Tutorial \#2

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text)
1.2 \#21: Calculation Convert the system to an augmented matrix and then find all solutions by reducing the system to echelon form and back substituting.

$$
\begin{gathered}
-2 x_{1}+5 x_{2}-10 x_{3}=4 \\
x_{1}-2 x_{2}+3 x_{3}=-1 \\
7 x_{1}-17 x_{2}+34 x_{3}=-16
\end{gathered}
$$

Solution First we write the augmented matrix.

$$
\begin{gathered}
-2 x_{1}+5 x_{2}-10 x_{3}=4 \\
x_{1}-2 x_{2}+3 x_{3}=-1 \\
7 x_{1}-17 x_{2}+34 x_{3}=-16
\end{gathered} \Longrightarrow\left(\begin{array}{ccc|c}
-2 & 5 & -10 & 4 \\
1 & -2 & 3 & -1 \\
7 & -17 & 34 & -16
\end{array}\right)
$$

Now row reduce the matrix. You'll find

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
-2 & 5 & -10 & 4 \\
1 & -2 & 3 & -1 \\
7 & -17 & 34 & -16
\end{array}\right) & \sim\left(\begin{array}{ccc|c}
1 & -2 & 3 & -1 \\
-2 & 5 & -10 & 4 \\
7 & -17 & 34 & -16
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & -2 & 3 & -1 \\
0 & 1 & -4 & 2 \\
0 & -3 & 13 & -9
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & 0 & -5 & 3 \\
0 & 1 & -4 & 2 \\
0 & 0 & 1 & -3
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & -12 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & -3
\end{array}\right)
\end{aligned}
$$

Thus we read the solution off the reduced augmented matrix as

$$
x_{1}=-12 \quad x_{2}=-10 \quad x_{3}=-3
$$

1.3 \#25: Calculation Compute the first four Gauss-Seifel iterations for the system, with the initial value of each variable set equal to 0 . Then rewrite the system so that it is diagonally dominant, set the value of each variable to 0 , and again compute four Gauss-Seidel iterations.

$$
\begin{aligned}
x_{1}-2 x_{2} & =-1 \\
2 x_{1}-x_{2} & =1
\end{aligned}
$$

Solution We set $x_{1}^{0}=0, x_{2}^{0}=0$ and then use the Gauss-Seifel iterations, i.e.

$$
\begin{gathered}
x_{1}^{i+1}=-1+2 x_{2}^{i} \\
x_{2}^{i+1}=-1+2 x_{1}^{i+1}
\end{gathered}
$$

Iteration	x_{1}	x_{2}
0	0	0
1	-1	-3
2	-7	-15
3	-31	-63
4	-127	-255

i.e. this doesn't converge...But if we reorder the equations to

$$
\begin{aligned}
2 x_{1} & -x_{2}
\end{aligned}=1
$$

then it is diagonally dominant, so we see

$$
x_{1}^{i+1}=\frac{1+x_{2}^{i}}{2}, \quad x_{2}^{i+1}=\frac{1+x_{1}^{i+1}}{2}
$$

Iteration	x_{1}	x_{2}
0	0	0
1	$1 / 2$	$3 / 4$
2	$7 / 8$	$15 / 16$
3	$31 / 32$	$63 / 64$
4	$127 / 128$	$255 / 256$

i.e. the solution is converging to $(1,1)$.
1.4 \#25 Calculation The equation for a parabola has the form $y=a x^{2}+b x+c$, where a, b, and c are constants and $a \neq 0$. Find an equation for the parabola that passes through the points $(-1,-10),(1,-4)$, and $(2,-7)$.

Solution By inserting the required points to pass through, we obtain 3 equations with 3 unknowns, namely.

$$
\begin{gathered}
a-b+c=-10 \\
a+b+c=-4 \\
4 a+2 b+c= \\
\hline+7
\end{gathered} \Longrightarrow\left(\begin{array}{ccc|c}
1 & -1 & 1 & -10 \\
1 & 1 & 1 & -4 \\
4 & 2 & 1 & -7
\end{array}\right)
$$

Now we reduce the system. We see

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
1 & -1 & 1 & -10 \\
1 & 1 & 1 & -4 \\
4 & 2 & 1 & -7
\end{array}\right) & \sim\left(\begin{array}{ccc|c}
1 & -1 & 1 & -10 \\
0 & 2 & 0 & 6 \\
0 & 6 & -3 & 33
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & -1 & 1 & -10 \\
0 & 1 & 0 & 3 \\
0 & -2 & 1 & -11
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -5
\end{array}\right)
\end{aligned}
$$

Thus the parabola $y=-2 x^{2}+3 x-5$ intersects the 3 required points.
2.1 \#29: Calculation Determine if b is a linear combination of the other vectors. If so, write b as a linear combination.

$$
a_{1}=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right), \quad a_{2}=\left(\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right), \quad b=\left(\begin{array}{c}
6 \\
3 \\
-9
\end{array}\right)
$$

Solution We have to see if

$$
x_{1} a_{1}+x_{2} a_{2}=b, \quad x_{1}, x_{2} \in \mathbb{R}
$$

has a solution. Reading off the first component we see

$$
2 x_{1}=6 \Longrightarrow x_{1}=3
$$

Reading off the second component we see

$$
-3 x_{1}+3 x_{2}=3 \Longrightarrow-9+3 x_{2}=3 \Longrightarrow x_{2}=4
$$

Now we check to make sure the third component is consistent with our choice of x_{1} and x_{2}.

$$
x_{1}-3 x_{2}=-9 \Longrightarrow 3-12=-9 \Longrightarrow-9=-9
$$

Since the values check out, we see

$$
3 a_{1}+4 a_{2}=b
$$

