MAT244 - Ordinary Differential Equations - Summer 2014 Assignment 2 Due: June 11, 2014

Full Name:

Last First

Student \#:

Indicate which Tutorial Section you attend by filling in the appropriate circle:

Tut 01	W 12:10-13:00	WI 523	Christopher Adkins
Tut 02	W 17:10-16:00	LM 158	Yuri Cher
Tut 03	W 17:10-16:00	SS 1074	Alexander Caviedes

Instructions:

- Due June 11, 2014 before the lecture at 13:10pm in MP203.
- Assignments should be completed individually.
- Write your solutions clearly, showing all steps. The solutions presented should not be your first draft! Grading is based on correctness as well as presentation.
- Assignments may be submitted up to one week after their due date, scanned, or carefully photographed, and submitted in a PDF via email to the course instructor: craig.sinnamon@utoronto.ca
- There will be a 5% reduction in mark per day of lateness beginning after $13: 10 \mathrm{pm}$ on the day the assignment is due.
- Assignments may be submitted to the course instructor for remarking during office hours. Assignments that do not meet the following criterion may not be accepted for remarking.
- the assignment was returned less than EIGHT days ago
- the assignment is written in pen
- the assignment is accompanied with an attached note clearly explaining the grading complaint
- Note that grades may decrease after remarking.

1. a) State the Existence and Uniqueness Theorem for first order nonlinear ordinary differential equations.
if $\begin{aligned} & j=f(t, y) \text {, then sch a } y \text { exists for } t \in\left(t_{0} h_{0}, t_{0}+h\right), h>0 \text { if: } \\ & w\left(t_{0}\right)=y_{0}\end{aligned}$

$$
f \& \frac{\partial f}{\partial y} \text { are continuow in }(t, y) \in[\alpha, \beta] \times[\gamma, \delta] \quad\left(\alpha<t_{0}-h<t_{0}<t_{0}+h<\beta\right)
$$

b) What can you conclude about the following initial value problem from the above theorem?

$$
\sqrt{\tan (t+y(t))}=y^{\prime}(t), \quad y(\pi / 7)=0
$$

By the above $f(t, y)=\sqrt{\tan (t+y)} \quad y\left(\frac{\pi}{7}\right)=0$, we check cont!

$$
y\left(\frac{\pi}{7}\right)=0 \Rightarrow f\left(\frac{\pi}{7}, 0\right)=\sqrt{\tan \left(\frac{\pi}{7}\right)}
$$

tamis only defined continuously in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, so $-\frac{\pi}{2}<t+y<\frac{\pi}{2}$
$\frac{\partial f}{\partial 川}=\frac{\sec ^{2}(t+y)}{2 \sqrt{\tan (t+y)}}$, thesis only continumulif $\sin (t+y) \neq 0$ or $\cos (t+y) \neq 0$

$$
\Rightarrow 0<t+y<\frac{\pi}{2}
$$

\therefore By the above theorem we know thor is a caution for $t \in\left(\frac{\pi}{7}-h, \frac{\pi}{7}+h\right), h \approx$ small
2. Given $\phi_{0}(t)=0$, compute the first three Picard iterates $\phi_{1}(t), \phi_{2}(t)$, and $\phi_{3}(t)$ for the initial value problem

Recall:

$$
\phi_{0}=v_{0}, \psi_{k}=v_{0}+\int_{t_{0}}^{t} f\left(s, \phi_{k \cdot 1}(s)\right) d s
$$

Thus:

$$
\begin{aligned}
& \phi_{0}=0, \phi_{1}=\int_{0}^{+}(0-s) d s=-\frac{t^{2}}{2} \\
& \phi_{2}=\int_{0}^{+} s^{2}\left(-\frac{s^{2}}{2}\right)-s d s=-\int_{0}^{t} \frac{s^{4}}{2}+s d s=-\frac{t^{5}}{10}-\frac{t^{2}}{2} \\
& \phi_{3}=\int_{0}^{+} s^{2}\left(-\frac{s^{5}}{10}-\frac{s^{2}}{2}\right)-s d s=-\int_{8}^{+} \frac{s^{7}}{10}+\frac{s^{4}}{2}+s d s=-\frac{t^{8}}{80}-\frac{t^{5}}{10}-\frac{t^{2}}{2}
\end{aligned}
$$

3. Consider the equation $\frac{d y}{d t}=f(y)=\cos (y)$.
a) Sketch the graph of $f(y)$ versus y.

b) Determine the critical (equilibrium) points, and classify each one as asymptotically stable, unstable, or semistable.

$$
\begin{aligned}
& y^{\prime}=\cos (y)=0 \Leftrightarrow y=\left(n+\frac{1}{2}\right)+, n \in \mathbb{Z} \\
& \text { if } n=\operatorname{odd} \#, \text { eg }-3,-1,1,3, \ldots \text { then } y^{\prime}(n)<0, y^{\prime}\left(n_{+}\right)>0 \text { tn } \\
& \text { if } n=\text { ever\#, es. }-2,0,2,4, \ldots \text { then } y^{\prime}(n .)>0, y^{\prime}\left(n_{+}\right)<0, n_{n}^{y} \Rightarrow \text { stable }
\end{aligned}
$$

c) On the set of axes below, sketch the graphs of the solutions to $\frac{d y}{d t}=f(y)$ with initial conditions:

$$
y(0)=1 \quad, \quad y(0)=4 \quad, \text { and } \quad y(0)=-1
$$

Note: Be sure to clearly label which initial condition each curve corresponds to.

d) Is there a solution $y=\phi(t)$ to $\frac{d y}{d t}=\sin (y)$ such that $\phi(0)<-1$ and $\phi(1)>2$? Justify your answer.

No, since $\phi(t)=0 \Rightarrow$ crit point.
ie solutions cont pass throng crit points!
4. Given $F(x, y(x))=y \cos (x y)$, compute $\frac{d}{d x} F(x, y(x))$.

$$
F_{x}=y^{\prime} \cos (x)-y^{2} \sin (x y)-y x y^{\prime} \sin (x y)
$$

5. If y is a function of x, solve the equation

$$
-y \sin (x y)+1=x y^{\prime} \sin (x y)
$$

Notice that $x \sin (x y) d y+(y \sin (x y)-1) d x)=0$ is exact.
since $F(x, y)=-\cos (x y)-x+C$ satisfies

$$
d F(x, y)=x \sin (x y) d y+(y \sin (x y)-1) d x=0
$$

$\Rightarrow y(x)=\frac{\arccos (x+\tau)}{x}$ solves the O.D.E
6. Use Euler's method to find an approximate value of the solution to the following initial value problem at $t=0.3$, which $h=0.1$,

$$
\begin{aligned}
& \quad y^{\prime}(t)=2 y(t)+t^{2}, y(0)=1 \\
& \quad \text { Recall: } y\left(x_{n+1}\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)=y\left(x_{n}\right)+\frac{2 y\left(x_{n}\right)+x_{n}^{2}}{10} \\
& \therefore y(0)=1 \\
& y(0.1)=1+\frac{2}{10}=\frac{6}{5} \\
& y(0.2)=\frac{6}{5}+\frac{12}{5}+\frac{1}{10}=\frac{6}{5}+1 / 4=\frac{29}{20} \\
& y(0.3)=\frac{29}{20}+\frac{\frac{29}{10}+\frac{1}{25}}{10}=\frac{29}{20}+\frac{29}{100}+\frac{1}{250}=\frac{16^{4}}{100}+\frac{1}{250}
\end{aligned}
$$

