Tutorial \#1

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text on pg.13)
1.1 \#52: True or False A linear system with three equations and five variables must be consistent?

Solution This is false. Consider the counterexample of

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=6 \\
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=6 \\
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=0
\end{aligned}
$$

Clearly the bottom equation violates the other two, which means there is no solution to the system (i.e. it's inconsistent).
1.1 \#54: True or False A triangular system always has exactly one solution?

Solution This is true. We know the system is given by (choosing a upper triangle system without the loss of generality, $a_{i i} \neq 0$ for $i \in[1, n]$)

$$
\begin{array}{cccccccc}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} & + & \ldots & + & a_{1 n} x_{n} & = & b_{1} \\
a_{22} x_{2} & +a_{23} x_{3} & + & \ldots & +a_{2 n} x_{n} & = & b_{2} \\
& & a_{33} x_{3} & + & \ldots & + & a_{3 n} x_{n} & = \\
& & b_{3} \\
& & \ddots & & & \vdots & & \vdots \\
& & & \ddots & & & \\
& & & & & a_{n n} x_{n} & = & b_{n}
\end{array}
$$

Thus we may read off the last equation to deduce

$$
x_{n}=\frac{b_{n}}{a_{n n}}
$$

If we write down the second last equation, we see that

$$
a_{n-1, n-1} x_{n-1}+a_{n-1, n} x_{n}=b_{n-1} \Longrightarrow x_{n-1}=\frac{b_{n-1}-a_{n-1, n} x_{n}}{a_{n-1, n-1}}=\frac{a_{n, n} b_{n-1}-a_{n-1, n} b_{n}}{a_{n n} a_{n-1, n-1}}
$$

We see a pattern! We'll always be able to solve x_{i} if we know x_{j} with $j \in[i+1, n]$. Since we have explicit formulas for every x_{i}, we see a triangular system has exactly one solution.
1.1 \#63: Calculation A total of 385 people attend the premiere of a new movie. Ticket prices are $\$ 11$ for adults and $\$ 8$ for children. If the total revenue is $\$ 3974$, how many adults and children attended?

Solution First build a system. The two natural variables are adults (A) and children (C). Since we know 385 people attended the movie, we know that

$$
A+C=385
$$

The other piece of information was adult tickets cost $\$ 11$ and child tickets cost $\$ 8$ and the total revenue was $\$ 3974$. This means that

$$
11 A+8 C=3974
$$

Now let's try to solve the system we've created. From the first equation we see that $A=385-C$, plug this into the second equation to isolate C,

$$
11 A+8 C=3974 \Longrightarrow 11(385-C)+8 C=3974 \Longrightarrow 4235-3 C=3974 \Longrightarrow 261=3 C \Longrightarrow C=87
$$

The equation we substituted gives us the number of adults now

$$
A=385-C=385-87=298
$$

Thus the number of children and adults that attended the movie were 87 and 298 respectively.

