MAT237 - Tutorial 15 - 21 July 2015

1 Coverage

Iterated integrals.

2 Problems

I suggest the following problems. Like last time, I won't have too much to comment about any of these, since they're all computational. Not all of these are from the big list either, since I found that section somewhat lacking in different sorts of examples.

1. Let R be the region to the left of the y-axis bounded between the curves $x=1-y^{2}$ and $x=8\left(1-y^{2}\right)$. Compute $\iint_{R} \frac{y^{2}}{x} d A$.
2. (BL 12.4.6) Let $a, b, c>0$, and let R be the region bounded inside the ellipse $a^{2} x^{2}+b^{2} y^{2}=$ c^{2}. Compute $\iint_{R} x^{2} d A$.
3. (BL 12.4.8 (b)) (I think this problem is more interesting without part (a) giving it away.) Compute $\int_{\mathbb{R}} e^{-x^{2}} d x$.
(Hint: Consider the function $e^{-x^{2}-y^{2}}$ on \mathbb{R}^{2}.)
4. Let R be the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=2+y$. Evaluate $\iiint_{R} 4 y d V$.

3 Solutions and Comments

1. Solution: The region in question is the space between two parabolas, which intersect at the points $(0, \pm 1)$. The most natural choice of coordinate transformation to me seems to be the one given by $(x, y)=\left(v\left(1-u^{2}\right), u\right)$, since for a given fixed v you get exactly all the intermediary parabolas. u is bounded between -1 and 1 , and v between 1 and 8 .

The Jacobian of this transformation is:

$$
\left|\operatorname{det}\left(\begin{array}{cc}
-2 u v & 1-u^{2} \\
1 & 0
\end{array}\right)\right|=\left|1-u^{2}\right|=1-u^{2}
$$

where the last equality is because $-1 \leq u \leq 1$ in R. We can now compute:

$$
\begin{aligned}
\iint_{R} \frac{y^{2}}{x} d A & =\int_{1}^{8} \int_{-1}^{1} \frac{u^{2}}{v\left(1-u^{2}\right)}\left(1-u^{2}\right) d u d v \\
& =\int_{1}^{8} \int_{-1}^{1} \frac{u^{2}}{v} d u d v \\
& =\frac{2}{3} \int_{1}^{8} \frac{1}{v} d v \\
& =\frac{2}{3}[\log |v|]_{1}^{8}=2 \log (2)
\end{aligned}
$$

2. Solution: First, let's put the equation of our ellipse into standard form:

$$
\frac{a^{2}}{c^{2}} x^{2}+\frac{b^{2}}{c^{2}} y^{2}=1
$$

This now looks like the equation of a circle of radius 1 in coordinates $(u, v)=\left(\frac{c}{a} x, \frac{c}{b} y\right)$, which we can then model with polar coordinates as usual. Rather than do two coordinate transformations, we combine them into one:

$$
(x, y)=\left(\frac{c}{a} r \cos (\theta), \frac{c}{b} r \sin (\theta)\right),
$$

where as we would expect $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$. The Jacobian of this transformation is:

$$
\left|\operatorname{det}\left(\begin{array}{cc}
\frac{c}{a} \cos (\theta) & -\frac{c}{a} r \sin (\theta) \\
\frac{c}{b} r \sin (\theta) & \frac{c}{b} r \cos (\theta)
\end{array}\right)\right|=\left|\frac{c^{2}}{a b} r^{2} \cos ^{2}(\theta)+\frac{c^{2}}{a b} r^{2} \sin ^{2}(\theta)\right|=\frac{c^{2}}{a b} r^{2}
$$

We are now ready to compute:

$$
\begin{aligned}
\iint_{R} x^{2} d A & =\int_{0}^{2 \pi} \int_{0}^{1}\left(\frac{c}{a} r \cos (\theta)\right)^{2}\left(\frac{c^{2}}{a b} r^{2}\right) d r d \theta \\
& =\frac{c^{4}}{a^{2} b} \int_{0}^{2 \pi} \int_{0}^{1} r^{3} \cos ^{2}(\theta) d r d \theta \\
& =\frac{c^{4}}{4 a^{2} b} \int_{0}^{2 \pi} \cos ^{2}(\theta) d \theta \\
& =\frac{\pi c^{4}}{4 a^{3} b}
\end{aligned}
$$

3. Solution: As we know, the function $e^{-x^{2}}$ has no elementary antiderivative, so there's no way to compute this integral directly in \mathbb{R}, so it's not the first year calculus question it appears to be... Instead, we consider the hint and think about integrating $e^{-x^{2}-y^{2}}$ in \mathbb{R}^{2}. First, why is this helpful? Well:

$$
\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{-x^{2}} e^{-y^{2}} d y d x=\left(\int_{\mathbb{R}} e^{-x^{2}} d x\right)\left(\int_{\mathbb{R}} e^{-y^{2}} d y\right)=\left(\int_{\mathbb{R}} e^{-x^{2}} d x\right)^{2}
$$

So we see that the number we're looking for is the square root of $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A$. So let's compute that!

The most natural choice of coordinates here are polar coordinates, since in these coordinates the exponent of our integrand is very simple. So using the usual $(x, y)=(r \cos (\theta), r \sin (\theta))$, we get:

$$
\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

which is now very much tractable. Indeed:

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta & =\frac{1}{2} \int_{0}^{2 \pi}\left[-e^{-r^{2}}\right]_{0}^{\infty} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} d \theta=\pi
\end{aligned}
$$

From this we conclude the wonderful formula:

$$
\int_{\mathbb{R}} e^{-x^{2}} d x=\sqrt{\pi}
$$

4. Solution: The region R can be described as:

$$
R=\left\{(x, y, z): 0 \leq x^{2}+y^{2} \leq 1,0 \leq z \leq 2+y\right\} .
$$

Cylindrical coordinates are the most natural ones for the job: $(x, y, z)=(r \cos (\theta), r \sin (\theta), z)$. The bounds on x and y in the description of R above are very natural to express in these coordinates, so it remains only to express the bounds on z. This is simple enough:

$$
0 \leq z \leq 2+y \Rightarrow 0 \leq z \leq 2+r \sin (\theta)
$$

Now we can simply compute:

$$
\begin{aligned}
\iiint_{R} 4 y d V & =4 \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{2+r \sin (\theta)}(r \sin (\theta)) r d z d r d \theta \\
& =4 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sin (\theta)(2+r \sin (\theta)) d r d \theta \\
& =8 \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sin (\theta) d r d \theta+4 \int_{0}^{2 \pi} \int_{0}^{1} r^{3} \sin ^{2}(\theta) d r d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi} \sin (\theta) d \theta+\int_{0}^{2 \pi} \sin ^{2}(\theta) d \theta \\
& =0+\pi=\pi
\end{aligned}
$$

