## Tutorial \#3

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text)
1.4 \#21: Calculation Find the values of the missing constants.

$$
\frac{1}{x^{2}(x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}
$$

Solution To create a system of equations for $A, B$ and $C$, rearrange the RHS to a common denominator.

$$
\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}=\frac{A x(x-1)+B(x-1)+C x^{2}}{x^{2}(x-1)}
$$

Now if we read of the numerator of the LHS and the rearranged RHS we see

$$
A x(x-1)+B(x-1)+C x^{2}=1 \Longrightarrow\left\{\begin{array}{c}
A+C=0 \\
-A+B=0 \\
-B=1
\end{array}\right.
$$

The solution to this system of equations is easily seen to be

$$
A=B=-1, \quad C=1
$$

2.1 \#49: Calculation An electronics company has two production facilities, A and B. During an average week, facility A produces 2000 computer monitors and 8000 flat panel televisions, and facility B produces 3000 computer monitors and 10,000 flat panel televisions.

1. Give vectors $a$ and $b$ that give the weekly production amounts at A and B, respectively.

$$
\text { Answer: } \quad a=\binom{2000}{8000} \quad \& \quad b=\binom{3000}{10,000}
$$

2. Compute $8 b$, and then describe what the entries tell us.

$$
\text { Answer: } \quad 8 b=8\binom{3000}{10,000}=\binom{24,000}{80,000}
$$

The entires tell us that 24,000 computer monitors and 80,000 flat panel televisions will be produced by facility B over 8 weeks.
3. Determine the combined output from A and B over a 6 -week period.

$$
\text { Answer: } \quad 6(a+b)=6\binom{5000}{18,000}=\binom{30,000}{108,000}
$$

4. Determine the number of weeks of production from A and B required to produce 24,000 monitors and 92,000 televisions.

Solution We see this produces the following linear system.

$$
x_{1} a+x_{2} b=\binom{24,000}{92,000}
$$

The solution to which may be easily found to be

$$
x_{1}=9, \quad x_{2}=2
$$

Thus is we run facility A for 9 weeks and facility B for 2 weeks we'll produce the product required.
2.2\#71 Prove that if $\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}=\mathbb{R}^{3}$, then

$$
\operatorname{span}\left\{u_{1}+u_{2}, u_{1}+u_{3}, u_{2}+u_{3}\right\}=\mathbb{R}^{3}
$$

Proof Without the loss of generality we may assume

$$
u_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad u_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

since the original vectors form a basis for $\mathbb{R}^{3}$. If suffices to check that we have

$$
\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}=\operatorname{span}\left\{u_{1}+u_{2}, u_{1}+u_{3}, u_{2}+u_{3}\right\}
$$

which is equivalent to checking if the RHS has full rank, i.e.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

This is true since

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

