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1. (a) (5 points) Find conditions on x and y which guarantee that one can locally solve the following for
u(x, y) and v(x, y):

xu

2 + vy

2 = 9

xv

2 � yu

2 = 7

Solution: Define the function

F (x, y, u, v) =

✓
xu

2 + vy

2 � 9
xv

2 � yu

2 � 7

◆
.

The determinant of d(u,v)F is given by

det(d(u,v)F ) = det

✓
2xu y

2

�2yu 2xv

◆
= 4x2

uv + 2y3u = 2u(2x2
v + y

3).

Now we will not be able to solve for (u, v) as functions of x and y if 2u(2x2
v + y

3) = 0.

(b) (5 points) Define the set

M2(R) =
⇢✓

a b

c d

◆
: a, b, c, d 2 R

�

to be the set of 2 ⇥ 2 matrices. Define a map g : M2(R) ! M2(R) by g(A) = A

2. Determine

whether g is invertible in a neighbourhood of I =

✓
1 0
0 1

◆
.

Solution: In components, the map g(A) looks like

g

✓✓
a b

c d

◆◆
=

✓
a

2 + bc ab+ bd

ac+ cd bc+ d

2

◆
.

However, this is the only part of the question that really requires that we use matrices. We can
instead choose to identify M2(R) with R4 as

✓
a b

c d

◆
7!

0

BB@

a

b

c

d

1

CCA .

With this transformation in mind, the map g(A) now looks like

g(a, b, c, d) = (a2 + bc, ab+ bd, ac+ cd, bc+ d

2).

We want to determine whether this map is invertible around the identity I, which under the
transformation has coordinates (1, 0, 0, 1). Computing the derivative of g and evaluating at I

we have

Dg(I) =

0

BB@

2a c b 0
b a+ d 0 b

c 0 a+ d c

0 c b 2d

1

CCA

��������
(1,0,0,1)

=

0

BB@

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

1

CCA .
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This matrix is clearly invertible, so the Inverse Function Theorem applies and we conclude that
the map g is invertible in a neighbourhood of the identity.
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2. Determine whether the following spaces are smooth:

(a) (4 points) The surface S defined by the image of f : R2 ! R3, f(s, t) = (3s, s2 � 2t, s3 + t

2).

Solution: Computing df we have

df =

0

@
3 0
2s �2
3s2 2t

1

A
.

This matrix clearly has full rank, or alternatively one could compute the cross product of its
columns to get

dsf ⇥ dtf = (6s2 + 4,�6t,�6)

which will never be zero. Furthermore, the first component of f is f1(s, t) = 3s which is
injective, making f globally injective. We conclude that the image of f is smooth.

(b) (6 points) The surface S defined by the image g : R ! R2, g(t) = (e2t cos2(t), et cos(t)).

Solution: Trying to do this from the parametric viewpoint is very di�cult. Instead, we rec-
ognize that if x = e

2t cos2(t) and y = e

t cos(t) then y

2 = x. This is of course just a ‘sideways’
parabola, so we certainly expect it to be smooth.

We can define the image of g equivalently by the zero locus of F (x, y) = y

2 � x. The gradient
of this function is (�1, 2y), which is never zero, therefore S is smooth.
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3. (a) (3 points) Define the Jordan measure in R, what it means to be Jordan measurable, and what it
means to have zero Jordan measure.

Solution: If I = [a, b] let the length of I be `(I) = b� a. If S ✓ R we define the Jordan outer

measure of S as

m(S) = inf

(
nX

k=1

`(Ik) :
Ik is an interval
S ✓

Sn
k=1 Ik

)
.

If m(S) exists and m(@S) = 0, we say that S is Jordan measurable. If m(S) = 0 we say that S
has Jordan measure zero.

(b) (7 points) Let (an)
1
n=1 be a convergent sequence in R. Show that as a set, (an) has Jordan measure

zero.

Solution: Let S = {an : n � 1}, for which we will show that m(S) < ✏ for any ✏ > 0.

Let ✏ > 0 be given and let a be the limit of (an). Since (an) is convergent, there exists some N

such that for every k > N , |ak � an| < ✏
4 . In particular, I0 =

�
a� ✏

4 , a+ ✏
4

�
has length ✏/2 and

contains all elements of the sequence (an)
1
n=N+1, leaving only N elements outside of this set.

For k = 1, . . . , N define the interval Ik =
�
ak � ✏

4N , ak + ✏
4N

�
which has length ✏

2N and contains
the point ak. The collection of intervals {I0, I1, . . . , In} now covers S and has length

NX

k=0

`(Ik) =
✏

2
+

NX

k=0

✏

2N
=

✏

2
+

✏

2
= ✏.

Hence m(S) < ✏ as required.


