Tutorial \#4

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text)
2.3-\#27 Calculation Determine if one of the given vectors is in the span of the other vectors.

$$
u=\left(\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right), \quad v=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right), \quad w=\left(\begin{array}{c}
-5 \\
7 \\
-7
\end{array}\right)
$$

Solution If suffices to check if the vectors are linearly independent, so we row reduce...

$$
\left(\begin{array}{ccc}
4 & 3 & -5 \\
-1 & 5 & 7 \\
3 & -2 & -7
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -5 & -7 \\
4 & 3 & -5 \\
3 & -2 & -7
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -5 & -7 \\
0 & 23 & 23 \\
0 & 13 & 14
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This implies the vectors are linearity independent, so none of the vectors are in the span of the others.
2.3\#57 Proof Prove that if $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a linearly independent set of vectors, then so is $\left\{u_{1}+u_{2}, u_{1}+\right.$ $\left.u_{3}, u_{2}+u_{3}\right\}$.

Solution Since $\left\{u_{1}, u_{2}, u_{3}\right\}$ are linearly independent, we may assume

$$
a u_{1}+b u_{2}+c u_{3}=0 \Longleftrightarrow a, b, c=0
$$

Now if we take an arbitrary linear combination of $\left\{u_{1}+u_{2}, u_{1}+u_{3}, u_{2}+u_{3}\right\}$ and set it to zero, we see

$$
x_{1}\left(u_{1}+u_{2}\right)+x_{2}\left(u_{1}+u_{3}\right)+x_{3}\left(u_{2}+u_{3}\right)=\left(x_{1}+x_{2}\right) u_{1}+\left(x_{1}+x_{3}\right) u_{2}+\left(x_{2}+x_{3}\right) u_{3}=0
$$

Thus, by our assumption we see

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=0 \\
x_{1}+x_{3}=0 \\
x_{2}+x_{3}=0
\end{array}\right.
$$

It's easy to check that the only solution to the above linear system is $x_{1}, x_{2}, x_{3}=0$, thus

$$
x_{1}\left(u_{1}+u_{2}\right)+x_{2}\left(u_{1}+u_{3}\right)+x_{3}\left(u_{2}+u_{3}\right)=0 \Longleftrightarrow x_{1}, x_{2}, x_{3}=0
$$

which means $\left\{u_{1}+u_{2}, u_{1}+u_{3}, u_{2}+u_{3}\right\}$ is a linearly independent set of vectors.
3.1 \# 11 Suppose that a linear transformation T satisfies

$$
T\left(u_{1}\right)=\binom{-3}{0}, \quad T\left(u_{2}\right)=\binom{2}{-1}, \quad T\left(u_{3}\right)=\binom{0}{5}
$$

Find $T\left(-u_{1}+4 u_{2}-3 u_{3}\right)$

Solution Recall a linear transformation $T: U \rightarrow V$ satisfies for $a, b \in \mathbb{R}$ and $x, y \in U$

$$
T(a x+b y)=a T(x)+b T(y)
$$

In our case we see

$$
T\left(-u_{1}+4 u_{2}-3 u_{3}\right)=-T\left(u_{1}\right)+4 T\left(u_{2}\right)-3 T\left(u_{3}\right)=-\binom{-3}{0}+4\binom{2}{-1}-3\binom{0}{5}=\binom{3+8}{-4-15}=\binom{11}{-19}
$$

