## Tutorial \#6

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text and D. Poole's Text)
3.2-\#29 Holt Suppose that $A$ is a $3 \times 3$ matrix. Find a $3 \times 3$ matrix $E$ such that the product $E A$ is equal to $A$ with:
(a) The first and second rows interchanged.
(b) The first and third rows interchanged.
(c) The second row multiplied by -2 .

Solution We know the identity matrix produces $I A=A$, thus we simply change the rows and values of the identity. Specifically

$$
\text { a) } \left.\quad E=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text { b) } \quad E=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad c\right) \quad E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3.2-\# 26 Poole Find conditions on $a, b, c, d$ such that

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

commutes with both

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \& \quad C=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Solution Remember that two matrices commute if $A B=B A$. Let's check:

$$
\begin{aligned}
& A B=B A \Longrightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \Longrightarrow \begin{cases}a=a, & b=0 \\
c=0, & 0=0\end{cases} \\
& A C=C A \Longrightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow\left(\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right) \Longrightarrow \begin{cases}0=0, & b=0 \\
c=0, & d=d\end{cases}
\end{aligned}
$$

Thus we see

$$
b=c=0 \quad \& \quad a, b \in \mathbb{R}
$$

3.3-\#19 Holt Solve the following linear system by finding the inverse of the coefficient matrix.

$$
\begin{aligned}
& 3 x_{1}-x_{2}+9 x_{3}=4 \\
& x_{1}-x_{2}+4 x_{3}=-1 \\
& 2 x_{1}-2 x_{2}+10 x_{3}=3
\end{aligned}
$$

Solution It's easy to see the coefficient matrix is given by

$$
A=\left(\begin{array}{ccc}
3 & -1 & 9 \\
1 & -1 & 4 \\
2 & -2 & 10
\end{array}\right) \Longrightarrow A x=\left(\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right)
$$

We know the inverse may be found by putting the following matrix into reduced row echelon form:

$$
\begin{aligned}
\left(\begin{array}{ccc|ccc}
3 & -1 & 9 & 1 & 0 & 0 \\
1 & -1 & 4 & 0 & 1 & 0 \\
2 & -2 & 10 & 0 & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{ccc|ccc}
1 & -1 & 4 & 0 & 1 & 0 \\
3 & -1 & 9 & 1 & 0 & 0 \\
2 & -2 & 10 & 0 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -1 & 4 & 0 & 1 & 0 \\
0 & 2 & -3 & 1 & -3 & 0 \\
0 & 0 & 2 & 0 & -2 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & -1 & 4 & 0 & 1 & 0 \\
0 & 1 & -3 / 2 & 1 / 2 & -3 / 2 & 0 \\
0 & 0 & 1 & 0 & -1 & 1 / 2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 / 2 & 2 & -5 / 4 \\
0 & 1 & 0 & 1 / 2 & -3 & 3 / 4 \\
0 & 0 & 1 & 0 & -1 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Thus the inverse matrix is given by

$$
A^{-1}=\left(\begin{array}{ccc}
1 / 2 & 2 & -5 / 4 \\
1 / 2 & -3 & 3 / 4 \\
0 & -1 & 1 / 2
\end{array}\right)
$$

Therefore we conclude

$$
x=A^{-1} b=\left(\begin{array}{ccc}
1 / 2 & 2 & -5 / 4 \\
1 / 2 & -3 & 3 / 4 \\
0 & -1 & 1 / 2
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
-15 \\
29 \\
10
\end{array}\right)
$$

