Tutorial \#9

MAT 188 - Linear Algebra I - Fall 2015

Solutions

Problems (Please note these are from G. Strang's and W.K. Nicholson's Linear Algebra Texts)

Question 1 Explain why the line that passes through the points $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ can be expressed as

$$
\operatorname{det}\left(\begin{array}{ccc}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right)
$$

and use this approach to find the equation of the line that passes through the points $(2,8)$ and $(4,7)$.

Solution We know the determinate of a matrix is zero if two rows are linearly dependent. The top row is dependent if it is the line passes through both points. If we expanded the determinant we see

$$
\operatorname{det} A=x\left(y_{1}-y_{2}\right)-y\left(x_{1}-x_{2}\right)+\left(x_{1} y_{2}-x_{2} y_{1}\right)=0 \Longrightarrow y=x \frac{y_{1}-y_{2}}{x_{1}-x_{2}}+\frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}
$$

Using the numbers given we obtain

$$
y=-\frac{x}{2}+9
$$

Question 2 In computer graphics, a simple way of representing an arbitrary curve is to approximate it as a set of line segments. Let us assume, for example, that the letter "F" is represented as depicted in the figure, using 5 vertices, which are the columns of matrix F :

$$
F=\left(\begin{array}{lllll}
0 & 0 & 2 & 0 & 3 \\
0 & 3 & 3 & 6 & 6
\end{array}\right)
$$

Consider the transformation $T(x)=A x$, where A is a 2×2 matrix applied to the letter " F ". Use $\operatorname{det}(A)$ to indicate if the letter is shrunk, expanded, or reflected for

$$
\text { a) } \left.\left.A=\left(\begin{array}{cc}
0.8 & 0 \\
0 & 1
\end{array}\right), \quad \text { b) } A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad c\right) A=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad d\right) A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Solution

$$
\begin{aligned}
& \text { a) } \operatorname{det} A=0.8 \Longrightarrow \text { Shrunk } \\
& \text { b) } \operatorname{det} A=-1 \Longrightarrow \text { Reflected } \\
& \text { c) } \operatorname{det} A=4 \Longrightarrow \text { Expanded } \\
& \text { d) } \operatorname{det} A=1 \Longrightarrow \text { Rotated }
\end{aligned}
$$

Question 3 Determine the volume of the parallelepiped with sides described by the vectors $u=(3,5,2)^{T}$, $v=(6,1,3)^{T}$, and $w=(2,0,4)^{T}$.

Solution If we transformed the unit cube by $T(x)=A x$, where

$$
A=\left(\begin{array}{lll}
3 & 6 & 2 \\
5 & 1 & 0 \\
2 & 3 & 4
\end{array}\right)
$$

We'll have T (cube)=parallelepiped. Thus since determinate tell us how volumes change, we have

$$
\text { Volume of parallelepiped }=|\operatorname{det} A| \times \text { Volume of Cube }
$$

Since the unit cube has unit volume, we compute the determinate.

$$
\operatorname{det} A=3(1 \times 4)-6(5 \times 4)+2(5 \times 3-2 \times 1)=12-120+26=-82
$$

Therefore

$$
\text { Volume of parallelepiped }=82 \text { units }^{3}
$$

