MAT244 - Ordinary Differential Equations - Summer 2014 Assignment 3 Due: July 16, 2014

Full Name:

Last First

Student \#:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

Tut 01	W 12:10-13:00	WI 523	Christopher Adkins
Tut 02	W 17:10-16:00	LM 158	Yuri Cher
Tut 03	W 17:10-16:00	SS 1074	Alexander Caviedes

Instructions:

- Due July 16, 2014 before the lecture at 13:10pm in MP203.
- Assignments should be completed individually.
- Write your solutions clearly, showing all steps. The solutions presented should not be your first draft! Grading is based on correctness as well as presentation.
- Assignments may be submitted up to one week after their due date, scanned, or carefully photographed, and submitted in a PDF via email to the course instructor: craig.sinnamon@utoronto.ca
- There will be a 5% reduction in mark per day of lateness beginning after $13: 10 \mathrm{pm}$ on the day the assignment is due.
- Assignments may be submitted to the course instructor for remarking during office hours. Assignments that do not meet the following criterion may not be accepted for remarking.
- the assignment was returned less than EIGHT days ago
- the assignment is written in pen
- the assignment is accompanied with an attached note clearly explaining the grading complaint
- Note that grades may decrease after remarking.

1. Find a particular solution to the nonhomogeneous equation

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=\frac{e^{t}}{1+t^{2}}=g(t)
$$

a) Hom-part

$$
y^{\prime \prime}-2 y^{\prime}+y=0 \Rightarrow y_{1}=e^{+}, y_{2}=t e^{+}
$$

b) Non-hom part, use variation of constants

$$
\therefore y(t)=u y_{1}+v y_{2} \quad \text { where }
$$

$$
u=-\int \frac{g y_{2}}{w}, v=\int \frac{g y_{1}}{w}
$$

Find Wrouskian! $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{+}\left(e^{+}+e_{e}^{+}\right)-t_{e}^{+}\left(e^{+}\right)=e^{2+}$

$$
\begin{aligned}
\Rightarrow u & =\int \frac{t}{1+t^{2}} d t=\frac{1}{2} \ln \left|1+t^{2}\right|+A \\
v & =\int \frac{d t}{1+t^{2}}=\arctan (t)+B
\end{aligned}
$$

This means the general solution is:

$$
y(t)=A e^{+}+B t^{+}+\frac{e^{+}}{2} \ln \left|1+t^{2}\right|+t e^{+} \arctan (t)
$$

Pick am $A, B \in \mathbb{R}$ for a solution
2. a) Verify that $x(t)=\binom{4}{2} e^{2 t}$ satisfies the differential equation

$$
\begin{aligned}
& \text { RUS }=x^{\prime}=2\binom{4}{2} e^{2 t}=2 x \\
& \text { LHS }=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right)\binom{4}{2} e^{2 t}=\left(\begin{array}{cc}
12-4 \\
2 & -2 \\
8-4
\end{array}\right) e^{2 t}=2\binom{4}{2} e^{2 t}=2 x=\text { R.H.S }
\end{aligned}
$$

b) Verify that $\Psi(t)=\left(\begin{array}{cc}e^{-3 t} & e^{2 t} \\ -4 e^{-3 t} & e^{2 t}\end{array}\right)$ satisfies the differential equation

$$
\begin{aligned}
& \text { HS = } \psi^{\prime}=\left(\begin{array}{ll}
-3 e^{-3 t} & 2 e^{2 t} \\
12 e^{-3 t} & 2 e^{2 t}
\end{array}\right) \quad \begin{array}{l}
\Psi^{\prime}(t)=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \Psi(t) \\
L H=\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right)\left(\begin{array}{ll}
e^{-3 t} & e^{2 t} \\
-4 e^{-3 t} & e^{2 t}
\end{array}\right)=\left(\begin{array}{ll}
(1-4) e^{-3 t} & (1+1) e^{2 t} \\
(4+8) e^{-3 t} & (4-2)
\end{array}\right)=\left(\begin{array}{ll}
-3 t
\end{array}\right)=\left(\begin{array}{ll}
3 e^{-3 t} & 2 e^{2 t} \\
12 e^{-3 t} & 2 e^{2 t}
\end{array}\right)
\end{array}
\end{aligned}
$$

3. Find the general solution of the system of equations

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right) \mathbf{x}(t)
$$

$x^{\prime}=A x$, we look for solution $x=e^{A t}$
You can find that the eigen vans \& eigenvectors of A
are:

$$
\begin{array}{ll}
\lambda_{1}=-2, & \vec{\lambda}_{1}=(-4,5,7) \\
\lambda_{2}=2, & \lambda_{2}=(0,-1,1) \\
\lambda_{3}=-1, & \lambda_{3}=(-3,4,2)
\end{array}
$$

$\therefore A=\Lambda^{-1} D \Lambda$ where $D=\left(\begin{array}{lll}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right) \& A=\left(\begin{array}{ccc}-4 & 0 & -3 \\ 5 & -1 & 4 \\ 7 & 1 & 2\end{array}\right)$
Thus $\vec{x}=A\left(\begin{array}{c}-4 \\ 5 \\ 7\end{array}\right) e^{-2 t}+B\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right) e^{2 t}+C\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right) e^{-t}$
4. For what values of α is $\mathbf{x}=\mathbf{0}$ a spiral point.

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
0 & -5 \\
1 & \alpha
\end{array}\right) \mathbf{x}(t)
$$

spiro point $\Leftrightarrow \lambda_{1} \bar{\lambda}_{2} \&$ Re $\lambda_{1} \neq 0$ he $\lambda_{1} \Delta \lambda_{2}$ are eigransles of A. We have $\vec{x}^{\prime}=A \vec{x}$
The eigenvalus are

$$
\lambda_{1}=\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}-20}\right) \& \lambda_{2}=\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}-20}\right)
$$

Since re need $\lambda_{1}=\bar{\lambda}_{2} \& \operatorname{Re}(\lambda) \neq 0$
\Rightarrow we need $\alpha_{\substack{2 \\ \alpha \neq 0}} \Leftrightarrow \alpha 0<0(\sqrt{20}, 0) \cup(0, \sqrt{20})$
5. Find $A, B \in \mathbb{R}$ such that $\mathbf{x}(t)=\binom{1}{A} e^{-3 t}+\binom{1}{B} t e^{-3 t}$ is a solution to the differential equation

$$
x^{\prime}(t)=\left(\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right) \times(t) \quad \text { L.H.S }
$$

Plug \& Chug ii

$$
\begin{aligned}
& x^{\prime}=-3\binom{1}{A} e^{-3 t}+\binom{1}{B} e^{-3 t}-3\binom{1}{B}+e^{-3 t}=\binom{-2}{-3 A+B} e^{-3 t}-\binom{3}{3 B}+e^{-3 t} \\
& \text { RHOS }=\left(\begin{array}{c}
1 \\
4
\end{array}-7\right) \vec{x}=\binom{1-4 A}{4-7 A} e^{-3 t}+\binom{1-4 B}{4-7 B} t e^{t}, \text { By comparison, we see }
\end{aligned}
$$

$4-7 A=-3 A+B_{B}^{\prime}, 4-7 B=-3 B_{4}$, system fingers crossed!

$$
A=3 / 4, B=1 \text { by (1)\&(2) }
$$

lets check (3) \& (4), (4) is good, (3) is good

$$
\therefore \vec{x}=\binom{1}{3 / 4} e^{-3 t}+\binom{1}{1} t e^{-3 t} \text { works }
$$

6. Consider the following differential equation $y^{\prime \prime}+5 y^{\prime}+4 y=0$, for constants $b, c \in \mathbb{R}$.
a) Determine a system of equations $x^{\prime}=A x$ that is equivalent to the differential equation.

$$
y^{\prime \prime p+1+y} y=0 \Rightarrow \vec{x}=\left(\begin{array}{l}
0 \\
-1 \\
1
\end{array}\right) \vec{x} \text { when } \vec{x}-\binom{y}{y}
$$

It follows by expanding the system
b) Suppose that y_{1}, y_{2} form a fundamental set of solutions for the differential equation, and $x^{(1)}, x^{(2)}$ form a fundamental set of solutions for the equivalent system. Show that $W\left[y_{1}, y_{2}\right](t)=k W\left[x^{(1)}, x^{(2)}\right](t)$ for some $k \in \mathbb{R}$.
(Hint. You don't have to solve for y_{1}, y_{2} or $x^{(1)}, x^{(2)}$, but you can if you want to)

$$
\text { let } x^{\prime \prime}=\binom{x_{11}}{x_{21}}, y^{\left({ }^{(1)}\right)}=\binom{x_{21}}{x_{22}}
$$

Since the systems bee equate, y must be some linear combination of $x_{n} \& x_{2}($ since $x=y)$.

$$
\begin{aligned}
& y_{1}=A x_{11}+B x_{21} \\
& 1 \\
& 1=C x_{11}+D x_{2}
\end{aligned}, A, B, C, D \in \mathbb{C}
$$

$$
y_{2}=C x_{11}+D x_{21}
$$

Note that

$$
\begin{aligned}
& y_{1}^{\prime}=A x_{12}+B x_{22} \quad \text { since } x_{2}=y^{\prime} \\
& y_{2}^{\prime}=C x_{12}+D x_{22}
\end{aligned}
$$

\therefore We have $W\left[x^{(1)} x^{(2)}\right]-x_{11} x_{22}-x_{12} x_{21}$

$$
\Rightarrow W\left[y_{1}, y_{2}\right]=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=(A D-C B) W\left[x^{(1)}, x^{(2)}\right]
$$

ie $\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{x_{11}}{x_{21}} \& K=\operatorname{det}$ of transformation of $x \rightarrow y$

