Tutorial \#10

MAT 188 - Linear Algebra I - Fall 2015

Problems (Please note these are from Holt's Linear Algebra Text)

Question 1 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x)=A x$ for the following matrices

$$
\text { a) } A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \text { b) } A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \text { c) } A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)
$$

In each case find the eigenvalues and eigenvectors of A, if possible, and interpret your results in terms of the transformation T.

Solution For a) we see the characteristic equation is given by

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\left|\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}-1
$$

Thus the eigenvalues for the equation are given by the roots $P(\lambda)=0$, namely $\lambda_{ \pm}= \pm 1$. Then eigenvectors are found by checking the kernel. We see

$$
\begin{aligned}
& \lambda_{+}=1 \Longrightarrow \operatorname{ker}\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)=\operatorname{span}\binom{1}{1} \Longrightarrow \vec{\lambda}_{+}=\binom{1}{1} \\
& \lambda_{-}=-1 \Longrightarrow \operatorname{ker}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\operatorname{span}\binom{1}{-1} \Longrightarrow \vec{\lambda}_{+}=\binom{1}{-1}
\end{aligned}
$$

We rinse and repeat for b)

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right|=(\lambda-1)(\lambda+1)
$$

Thus the eigenvalues for the equation are given by the roots $P(\lambda)=0$, namely $\lambda_{ \pm}= \pm 1$. Then eigenvectors are found by checking the kernel. We see

$$
\begin{aligned}
& \lambda_{+}=1 \Longrightarrow \operatorname{ker}\left(\begin{array}{cc}
0 & 0 \\
0 & -2
\end{array}\right)=\operatorname{span}\binom{1}{0} \Longrightarrow \vec{\lambda}_{+}=\binom{1}{0} \\
& \lambda_{-}=-1 \Longrightarrow \operatorname{ker}\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)=\operatorname{span}\binom{0}{1} \Longrightarrow \vec{\lambda}_{+}=\binom{0}{1}
\end{aligned}
$$

We rinse and repeat for c)

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\frac{1}{2}\left|\begin{array}{cc}
1-\sqrt{2} \lambda & -1 \\
1 & 1-\sqrt{2} \lambda
\end{array}\right|=\lambda^{2}-\sqrt{2} \lambda+1
$$

Thus the eigenvalues for the equation are given by the roots $P(\lambda)=0$, namely $\lambda_{ \pm}=(1 \pm i) / \sqrt{2}$. Then eigenvectors are found by checking the kernel. We see

$$
\begin{gathered}
\lambda_{+}=\frac{1+i}{\sqrt{2}} \Longrightarrow \operatorname{ker}\left(\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right)=\operatorname{span}\binom{1}{i} \Longrightarrow \vec{\lambda}_{+}=\binom{1}{i} \\
\lambda_{-}=\frac{1-i}{\sqrt{2}} \Longrightarrow \operatorname{ker}\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right)=\operatorname{span}\binom{1}{-i} \Longrightarrow \vec{\lambda}_{+}=\binom{1}{-i}
\end{gathered}
$$

6.1-\#52 Prove that if u is an eigenvector of A, then u is also an eigenvector of A^{2}.

Solution Assume u is an eigenvector with eigenvalue λ, then

$$
A^{2} u=A(A u)=A(\lambda u)=\lambda A u=\lambda^{2} u
$$

Thus we see it is an eigenvector of A^{2} with eigenvalue λ^{2}.
6.1-\#57 Let A be an invertible matrix. Prove that if λ is an eigenvalue of A with associated eigenvector u, then λ^{-1} is an eigenvalue of A^{-1} with associated eigenvector u.

Solution Simply multiply $A u$ by A^{-1}, we see

$$
A u=\lambda u \Longrightarrow A^{-1} A u=A^{-1}(\lambda u) \Longrightarrow u=\lambda A^{-1} u \Longrightarrow A^{-1} u=\lambda^{-1} u
$$

Which is the claim.
6.1-\#61 Suppose that the entries of each row of a square matrix A add to zero. Prove that $\lambda=0$ is an eigenvalue of A.

Solution The entries of each row add to zero, thus we have that $u=(1, \ldots, 1)$ is an eigenvector for 0 , since

$$
A u=0 u=0
$$

6.1-\# 63 Suppose that A is a square matrix. Prove that if λ is an eigenvalue of A, then λ is also an eigenvalue of A^{T}.

Solution Recall that $\operatorname{det}(B)=\operatorname{det}\left(B^{T}\right)$, thus we see the equation for the characteristic equation satisfies

$$
P(\lambda)=\operatorname{det}(A-1 \lambda)=\operatorname{det}\left(A^{T}-1 \lambda\right)
$$

Thus the eigenvalues for A and A^{T} are identical since the characteristic equation is identical.

