x) = 0 for every x 2 [�s, s] and thus y2(x) = 0 as well by continuity (hint: Look

up Gronwall’s lemma).

Solution: Defining F (x) =
R

x

0 |y2(x̃)|dx̃, the second part of the FTC tells us F

0(x) =

|y2(x)|. Thus by part (d), we have a di↵erential inequality:
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and moreover F (0) = 0. Di↵erential inequalities are NOT ODEs. But we know what

would happen if I replaced  by = above.
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Now suppose that x > 0, then F (x) � 0 for any x (we integrate an absolute value).

Defining

v(x) = F (x)e�
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3
x

we also have v(x) � 0. Compute
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So v(0) = 0, v(x) � 0 and v

0(x)  0 for any x. It must be that v(x) = 0 for every x.

Since exponentials are not zero, we must have F (x) = 0 for every x.

Now if x < 0, F (x)  0 so this trick doesn’t go as smoothly. Instead we define z̃ = �x̃

and write

F (x) = �
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If x < 0, then �x > 0 and the calculation in (6) applied to
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Shows that F (x) = 0 even for x < 0.

Finally suppose we did have non-uniqueness and a point x0 2 [�s, s] with y2(x0) = A > 0

say. Since y2 is continuous, it doesn’t just jump from 0 to A. There must be an interval

where y2(x) >
1
2A first (say y2(x) >

1
2A when x 2 (x0 � �, x0 + �). Then clearly, we’d

have
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But we just proved that F (x) = 0 for any x 2 [�s, s] so this is a contradiction!



Therefore, at least for x 2 [�s, s] the solution y(x) = 0 for all x is unique

NOTE: You don’t have to be this precise to get full marks but it’s nice to see all the

details sometimes.

Therefore the solution y(x) = 0 for every x is unique near to 0!

(f) Why will this argument fail if I had said y(x = 0) = y0 = 1 in part a)

Solution. The main reason is that we wouldn’t be able to bound

d

dy

arcsin(y) |
y=y

⇤ =
1p
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if y⇤(x) could take any value close to 1


