
MAT237 - Tutorial 15 - 21 July 2015

1 Coverage

Iterated integrals.

2 Problems

I suggest the following problems. Like last time, I won’t have too much to comment about any

of these, since they’re all computational. Not all of these are from the big list either, since I

found that section somewhat lacking in different sorts of examples.

1. Let R be the region to the left of the y-axis bounded between the curves x = 1 − y2 and

x = 8(1− y2). Compute
∫ ∫

R
y2

x dA.

2. (BL 12.4.6) Let a, b, c > 0, and let R be the region bounded inside the ellipse a2x2+ b2y2 =

c2. Compute
∫ ∫

R x2 dA.

3. (BL 12.4.8 (b)) (I think this problem is more interesting without part (a) giving it away.)

Compute
∫
R e−x2

dx.

(Hint: Consider the function e−x2−y2 on R2.)

4. Let R be the region enclosed by the cylinder x2+y2 = 1 and the planes z = 0 and z = 2+y.

Evaluate
∫ ∫ ∫

R 4y dV .

3 Solutions and Comments

1. Solution : The region in question is the space between two parabolas, which intersect at

the points (0,±1). The most natural choice of coordinate transformation to me seems to

be the one given by (x, y) = (v(1− u2), u), since for a given fixed v you get exactly all the

intermediary parabolas. u is bounded between −1 and 1, and v between 1 and 8.

The Jacobian of this transformation is:∣∣∣∣∣det
(
−2uv 1− u2

1 0

)∣∣∣∣∣ = |1− u2| = 1− u2



where the last equality is because −1 ≤ u ≤ 1 in R. We can now compute:∫ ∫
R

y2

x
dA =

∫ 8

1

∫ 1

−1

u2

v(1− u2)
(1− u2) dudv

=

∫ 8

1

∫ 1

−1

u2

v
dudv

=
2

3

∫ 8

1

1

v
dv

=
2

3
[log |v|]81 = 2 log(2).

2. Solution : First, let’s put the equation of our ellipse into standard form:

a2

c2
x2 +

b2

c2
y2 = 1.

This now looks like the equation of a circle of radius 1 in coordinates (u, v) = ( cax,
c
by),

which we can then model with polar coordinates as usual. Rather than do two coordinate

transformations, we combine them into one:

(x, y) =
( c
a
rcos(θ),

c

b
rsin(θ)

)
,

where as we would expect 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1. The Jacobian of this transformation

is: ∣∣∣∣∣det
(

c
acos(θ) − c

arsin(θ)
c
brsin(θ)

c
brcos(θ)

)∣∣∣∣∣ =
∣∣∣∣ c2abr2cos2(θ) + c2

ab
r2sin2(θ)

∣∣∣∣ = c2

ab
r2.

We are now ready to compute:∫ ∫
R
x2 dA =

∫ 2π

0

∫ 1

0

( c
a
rcos(θ)

)2( c2

ab
r2
)

drdθ

=
c4

a2b

∫ 2π

0

∫ 1

0
r3cos2(θ) drdθ

=
c4

4a2b

∫ 2π

0
cos2(θ) dθ

=
πc4

4a3b
.

3. Solution : As we know, the function e−x2
has no elementary antiderivative, so there’s no

way to compute this integral directly in R, so it’s not the first year calculus question it

appears to be... Instead, we consider the hint and think about integrating e−x2−y2 in R2.

First, why is this helpful? Well:∫ ∫
R2

e−x2−y2 dA =

∫
R

∫
R
e−x2

e−y2 dydx =

(∫
R
e−x2

dx

)(∫
R
e−y2 dy

)
=

(∫
R
e−x2

dx

)2

.

So we see that the number we’re looking for is the square root of
∫ ∫

R2 e
−x2−y2 dA. So let’s

compute that!



The most natural choice of coordinates here are polar coordinates, since in these coordinates

the exponent of our integrand is very simple. So using the usual (x, y) = (rcos(θ), rsin(θ)),

we get: ∫ ∫
R2

e−x2−y2 dA =

∫ 2π

0

∫ ∞

0
e−r2r drdθ

which is now very much tractable. Indeed:

∫ 2π

0

∫ ∞

0
e−r2r drdθ =

1

2

∫ 2π

0

[
−e−r2

]∞
0

dθ

=
1

2

∫ 2π

0
dθ = π.

From this we conclude the wonderful formula:∫
R
e−x2

dx =
√
π,

4. Solution : The region R can be described as:

R =
{
(x, y, z) : 0 ≤ x2 + y2 ≤ 1, 0 ≤ z ≤ 2 + y

}
.

Cylindrical coordinates are the most natural ones for the job: (x, y, z) = (rcos(θ), rsin(θ), z).

The bounds on x and y in the description of R above are very natural to express in these

coordinates, so it remains only to express the bounds on z. This is simple enough:

0 ≤ z ≤ 2 + y ⇒ 0 ≤ z ≤ 2 + rsin(θ).

Now we can simply compute:

∫ ∫ ∫
R
4y dV = 4

∫ 2π

0

∫ 1

0

∫ 2+rsin(θ)

0
(rsin(θ)) r dzdrdθ

= 4

∫ 2π

0

∫ 1

0
r2sin(θ)(2 + rsin(θ)) drdθ

= 8

∫ 2π

0

∫ 1

0
r2sin(θ) drdθ + 4

∫ 2π

0

∫ 1

0
r3sin2(θ) drdθ

=
8

3

∫ 2π

0
sin(θ) dθ +

∫ 2π

0
sin2(θ) dθ

= 0 + π = π.


