Tutorial \#5

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text)
3.1-\#31 Calculation Suppose that $T(x)=A x$ for the given A. Sketch a graph of the image under T of the unit square in the first quadrant of \mathbb{R}^{2}.

$$
A=\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)
$$

Solution We know the unit square is given by 4 lines, specifically: $y=0$ with $0 \leqslant x \leqslant 1$, $x=1$ with $0 \leqslant y \leqslant 1, y=1$ with $0 \leqslant x \leqslant 1$ and $x=0$ with $0 \leqslant y \leqslant 1$. We see the first line transforms like

$$
\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)\binom{x}{0}=\binom{x}{3 x} \Longrightarrow x^{\prime}=x \text { and } y^{\prime}=3 x \Longrightarrow y^{\prime}=3 x^{\prime}
$$

The next line is given by

$$
\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)\binom{1}{y}=\binom{1-2 y}{3+y} \Longrightarrow x^{\prime}=1-2 y \text { and } y^{\prime}=3+y \Longrightarrow y^{\prime}=\frac{7-x^{\prime}}{2}
$$

again...

$$
\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)\binom{x}{1}=\binom{x-2}{3 x+1} \Longrightarrow x^{\prime}=x-2 \text { and } y^{\prime}=3 x+1 \Longrightarrow y^{\prime}=3 x^{\prime}+7
$$

last time

$$
\left(\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right)\binom{0}{y}=\binom{-2 y}{y} \Longrightarrow x^{\prime}=-2 y \text { and } y^{\prime}=y \Longrightarrow y^{\prime}=-\frac{x^{\prime}}{2}
$$

If we draw these lines we see that the pre-image and image look something like

3.1 \#61 Proof Suppose that T is a linear transformation and that $T\left(u_{1}\right)$ and $T\left(u_{2}\right)$ are linearly independent. Prove that u_{1} and u_{2} must be linearly independent.

Solution Suppose for that sake of contradiction that u_{1} and u_{2} are linearly dependent i.e $u_{1}=a u_{2}$ with $a \in \mathbb{R}$. Since T is linear we see that

$$
u_{1}=a u_{2} \Longrightarrow T\left(u_{1}\right)=a T\left(u_{2}\right)
$$

but this means that $T\left(u_{1}\right)$ and $T\left(u_{2}\right)$ are linearly dependent, contradiction. Therefore u_{1} and u_{2} are linearly independent.
3.2 \# 13 Let T_{1} and T_{2} be linear transformations given by

$$
\begin{aligned}
& T_{1}\left[\binom{x_{1}}{x_{2}}\right]=\binom{3 x_{1}+5 x_{2}}{-2 x_{1}+7 x_{2}} \\
& T_{2}\left[\binom{x_{1}}{x_{2}}\right]=\binom{-2 x_{1}+9 x_{2}}{-5 x_{2}}
\end{aligned}
$$

Find the matrix A such that
a) $T_{1}\left(T_{2}(x)\right)=A x, \quad$ b) $\quad T_{2}\left(T_{1}(x)\right)=A x, \quad$ c) $\left.\quad T_{1}\left(T_{1}(x)\right)=A x, \quad d\right) \quad T_{2}\left(T_{2}(x)\right)=A x$

Solution We see that

$$
\begin{array}{lll}
T_{1}(x)=A_{1} x & \text { where } & A_{1}=\left(\begin{array}{cc}
3 & 5 \\
-2 & 7
\end{array}\right) \\
T_{2}(x)=A_{2} x & \text { where } & A_{2}=\left(\begin{array}{cc}
-2 & 9 \\
0 & -5
\end{array}\right)
\end{array}
$$

Thus

$$
\begin{gathered}
T_{1}\left(T_{2}(x)\right)=A x \Longrightarrow A=A_{1} A_{2}=\left(\begin{array}{cc}
-6 & 2 \\
4 & -53
\end{array}\right) \\
T_{2}\left(T_{1}(x)\right)=A x \Longrightarrow A=A_{2} A_{1}=\left(\begin{array}{cc}
-24 & 53 \\
10 & -35
\end{array}\right) \\
T_{1}\left(T_{1}(x)\right)=A x \Longrightarrow A=A_{1}^{2}=\left(\begin{array}{cc}
-1 & 50 \\
-20 & 39
\end{array}\right) \\
T_{2}\left(T_{2}(x)\right)=A x \Longrightarrow A=A_{2}^{2}=\left(\begin{array}{cc}
4 & -63 \\
0 & 25
\end{array}\right)
\end{gathered}
$$

