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1. (10 points) Determine

ZZ

S

xydA where S is the region

S =
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(x, y) : y � x

2 � 2 and y < x

 
.

Solution: We first deduce where the two curves meet. Setting x

2 � 1 = x we get x

2 � x � 2 =
(x � 2)(x + 1) = 0, giving x = 2 and x = �1. This corresponds to the two points (�1,�1) and
(2, 2). We plot the region below:
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We can write this as an x-simple set
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.

Setting up our iterated integral and solving, we get
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2. (10 points) Let R be the region bounded by the curves y = x

2, 4y = x

2, xy = 1 and xy = 2. Compute
the integral ZZ

R

x

2
y

2
dxdy.

Solution: Consider the map (u, v) = g(x, y) = (x2
/y, xy) which takes R ! [1, 4] ⇥ [1, 2]. The

Jacobian (scaling factor) is then

| detDg| =

�����det
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Notice that we do not need the absolute values since y > 0 on R. Hence this tells us that du dv =
3x

2

y

dx dy, but we were asked to find dx dy in terms of du dv. Recognizing that under the change of

variable, 3x

2

y

= 3u we can just divide to get

dx dy =
1

3u
du dv.

Our integrand x

2
y

2 is just v2, so under change of variable we get
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3. (10 points) Let f : R2 ! R and G : R2 ! R2 be C1 functions. Show that div(fG) = f div(G)+rf ·G.

Solution: LetG(x, y) = (G1(x, y), G2(x, y)), so that (fG)(x, y) = (f(x, y)G1(x, y), f(x, y)G2(x, y)).
Applying the divergence operator we get:

div(fG) =
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f(x, y)G1(x, y)

�
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@

y

f(x, y)G2(x, y)
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G2)| {z }
div(G)

+(@
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f, @

y

f) · (G1, G2)

= f div(G) +rf ·G

which is what we wanted to show.


