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Chapter 1

Liouville Theorem On Integrable

Systems

1.1 Hamiltonian Systems

Let H(p,q) be a real function, p = (p1,...,0n),¢ = (q1,.-.,qn), where p,q € R*. A Hamiltonian

vector-field is defined as

(—04H,0,H) = (=04, H,...,—04,H,0p,H,...,0,, H)

The function H itself is called in this context the Hamiltonian
The ODE system

p=—0.H, Gg=0p,H
is called a Hamiltonian System . The origin of Hamiltonian Mechanics goes back to Newtonian Mechanics
& =F(x), xeR"
when the force F is generated via some potential U(x), i.e.
F(z) = —VU(x)
Setting here
. p
v=q, t=p, Hlpq=%5+Ulq)
one arrives at
p=&=-VU(z)=-VU(q) = -0,H
Gg=p=0,H

For instance, Newton’s Gravitational Law for two bodies defines the force via
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const r
F=-——r
7 I
where r stands for the displacement vector for the location of the second body in relation to the first.

The potential here is

const
U(r) =
Ir|
This is a particular case of a central field which is
r
F(r) = o(r)
|

Where ¢(r) is a scalar function.Central field motion has a remarkable feature: The vector

L=1r7]

called the angular momentum remains conserved along each trajectory, i.e.

(For obvious reason). Since each component of L is conserved, one has here n scalar function which are

conserved under the flow.

Definition 1.1. A real function which is conserved under the flow is called a conservation law or a first

integral of the system.

1.2 Commuting Vector-Fields and Poisson Brackets

Consider two ODE systems

&= A(z), z=DB(z), xzeR"

Denote by ga(zg,t) , respectively gg(zo,t), the solution of the system with initial condition g4 (xg,0) =
xo, respectively gg(zp,0) = z¢. One says the vector-fields A and B commute if for any zg,s,t > 0 the

following equality holds

gB(gA(I()? 5)7 t) = gA(gB (an t)v 3)

We also say that the flows g4, gp commute. To measure "how large” is the commutator of two vector-

fields A, B we use the Poisson Bracket which is defined as follows:

[A,Bl; =Y BiOs, Aj — Ai0y,B;

i=1
[4, Bl = (A4, Bl))1<j<n

By direct calculation, one has the following
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Theorem 1.1. The vector fields A, B commute if and only if
[A,B] =0
Note also that the Poisson Bracket obeys the Jacobi Identity:

[[A4,B],C]+[[B,C], A] + [[C,A], B] = 0

1.3 Poisson Bracket of Hamiltonians and First Integrals

Let F(p,q), H(p,q) with p,q € R™ be real functions. Consider the Hamiltonian vector-fields

A= (-90,F,0,F), B=(-0,H,0,H)
By a direct calculation one has the following

Theorem 1.2.
[A,B] = (_aan apG)

where

G(pq) = > 0p HOyF — 0y, FOy H

i=1

Thus, the poison bracket of Hamiltonian vector-fields is a Hamiltonian vector-field.

Definition 1.2. The function G is called the Poisson Bracket of the Hamiltonians F, H. It is denoted
via

G=(F,H)
By direct calculation, one can verify the following formula

d

(F,H)(@) = ZF (g (@) |

where g%, (z) stands for the follow of the Hamiltonian vector-field A = (=9,H,d,H). This implies the

following:
Corollary 1.1. The function F(p,q) is a first integral of the Hamiltonian H if and only if (F, H) = 0.
Note that (H, H) = 0, thus H is a first integral. Of course, this can be checked via simple calculation:

d
ZH (), () = 0,Hp + 0, Hi = ~0,HO,H + 9,HO, H =0

1.4 Liouville Theorem

Definition 1.3. Two functions Fi, F» are involutions if [Fy, F5] =0

Consider the Hamiltonian system

p=—-0,H, ¢=0,H, pqeDCR"”
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Let F} = H and assume that there are first integrals F5, ..., F, of this system such that the following

conditions hold
o (F;,F;)=0foralli,j
e Fy,..., F, are independent in D, i.e. the rank of their Jacobian matrix is equal to n.

It is convenient in this context to denote (p,q) € R*" via 2 and the flow with given Hamiltonian F via

t
gr(z).
Take arbitrary 2° € D. Set f; = F;(2O), f = (f1,..., fa),
My={zeD:Fjx)=f;,j=1,...,n}

Since the Jacobian matrix of Fy, ..., F, has rank n, M; has a structure of a n-dimensional manifold in
R2". Assume that

e My is compact and connected.

Note that since F}’s are first integrals My is invariant under the flow g*. Liouville Theorem states that
there is a diffeomorphism ¢ : My — T™ which conjugates the flow g* with the linear flow on the torus
"]I‘?’L

p=w

where w € R™ is a fixed vector.
To prove this theorem note first of all that M := My is invariant under g}j, j=1,...,n. Moreover, the

flow commute. Set

gl (@) = grgy g (@), t=(t,.... 1) €R”

Then t — gt is an action of R™ on M, i.c.

gt+s — gtgs

due to the commutativity of g;-j. Fix zg € M and set

g:R" = M, g(t) = g*(z0)

Definition 1.4. The stationary group of xg is defined via
I={teR":g%zo) =20}
Clearly I' C R™ is a subgroup.

1. Let N be a smooth submanifold in R™. That means for each xyg € N there is a local chart
¢ : Uy — N, where Uy = {y € R? : |y| < ro}, is a smooth map from Uy into R™. In this case the
tangent space T, can be identified with a linear subspace J, C R™, dim J,, = d = the dimension
of N.

2. Let G(z) be a vector-field in R™ and let g* be the flow defined via G. Let N be as in (1). Assume
that N is invariant under the flow. In this case G(z) € J, for each z € L.
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3. Let us go back to the setting in the proof of Liouville Theorem. Let 2y € M be arbitrary. Consider
the map g(t) = g*(zo), then

atjg =0 = AJ (‘TO)

where A;(z¢) is the Hamiltonian vector-field defined via Fj}, i.e.

Aj(wo) = (=045, OpF})

Zo

4. The rank of the system Aj(x¢),...,An(xo) is equal to n. Indeed, we know that the rank of the

system (04F;,04Fj),j =1,...,n is n. The linear map defined via the 2n x 2n matrix

0 —-I
J =
I 0
is invertible. J transforms the second system into the first one.

5. Due to (3),(4) the rank of the system 8t1g’ ,...,8tng’ is equal to m. Thus, locally g is a
t=0 t=
diffeomorphism of a neighbourhood t = 0 onto a neighbourhood U,, C M.

6. Since M is connected and g is onto. Indeed, since the map g*(x) is an action. The statement

follows from the following figure:

Here zg — « is a arbitrary path in M connecting xq with z,
21 =g" (w0), 22 = " (21),.... 0 = g" (2,-1)

7. Due to (6), one concludes that the stationary group I' does not depend on zg, the group I' is
discrete, i.e. there exists a neighbourhood Uy of t = 0 such that I' N Uy = {0}.

Lemma 1.5. Let I' be a discrete subgroup of R™. Then one can find linearly independent vectors

e1,...,ex €' such that
k

I'= {y:yzijej,mj EZ}

j=1

Proof. Let eg € I',eq # 0. There exists e; € I" such that e; = Ajeg where A\; € R, and

ler] = min{le| : e e N Reg}



CHAPTER 1. LIOUVILLE THEOREM ON INTEGRABLE SYSTEMS 6
Moreover,
FQRGO = {m161 tmy € Z}

If T =T NReg then we are done. Let e € T\ Rey. Consider

& =Re; +Re={y=XAe; +Ae: A\, €R}

Split & into the ”fundamental parallelograms” as in the following figure

=

2¢g E. _‘"L’i/

. )
¥ e

{0,
i
J

InP; findey e \ Re; which is the closest one to the line Re;. It may happen that eo = e. Note
that
dist(e2, Re1) = min {dist(y,Re;) : y € E&NT \ Rey }

Indeed, let € € & N T\ Rey, dist(é,Req) < dist(ea,Req). Let € = Ajeq + Ae. Let for instance
A1 > 1. Let mq = [A1], p1 = {1}, é = prer + e, Then clearly

dist(é,Re;y) = dist(é, Rey)

é=€¢—mie; €T

So, we can assume € = A\je; + Ae,0 < Ay < 1. One can see also that —1 < A < 1. Using reflection

one can assume 0 < A < 1. Thus, € € P;. Hence
dist(é, Rey) = dist(es, Req)
Note that in any event

Ey = Rey + Rey = {y = Aie1 + Ageg 1 A, A9 € R}

Once again using the fundamental domains with es ini the role of e; we conclude that no point of

I' can fall into the interior of P; and neither into the interior of any P;. That means
'Nné ={yLy = mie; + moes : my,my € Z}
IfI' =T Né&; then we are done. Otherwise we proceed with a similar argument. O

9. Let I' € R™ be a discrete subgroup. Consider the quotient group R"/T". Let I' = {mje; + ... +
Mpen : m; € Z}. If k = n, then R"/T is diffeomorphic to the torus T". If k < n, then R"/T is
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10.

11.

12.

diffeomorphic to TF x R*~ k.
Proof. Assume k < n. Consider
Ee={y=X e+ ...+ Xer: \; eR}
Clearly one can assume that
E={y= i, U, 0,...,0) s y; ER, R" =& x R"*

So, since I' C &
R" /T = (&,/)T) x R"*

Assume for simplicity £ = 2. Then
E )T ={er + Aaea : 0 < A, N <137
where = stands for the identification of the points on the edges
Aoey = €1 + Aoea,  Ajep = Ajeq +eg
Clearly & /T is diffeomorphic to the torus T2. O

The map ¢ : [t]r — g*(zo) is a diffeomorphism from R"/T" onto M.

The map is well-defined. Indeed, if t =s mod I" then g*~5(x¢) = xg,i.eg*(xg) = ¢°(x0). Clearly
the map is smooth. If g*(zg) = ¢°(x0) then t =s mod T, i.e the map is injective. We know that
t — g*(xo) is onto the manifold M. So, ¢ is one-to-one on M.

Since we assume that M is compact, R™/T can not have a non-compact factor R" % so k = n,
and R"/I" ~ T". Thus, ¢! is a diffeomorphism from M onto T".

Finally, consider the H-flow which is g0 (z4), ¢ € R. The diffeomorphism ¢~! conjugates the
flow with the flow
(t1,...,tn) mod I — (t; +¢,ta,...,t,) modT

Again for simplicity consider n = 2, R? = &. Let (w;,ws) be the components of the standard basic
vector (1,0) with respect to the lattice basis e1,es € T'. Then in the angular coordinates @1, 2 on

the torus the infinitesimal flow is

(¢1,02) = (1, 92) + (W1, wa)dt

O1=wi, P2 =ws



Chapter 2

Lax Theorem On The

Korteweg-de-Vries Equation

The Korteweg-de-Vries Equation (KdV) is given by
W + Uy + Uy =0 (2.1)
This is an evolution equation in the sense that
uy = Fu,ug,...)

A first integral is a functional I(u,u,,...) which value is conserved along the flow of the equation. In
1968, Gardner, Kruskal and Miura discovered that KDV has infinitely many conservation laws. Here

are the first three integrals they discovered:

Il(u)z/Rqux
I (u) :/R(“; —ui) dz

1 9
Is(u) = / <4u4 — 3uu? + uil> dx
R

In the same year Lax found the following fundamental mechanism built into the KdV equation. Consider

the Sturm-Liouville Operator

Ly)=—y" +wvy

Taking here v = %u(t x) where u is a solution of KdV one obtains a one parameter family £®) of linear
operators. Lax theorem says that £*) is unitary conducted to £(°). In particular the spectrum of £*)

is the same as the spectrum of £(°). Here is the derivation of Lax theorem.

Let L(t) be a one-parameter family of self-adjoint operating acting in the Hilbert space. Lax suggests

to find a condition which will allow to conjugate L(¢) and L(0) via some unitary operator U(y),i.e.
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Assuming differentiability, one obtains

H(UTLU) = ~U Y Q,U)U'LU + U 'OLU + U 'LoU =0

The idea is to set

U(t) = exp(itd), with A*=A

It is more convenient to set B = i A,

U(t) =exp(tB), with B*=-B

Then U obeys

oU = BU

which leads to

~BL+8,L+BL=0

Thus if L(t) obeys

oL =BL—-LB

with B* = —B, then L(t) indeed is unitary conjugated to L(0). Take

L(t) =02, + 1u

6
Then
oL = 18
tl = 6 tU
Take By = 0. Then B* = B,
1
[BO,L] = gamu
Thus, if
1
atu = éazu

then L(t) is unitary conjugate to L(0). Next choose

B =249, + 3ud, + 30,u

Then
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[B,L] = =02, ,u — udyu

Trrx

which leads to

Ou= 0L =[B,L] = —03  w—udu

Trxrx

which is KdV. It turns out that KdV is a completely integrable infinite dimensional Hamiltonian system.



Chapter 3

Fundamental Solutions

3.1 The Variation of Parameters Method

Consider the Sturm-Liouville Equation

-y tay =Xy (3.1)
This is a linear ODE. It has two fundamental solutions ¥, y2 defined via their initial data

y1|w=0 =1 yi|x=0 =0
y2|z:0 =0 yé|a::0 =1

Any given solution y of is given via

szyl

x=0 =0

y = Ciy1 + Cayz, where C; =y

Here we want to view y1, y2 as functions of x, A, ¢. We denote them as y1(z, A, ), y2(x, A, ). For technical
reasons it is convent to run ¢ in the space L2[0, 1], the space of all complex esquire integrable functions
on [0,1]. We want to develop series expansions of yi(x, A, q), y2(x, A, ¢) following the Picard iteration
method.

Theorem 3.1. Let f € L,a,b € C. Set

ex(z) = cos(VAz), sa(z) = Sin(\/\/;x), yr(z) = /Of sx(z —t)f(t)dt

y(z) = acx(z) + bsa(z) + yr(z)
The function y is the unique solution of the equation
y'==My+f y0)=a, y0)=0 (3-2)

Proof. One has

T

yp(@) = 5 (x) / " (OOt — ex(a) / (O (0)dt

11



CHAPTER 3. FUNDAMENTAL SOLUTIONS 12

Yy () = ex(x) / " () f(B)dt + As(z) / " aa(®)f(0)dt

yi(2) = —Asx(x) / " () f(O)dt + Aex(x) / O F ()t + (ex(@)? + Asx(@)2) F(x) = —Ays(@) + F(a)

yr(0) =0, y;(0)=0

Since

N =—=Xen,  sY = —MAsy
ex(0)=1, & (0)=0; s:(0)=0, s)(0)=1

y obeys (3.1)) . Let ¢ be another solution of (3.1]). Then v =y — § obeys

That implies v(z) = 0 for all . Thus y is unique. O

3.2 The Volterra Integral Method

Recall the following simple fact on Volterra Integral Equations:
Let K(x,t) be a function, a < z,t < 8, with

C = sup | K (x,1)| < +o0
Consider the Volterra Integral Operator
T
[Ty](x) = / Kz ty(t)dt, a<x<p
Then

e —a)"

mn
i < 8

In particular, the integral equation

has a unique solution

y=3 1
n=0
Theorem 3.2. Let y; be the unique solution of the integral equation:
a) @)+ [ il = Daolo)d: (33)
0

Then y obeys the Sturm-Liowville Equation (3.1) with y1(0) = 1,¢1(0) = 0. Similarly, let yo be the
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unique solution of the integral equation
) = sale) + [ sale = Datty(o)ds (3.4)
0
Then y obeys (3.1) with y2(0) = 0,y4(0) =1

Proof. This is a straight forward calculation for (3.3))

/(@)= n(@) + [ " exle — DOy (e

0
y'(z) = =Xea(w) + q(z)y(x) — /Oz Asx(z —t)q(t)dt = —Ay(z) + q(x)y(z)
y(0)=1, o

0)=0

The case for ys is similar. O

)

3.3 The Non-Homogeneous Solution

Given u(x),v(x), the Wronskian [u, v] is defined via

If u,v obey (3.1) then [u,v]" =0, i.e. [u,v] does not depend on z. In particular, [y1,y2](x) = 1 for any

x.
Theorem 3.3. Let f € L,a,b € C. The equation
—y"+qy=X y—f, y(0)=a, y'(0)=>

has unique solution

y(@) = ay + byo + / " Opa(e) — g (@)e(t) £ (1)t

Proof. Just as in theorem 3.1, the formula comes from the Cauchy method of the coefficients variation.

Instead of doing the Cauchy method, one can verify the identity directly like in theorem 3.1:

Y = agh + by + / (i (O)vh(a) — v (2)ya () F(2)dt

y" = ayy +byy + (1(@)ya(x) — yi(2)ya(2)) f(z) + /0 ' (2 (D)ys () — w1 (2)ya(1)) f ()t

Note that y1(z)ys(z) — y1(2)y2(z) = 1. Substituting here y; = (¢ — A)y;, one obtains

y" = (g = Mlays +by2) + [+ (¢ = ) /Ox((yl(t)yz(x) —y1(@)ya2(t)) f(t)dt
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3.4 Basic Estimates

Here we want to develop “series expansion” for y1, ys.

n>1
Cr(z, ), q) :/ ex(ty) [[ [sattiva —ti)q(t:)]dty .. dtn, th ==
0<t1<...<tp <z =1
|Ch (2, A, q)| < exp(\wx)/ [T lat)ldt: .. .ty
0<t1<...<tp<z ;¢

n

- 1
ti)|dty ... dt, =— ti)|dty ... dt,
/ TT o)l i Jo Llato

<< Ztp<w ;4 :

([ toiar)

_ (lallz=va)"

- n!

Combining the above inequalities gives

|Coa(, A, )] < exp<lmlf>w

This estimate shows that the statements in Theorem 3.2 and the series expansion hold for ¢ € L2

Similarly,

y2(£7AaQ) = 5)\(56) + Z Sn($7)\7q)

n>1

n

So(@ 2, q) :/ sa(tn) [T 5a(tiss — t)a(t)) dts - dtn,  tosr =2

0<t1<..<tn,<z i=1

(llalle>vz)"

|Sn(x, A, q)] < exp(|SA|x) "

Note also that

‘yl(xa Aaq)|’ |y2(‘xa)‘7q)| S eXp(|(‘}\/X“/E + HqHLZ\/E)

Furthermore, one can see that the derivation works also for A = 0 with so(x) = =z, co(z) = 1. On the
other hand y;(z, A, q) = y;(z,0,¢ — ). Thus

Colz, A q) = / [Tt = ti)(a(t:) = M) dty ... dt,

0<t1<..<tn<z ;1

n

Sz, A, q) = / ty [ [ [((tir — o) (a(t:) = N)] dty ... dty,

0<t1<..<tp<z ;4
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We have the following basic estimates:

_ exp(ISVAlz + lal])

- v

exp(ISVAJz + [[gll)

VIAI

Ouyr + VAsin(VA2)| < [lgl|exp(| VA2 + gl

‘yl (z,\,q) — cos(ﬁx)‘

v q) — sin(\\ﬁ\&x)

<

02— con(Van)| < LU exp(9v/Az + 1l

Proof. Due to the series expansion

|y1 - COS(\F)‘l’)‘ < Z |Cn(x7)‘aQ)|

n>1

This implies the first estimate. The derivation of the rest of the estimates is similar. O

3.5 Derivatives in A and ¢

Let H be a Hilbert space. Let ug € H and let f(u) be a complex valued function defined in the ball
B(ug,r0) ={u: |Jlu —uo|| <ro}. Let ug € H. If there exists ¢(ug) € H such that

Fu) = fluo) = (= o, Bu0) ) + of|fu = uo]l),

= ¢(uo).

U=ug
defined as a
U=ug

then f(u) is called complex differentiable at u = ug and ¢(ug) is called the gradient, 9, f

Real derivatives are defined similarly. If B is a Banach space then the gradient 0, f

vector in the dual space B*.

Example 3.1.

1. Let H = L?[0,1],

b
f(q) :/ K(t)q(t), supK < 4oo

Then f is complex differentiable

2. Let B=C[0,1,0 <z < 1,

Then f is complex differentiable,
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where

0y (v) = v(z), veB

Note that f from (1) is well defined on B and
1

(0gf)(v) = / K(t)v(t)dt, veB
0

In what follows we always work in B = C0,1]. Let f(q), g(¢q) be functions on B then

94(f(2)9(a)) = 9(q)0y f + f(2)9qg

provide the gradients d,f, 0,9 exist.

Example 3.2. Let y(z, ¢) be a function of z € [0,1] and ¢ € B. Assume that 9,y(z, ¢) exists. Consider

f(x,q) = q(z)y(z, q)
Then
0qf = y(x, )0z + q(x)0y

Let f(x,q) be a function of z € [0,1],¢q € B. Assume 9, f, 0, f exist. Assume also that 9,0, f and 0,0, f
exist and continuous in x,q. Then

0204 f = 040, f

Similarly, provide that the gradients exist and continuous

Due to the series expansions previously, we have the following

Theorem 3.4. For any fized x,y;(x,\,q) is complex differentiable in X\ and g,\ € C,q € L% The

derivatives are continous

One can easily calculate the derivatives

oC,  0Sn

dqg = Oq
It turns out that (0y;/0q) have nice formulas. To indicate here that the derivative is taken at fixed z
we denote it as (9y;/9q(t))(x), where t is the variable for the L?[0, 1] space.

Theorem 3.5.

(@) = 15O (O2(a) ~ 12 (D] (1) (35)

05 2y =, )y (t)ys 1 H)]00,2(t 3.6

30) (=) = y; ()1 (D)2 () — 1 (2)y2(8)]Djo,a () (3.6)
where Ojg 41 (t) stands for the indicator of [0, x]. Furthermore,
8yj o 1 5‘yj

Sy (@)=~ /0 aq<t)dt (3.7)
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oy - L oY)
i) = /0 ot (3.9)

The gradients are continuous with respect to x, \, q.

Proof. Though the theorem is stated in L?, we do it in B = C[0, 1] to make use of the derivatives

We differentiate
—y; (x) + q(x)y;(z) = My;(x)

with respect to ¢:
—(0qy;,, ()" +y;(@)d2(v) + 4(2)(Iqu;,, (v) = Mgy, (v))

with v € B = C]0,1]. Now we can apply Theorem 3.12. Note that
(Oqys. ) =0, (0q¥j,)aeo = 0g(Ouyj, ) =0
Hence a,b = 0 in Theorem 3.12, i.e.
(0qyj,, ) (v) = /Ow(yl(t)yz(x) — y1(@)y2(t))y; ()0 (v)di
~ [ 10 On) = m@m@ O]
That verifies the first identity. Furthermore, differentiating the above with respect to x gives:
@, )0 = [ [ 00h() ~ i)y 0] o)
That verifies the second identity. Note that
yi (@ A+&,q) = y;(@, A, ¢ = §)
Using the chain rule on f(g(-,&)) gives:
9 f(q(-,€)) = 04 (9eq)

where O¢q is viewed as a vector in B. If 9, f exists in L?, then

1
0y f(Dq) = / (0u1)(B)Dcq(t)dt

Thus,
1
O =~ [ (Ot
0

i.e. the last 2 identities follow. O



Chapter 4

The Dirichlet Spectrum

4.1 Counting Eigenvalues

Consider the Sturm-Liouville equation

-y +ay=Xy, >0 (4.1)

A is called a Dirichlet eigenvalue on [0, 1] if (4.1]) has a non-trivial solution y with y(0) = 0,y(1) = 0. Let
y1(z, \), y2(z, A) be fundamental solutions. Let y be a solution with y(0) = 0, then y = ay; + bys. Since
y1(0, A =1),42(0,\) = 0, one has a = 0. Thus the Dirichlet eigenvalues are the roots of the equation

y2(1,A) =0 (4.2)
Let ¢ = 0. Then ya(x, \) = A~'/2sin(2v/A) and the roots are as follows

Ay =702, n=1,2,3,... (4.3)
All roots are simple. The collection of all Dirichlet eigenvalues is called the Dirichlet Spectrum.

Lemma 4.1 (Counting Lemma). Let N > 2ell9ll be an integer. Equation (4.3) has exactly N roots in
the half plane R\ < (N + 1/2)2r?

Proof. Recall the estimate
sin v\
VA

We want to invoke Rouche’s Theorem. For that we want to compare |A\|~'/2exp(|3VA|) against
IA|=1/2| sinv/A|. This is done in Lemma (&.3) (see below): If |z — mm| > 7/4 for all m € Z, then

_ exp(llall + 3V
L

y2(1a )‘) -

4|sin z| > exp(|¥z])
So, provided that |\|='/2 exp(||q||) < 1/4, one has

sin v\

- | sin v/A|
VA

VA

y2(17 )\) -

18
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Let N be an integer, N > 2exp(||g||). The function A~*/2sin /X has exactly N roots in the half plane
RN < (N +1/2)272, see [@.3). For R\ = (N + 1/2)?72 one has

|\[\—m7r|2%

for any m € Z.
1
VA2 (N + 5 ) 7> 2mexp(|lqll) > dexp([lq])

This implies the statement due to Rouche’s Theorem. O

Lemma 4.2. Letn > 2exp(||q||+1), Equation [£.3)) has exactly one root in the domain |/ A\—nmw| > /2.

Proof. If |\v/X\ — n| = 7/2, then |[v/A — mn| > 7 /4 for any m € Z.

VA= (=3 ) > 2respllal) > desp(lal)

and the statement follow from Rouche’s Theorem. O
Lemma 4.3. If |z — mz| > n/4 for any m € Z. Then
4|sin z| > exp(|¥z])

Proof. Let z = x + iy. One cane assume 0 < z < 7/2. Recall

| sin(z + iy)|? = cosh? y — cos® z
Let first 2 > 7/6, so that cos® > (v/3/2)% = 3/4. Since coshy > 1 for any y, one has cosh® y > 4/3 cos? .
For 0 < z < /6 we invoke the assumption |z| > 7/4. So,

y* > (m/4)* —2® > (5% /144) > 1/3

Recall that
vyt LY
hy=1+ %=+ 2+ ... =
coshy + 9] + m + > 1+ 9

So,
4 4
(costh) >149%> 3 > gcoszx

Thus, in any event

1
|sin(x +iy)|? > = cosh®y > — exp(2y|)
4 16
O
Theorem 4.1. If X is a Dirichlet eigenvalue, then
1
O (1 N0,2(1.3) = [ 430 ) (4.4)
0

If q is real then Oxy2(1,\) # 0. In particular, in this case all the roots of y2(1,X) are simple.
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Proof. If one considers the ODE for y, and differentiate with respect to A, one obtains

Yo ( — (Oxy2)" + qOry2 = y2 + AaAyz) - 3/\3/2( —yy +qyo = /\yz)

Yy O\ys — (Ory2) Y2 = ¥3

Note that
Y3 Ony2 — (Oxy2)"y2 — (¥2(Ony2) — y2(0ry2)")’
Thus,
! 2 / /t:1
| w3t Nt = y(0re) - e[
0 =

Note that y2(0, A) = 0 implies
Ny2(0,A) =0

Since A is a Dirichlet eigenvalue y2(1,A) = 0. So,
1
| vttt = 0,121,001,
0

as claimed in (4.1). Theorem (4.9) below says that all Dirichlet eigenvalues are real. So, ya(z, A) is real.
That finishes the proof. O

Theorem 4.2. If q is real then the Dirichlet eigenvalue are real.

Proof. Let y2(1,A) = 0. Note that since ¢ is real, one has
—yz( ~ Ty +qY = X@2) +?2( — Yy +qy2 = /\yz) = by — ¥3T2 = A= N2l

Thus,

(A / it \) Pt = / (st T (8 ) — 4 (6 N (1, 1)) dt

t=1
= (y2 (tv A)yé (ta A) - yé(tv A)?Q (ta A)) =0
=0
O
4.2 Eigenfunctions
We denote the Dirichlet eigenvalues via p; = p;(q).
My < po < pz < ... (4.5)

Due to Lemma (4.3))

[V —nm| < 7w/2  for n > 2exp(|lq||) +1 (4.6)
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Set
gn(2) = gn(2,q) = _v2(@pin) (4.7)
ly2(-, n) |2
gn(x) is an eigenfunction
lgallz2 =1, x (4.8)
gn L2 - ) mgn = .
2=0  |[y2(; )22

Due to Theorem (4.1]) one has also

g (J?) — yg(x,,un)
VOory2 (1, pn) Oy (1, i)
1
axgn =
e=0  \/OAya(1, pin) Oy (1, 1)

Lemma 4.4. If ¢,,(z) — q(x) pointwise and ¢, (x) are uniformly bounded, then i, (qm) — pn(q)

Proof. It is easy to see that y2(1, A, ¢m) — y2(1, A, ¢) uniformly for A running in any bounded set. Since
the roots p1(q) < p2(q) < ... are simple the statement follows. O

To proceed we need to discuss briefly analytic functions defined on a Banach space B. This is defined
via weak analyticity:
z = f(qo + 2q)

is analytic in a small neighbourhood |z| < p(qo, q) for any qo, g.
Lemma 4.5. u,(q) is analytic around any real qo € L?

Proof. We know due to Theorem (4.1)) that

Onie| #0

A:ﬂn(q)
Therefore the statement follows from the implicit function theorem. O
Theorem 4.3.
aq:un = gTQL (tv Q)
Proof. Differentiating
y2(1, pnlq),q) =0
we obtain

(aAyQ(lvﬂn)(aq/Jn) + (3qy2) \ =0

=tin(q)
By Theorem (3.5

Aqy2(1, X, q) = y2(t, A, @) [y1 (. X, Q)2 (1, A, @) — y1 (1, A, @)yt A, @)] Do, 13 () = —y1 (1, A, q)y2(t, A, )

Note that
L= [y1,y2)a=1 = y1(1)02y2(1) — Ozy1(1)y2(1) = y1(1)0uy2(1)
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So,
2
y5(t, A, q)
0, 1,Aq) = "~
qu( q) 8;92(@ Aa Q)
Thus 2(t )
YL, o 2
0 n — =9y t
= o (L, i) On (1, i) ()

Definition 4.6. (a;),>1 belongs to 2 if

Z(nkan)2 < 400

n>1
Clearly li is a Hilbert space. We write

if
Bn = n + ap, (an)nZI S li

Theorem 4.4. Let g € L?, then
1 1 1 1
pin(q) = n?n? +/ q(t)dt — / q(z) cos(2mnx)dx + O () =n’r? +/ q(t)dt +1%(n)
0 0 n 0

gn(2,q) = V2sin(mnz) + O (;)

Dzgn (2, q) = V2mn cos(mnz) + O(1)

uniformly in x and on bounded sets in L?.

Proof. We have
Vn =nm+ 0(1)

sin n& 1 sin n& 1
e ) = ST o (L) _shlsTe) o (1)
Hn |1in ] Hn n

1 1
) B sin(y/fin) 1y 1 1
/0 Y2 (@, pn)dz = /0 o dr+ O (n3 = o +0 3

Now use this on g,

Thus,

gn(T) b2(@, i) = V/25sin( unm)+(’)< )

_ 1
ly2 (- )| n
Note that p,(0) = n?r?,

) =022 = [ Ly = [ artogna) = [ ar [ [ st roawa] = o

22

(4.10)

(4.11)
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Thus,
pin = n2m% 4+ O(1)
Vi =nm+ O (i)

gn(z) = V2sin(nz) + O (1)

n

Once again,

=[]}
_ /01 dr [/Ol(q(t) — cos(2mnt)q(t))dt + O (i)}

2

> (/Olcos(%mt)q(t)dt) < lall2> < +o0

n>1

which implies (4.9) since

Let us estimate 0,¢g,. One has due to the basic estimates

Data(, V) = cos(VAz) + O (%)

Since /i, = nm + O(1/n), we have

Ozy2(x, i) = cos(nmz) + O (i)

Since )
T = V2/im + O(1) = V2mn + O(1)
2
one obtains 5
0pgo = W = V/2mn cos(nmz) + O(1)
2

Set,
an = y1(x, pn)y2(, fin)

Corollary 4.1.

g2 =1—cos(2mnz) + O (1)
n

0292 = 2nnsin(2mnx) + O(1)

1 1
an, = — sin(2mnz) + O (712)

2mn

Ogty, = cos(2mnz) + O (1)
n
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Proof. The first two estimates follow from Theorem (4.4). Due to the basic estimates

x)\—cosxfx @ 1)
yi(z, A) (VAz) + (m

for VA = /i, = mn + O(1/n),
y1(x, ) = cos(mnz) + O <;>

Furthermore, , )
ya(x, fin) = — sin(mnax) + O <nQ>
Oz (z, pn) = —mnsin(mnz) + O(1)
Oryo(x, i) = cos(mnz) + O (TlL)
and the estimates for a,, follow. O

4.3 Product Expansions

Theorem 4.5.

m>1

i) ) o (L)

m2m2

Proof.

The product p(A\) converges and defines an entire function of A\. The roots of p are A = p,(q). So, p/ya

is an entire function with no zeros. We invoke the expansion

sm\f H (mn;ﬁg )

m>1

For r, = (n + 1/2)?7%, n >> 1 one concludes

Recall that

Thus

logn
=14+0
92(1’)‘) < n )

For |A| = rp,n >> 1. By Liouville’s Theorem p(\)/y2(1, A) = 1 everywhere. O
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Lemma 4.7. Let |ay, | = O(Jm? —n?|71),m # n. Then

H (1+ amn) =140 (loin)

m>1,m#n

If Y |bu)? < 400 then
H 11+ @y nbn| < +00

m,n>1,m#n

Proof.

Z ‘m21_n2|: Z |m + Z

m>1,m#n 1<m<2n,m#n m>2n
For the first sum we have

3 1 2 1.2,
[m?2 —n2?| — n k= o8n

1<m<2n,m#n

For the second sum we have

1
Z |m2—n2| <Zk2 n

m>2n

For n large, m # n, |amn| < 1/2,|10g(1 + amn)| < 2|@m,nl,

logn
< =
> og(1-+ am)] <2 lanal =0 (57

m>1,m#n

The proof of the second part is similar.

Lemma 4.8. Let z,, = m?m? + O(1). Then

is an entire function with roots at z,,

FO\) = sin VA (1 +0 (1"5”))  for |\ = (n+1/2)%x2

VA
Zm — A 1
m%r?lJrO(m?)

The product converges and F'(\) is an entire function. Recall the product expansion

Proof. Since

sin v\ B H m2n? — A
X 7m21 m2n2

So,

_ sin VA
F - \f H m27r2

m>1
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Let here |A| = (n + 1/2)272. Then, for m # n

Zm — A 1 1

— =140 ——— =140 ————

b S (|m2w2—x|> " (|m2—n2|)
Zm — A

— 1
m27r2—)\_1+0<n>

and for m =n

O
Lemma 4.9. Let 2, = m?w? + O(1). Then
Zm — A
M= ]] s
m>1,m#n
is an entire function,
—1)ntl 1
Fo) = Y <1+(9 ( Og")>
Proof.
9 sinﬁ‘ _5 H m?r? — A\ 1 H m2n? — n?r?
g VA D=nzrz )‘m21 m2m?  n2n2 T mtn m2m?
5, 5in A (=
A \/X A=n272 2n2m2
Like in Lemma ([{4.8), for A = n%72 + O(1), one has
sin v A z A sin vV A logn
F,(\) =0 L = 1+0
=0t I s oy (o (1))
and the statement follows. O

Corollary 4.2.

MUm — fn (_l)n lOgTL
(L) =[] r = .3 (1+(’) (n

m>1,m#n

sgn(Oay2(1; pn)) = (=1)" = sgn(B2ya (1, pin))

Proof. The statement follows from Theorem (4.5)) combined with Lemma (4.9) and Theorem (4.1) O

4.4 A Basis For L?

Theorem 4.6. a) g, has ezxactly (n + 1) roots on [0,1]. The roots are simple, and

5910 Gn N = (_l)n

b) If g be even, then gy is odd if n is even, g, is even if n is odd.

To prove this theorem we use the following
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Lemma 4.10 (Continuous Deformations). Let h(t,x) be continuously differentiable int,z,t € [0,1],z €
[a,b]. Assume for each t,h(t,-) has a finite number of zeros and all zeros are simple. Suppose also that
h(t,a) = h(t,b) = 0 for all t. Then h(0,-) and h(1,-) have the same number of zeros. Furthermore, if
a=¢&(t) <...<&(t) =b are the roots then sgn@IhL o does not deepen on t.

J
Proof of (4.6). Part a) follows by applying the continuous deformation h(t, x) = g, (x,tq),0 < t,z < 1.
Assume ¢ is even, i.e. ¢(1 —z) = g(x). Then g,(1 — z) is an eigenfunction for p,, ||g.(1 —)|| = 1.
Hence,

gn(l - J}) = angn(x)a an € {17 _1}

Taking the derivatives at x = 1, one obtains

= anaxgn

= rx=1

—0zGn

Recall that 0,9, 0= 1/]|gnl| just from the definition of ys(x, A). Furthermore,

sgndygn = (-1)" = a, = (=1)"*!
O
Corollary 4.3.
sgndp(L V)|, = (1"
Proof. Due to Theorem (4.1))
1
O] Bualain)|_ = [ ult )t > 0
A=lin =1 0
O

Theorem 4.7. g, is an orthonormal basis in L.

Proof. Orthogonality check:
x=1
=0

=0

To show that the system is complete, introduce

Af = (f.en)9n

n>1

where e, = v/2sin(mnz). Note that

IAFIP =D I(f en)l® = IIFIP

n>1

i.e. A is an isometry. Furthermore,

Sl =Dl = 3 llon —eall? = S0 () < oo

n>1 n>1 n>1
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Thus, A — I is Hilbert-Schmidt. Due to the Fredholm alternative , A is also onto since ker A = 0. O

Recall

an(xa Q) =Y (l’, Mn)yQ(Iv Mn)

Theorem 4.8. 1.
(92, 0297) =0

2. )
(am, O2g5) = §5m,n
3.
(@m, Oran) =0
Proof. Recall that g e Gk = 0. So,

(62, 0042) = / G2 (2)0, g2 (2)d
=— / 92 (2)0u92, (x)
0

:%/O (gga(x)axgi(x) - gi(x)@ngn(;p)) dx

_ / I () (2) [Gon 9] ()

If m = n, then [gm, gn] = 0. Let m # n. Then
(9ms 9n)' = (GmGh — o) = GmGn — Gonn = 9@ — 1n)gn — (@ — fim)ImGn = (lm — Hn)GmGn

1
o 9mdn = 7[97717 gn]l

Hm — fn

Substituting this back into gives

1

1 1
0 Hm — Hn Jo

(G, gn)? |2=1

=0
2(pm — pn) lz=0

That finishes 1. Now for 2.
1
2(am,8mg721 :/ (amﬁxgi — &;@mgi)dﬂc
0
1
= / (2919290 029n — OY1Y292 — Oyt gadzr)da
0
1
= / (Y290 (Y1, gn] + y190ly2, gn])dx
0

y; = ¥ (2, ). I m = n, then [ya, gn] = 0, s0

1 1 Yo 1
/ yzgn[yl,gn]dx:/ 79n[y1,yz]dw:/ grdr =1
0 0 Hy2‘| 0
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If m # n, then
(N’m - ,Ufn)ngn = az[yja gn}
thus
! 1 ! [ylvgn][y%gn] r=1
(Y29nly1, gnl+y19n(y2, gnl)de = ———— | ([y2, 900z [y1, gn] + [¥1, 90Oz [y2, gn]) dw = ————

0 Hm — Hn Jo Hm — Hn Tz=0
That finishes 2. Part 2 is completely similar. O
For ¢ =0

g% — 1 = —cos(2mnzx)

0292 = 2mnsin(2mna)

These functions together with 1 are a basis in L?[0,1]. We want to show that the same is true for ¢ # 0.

However, the basis is not orthogonal anymore.

Definition 4.11. A map U : H; — H is a linear isomorphism if it is a linear bijection and U, U~} are
bounded.

Definition 4.12. d,, € H are linearly independent if for any m, d,,, & span{d, }nzm

Theorem 4.9.
U:(&n) =Y &nbags + ol + Y nalgs — 1)

n>1

is an isomorphism , U : 12 x R x I> — L?[0,1]. The vectors 1,92 — 1 are orthogonal to the vectors 0,g2,.
To prove this theorem, we prove the following first

Theorem 4.10. Let e, be an orthonormal basis of the Hilbert space H. Let d, € H be linearly inde-
pendent and obey

Z||dn_€n||2 < +00 (4.12)

Then A : x — > (x,e,)dy is an isomorphism, H <— H. Furthermore, U : x — ((z,dn))n>1 is an
isomorphism H +— 12

Proof. Since I(z) =z =) (z,e,)e, and (4.12) holds, (I—A) is Hilbert-Schmidt. If (a,) € 12,3, and,, =

0, then a,, = 0 for all n, since otherwise there would be N such that

dy = Z Bndy, € span{d,, : n # N}
n#N

contrary to the linear independence of d,,, n > 1. Therefore, ker A = 0 and the statement follows from

the Fredholm alternative. O

Remark 4.13. Assume that d,, obeys (4.12) and {d,} = H. Then U is an isomorphism. This is because
of the Fredholm alternative: ker A = {0} if and only if AH = H

=0
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We will show now that the vectors 1,92 — 1,n = 1,2,... are linearly independent. So are the vectors
0:92,m =1,2,.... These sequences are mutually orthogonal and together constitute a basis in L?. The
map

U:(&n) — Zﬁnaxgi + 1o + Zﬁn(gi - 1)

n>1 n>1
is a linear isomorphism: /7 x R x [? — L?

Proof. By Theorem (4.8]),
1
(am.8$gfl) = iémn

Recall that g, = gn = 0. So, integrating by parts gives
x=0 x=1
(Gxam,g%) = 75m,n
Recall also that a., = am, = 0. Hence
=1 r=1
(Ozam,1) =0
Thus )
(9721 - ]-7axam) = _*5m,n

2

Furthermore

This implies
giil g{lvgvzni 1’m7én7m: 1527}

Furthermore, we have
a:rg'rzz g Span{axggn m 7é n,m=1,2.. }

Due to Theorem (4.8)),
(92,,0.92) =0, mn=1,2,...

= 0 one has
=1

Since g,

=Gn

=0

(1,0,92) =0

The statement regarding the linear independence and orthogonality follows from these relations. The
invertibility of U follows from Theorem (4.10) O



Chapter 5

The Inverse Dirichlet Problem

Set
1
[q] :/O d(2)dz,  jin(q) = pin(@) — n27% — [a], 1= (), (in)ns1) € R x 12

Theorem 5.1. [i is a real analytic map p: L? — R x [?
aq:“(”) = ([/UL (gfL - lav)nzl)

Proof. Let p €2. Given N, there exists r, y > 0 such that for ||g — p|| < 7p N, p1,...,un are real
analytic functions of q. Take N > 2exp(||p|[). Then N > 2exp(||¢||) for ||g — p|| < rp, provided r, is
small enough. It follows from the Counting Lemma that all u,’s are real analytic in ||¢ — p|| < rp n-

Similarly,
Z z,q) = Y2 (.f, /J’n)
g ( ) 3,\y2(1,un)3xy2(1,un)

is real analytic in ||¢ — p|| < rp. Furthermore,

pn(q) = n*72 + [q] — (cos(2mn, x),q) + O (i)

for complex ||¢ — p|| < 7p. The map is analytic,

8[’% 2

aq gTL

O

Remark 5.1. Let ¢*z(z) = ¢(1 —x), then clearly s, (¢*) = p1n(q). So the map ¢ — u(q) is not injective.
We denote by E the set of all even functions ¢ € L?, i.e.

E={qinl?:q" =q}
We denote by g the restriction of y on E.

Theorem 5.2. pug is a local analytic diffeomorphism at each p € E.

31
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Proof.
Oqpee(v) = ([], (g7 — 1, v)nz1)

Recall that by Theorem (£.9) 1,92 —1,n=1,2,... is a basis in E. Thus d,ug(v) is invertible.

Theorem 5.3 (Borg,1946). ug is injective on E.
To prove this theorem we need the following:

Lemma 5.2. Let f be meromorphic in C. If

sup 1700 =0 ()

|)‘ ‘ =Tn n

For r,, = oo, then

ZResf:()

/ f)dA <o <1> 2r, =0
IA|=rn Tn

and the statement follows from the Cauchy Residue Theorem.

Proof.

Proof of (5.3). Assume p,q € E, u(p) = p(q). Consider

(yQ(I7>‘aq) — y2(177>\ap))(92(1 RS AvQ) — 92(1 — I7>‘ap))
y2(1,>\,q)

fA) =-
f(A) has simple poles at A = p,,. Recall

Yo (1 — @, pn) = (=1)"y2(z, pin)

So,
_ 2
Resf — (?/2(357/%7(1) y2<$7ﬂnap)) Z 0
A=Lln a)\yQ(lvﬂnvq)

Furthermore,

32

exp(|3vAle) exp(ISVAI(L — 2)) _ exp(SVA]

|y2(337)HQ)_92(37,)\7p)||?42(1—33’)\7Q)—y2(1—1’7 Aap)l < \/W ‘)\| =
Since from the basic estimates we had
: [ o
(i~ SVA| _espllall +1SVA) _( exp(I$vA)
VA 1Al VA
Since
] Cx
sin VA > exp(|\sﬁ|), if [VX —mm| > E, Ym
VA VAN 4
O
) > SRV e R s T
8v/ || 4
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Thus )
1 1
= —_— f — — 2
|f(N)] O(|)\|3/2|)’ or [A| (n—l— 2) n

ZRessz

That implies that

Hence,

y?(xa,u‘naq) :y2($aﬂmp) VI,TL

Note that if y(z, A, q) = y(x, A\, p) for some particular A and all z, then p(z) = ¢(z) for almost all . O

Set (Flaska, McLaughlin 1976)

() = log ((=1)" D1, 1) ) = log

dgn(1,9) ‘
029n(0, Q>

Theorem 5.4. ) )
_ : 2
5 (q) = %(51n(27rnx),q) + O (712) =1i(n)

n

1 . 1
0y = anlt )~ lanlg0.0) = -snzmnt) +0 ()

uniformly on bounded sets.

Proof. Since 0,y2(1, pn(q),q) # 0, 3,(q) is a weakly continuous real analytic function. Furthermore,

-73:17)\:“71,)

Ous|_ = 2O () — 1 @100 O] _ = 31D (0pa(0) — i (Dpat)?

aqﬂn + 3q5xy2

=1, A=pn

1
Ogtn = —— | 0
¢ azyQ(laﬂnvq) ( A2

Recall that due to Theorem (3.5

1 1
00ute|_ =50 [ it + (V) [ o
0 0

r=

Recall also that by Theorem ({4.3))

5(ts pin)
a n = 2 t) = y2(7 n
atn = 90E) = T ) P

One obtains

D5t =y (b )yt 1) — ( [ (uun)yz(t,u)dt) (1)
—an(t) — a0

:% sin(2mnt) + O (12>

™n n
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(See Corollary (4.1)) Furthermore, z,(0) = 0,
W= gy
»n(q) = —
0= ) qx
1 1
= [t [ (@)t (s)a(e)ds
0 0

:/01 dt/ol (27171 sin(27ns) + O (;)) q(s)ds
1

=——(sin(2mnz,q) + O <n12>

2mn
=13 (n)
O
Lemma 5.3.
(Og2tm, 050g32n) =0
1
(8q%maa:v/’cn) = §6m,n
(8qﬂm»amaqﬂn) =0
Proof. Using Theorem ([5.4]), Theorem (??) and Theorem (4.8])
2 2 1
0q5m, OxOgfin) = (@m — [am] ;s 029;) = iém,n
The verification of the rest is similar. O

Theorem 5.5. The map q — (36m(q)), (tm(q)) is injective.

Proof. Assume 3,,(q) = 2m (D), pin(q) = pin(p) for all m,n. Consider

(y2($7>‘aQ) — y2($?)‘7p)>(y2(1 - Z, )‘aq*) - 92(1 — vaap*))
y2(17>\,Q)

) = -
since 4, (q) = 54m(0), tn(q) = pin(p), we have

Oay2(1, pins @) = Ouy2(1, in, p)
where p,, = pn(p). Note also that

yQ(xa Hons q)
8xy2 (1:7 Hns Q)

yo(l =z, pin,q") = —

Since both sides are solutions of —y” + qy = p,y with the same initial conditions at = 1. The same

conclusion applies to p. Calculate:
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Res _ (a2, i, q) = ya (2, i, P)) Yo (@ ks @) y2(, i, P)
A=pn 312(1,HmQ) 312/2(%#71,‘1) o 5'my2($a/lmp) -1
_ (2@ 10 0) = (2, pin, D))
Oxy2 (1, tny 0)0zya (@, pins @) |
Recall that by Theorem (4.1)
1
8A92(17A7Q)6x92($7)\7Q)’ = / yQ(xa)‘7Q)2d‘T >0
r= 0
Thus, Resf N > 0 for all n. One can invoke Lemma (5.2)) to conclude that
=pn
Resf[ =0
> Resf|
Thus,
Y2(Ts s @) = Y2 (T, i, p), Vo
That implies ¢ = p. O
Lemma 5.4.
#(q") = —»(q)
In particular, q is even if and only if (q) =0 .
Proof. We know from the proof of Theorem (5.5]) that
Y2 (1‘7 Hns Q)

y2(1 - x7/J'n7q*) = -
azyQ(xaunaq)‘

x=1

Differentiating this identity at £ = 0, we obtain

89:3/2 (-1:, Hn (q)’ Q) =0

1

~Oey2(&, im0, 47| _, B2 (, pn (), q)( .

We also know that p,(¢*) = pn(q). Hence

In(—1)"0y2 (&, pn(d”). 47)
(="
0o (w10 (0). )|

*
%n(q ) =1

=log
=1

= %n(Q)

Duy2(x, 1in(q), q)

z=1

Furthermore, if ¢ is even, then ¢* = ¢, and ,(¢) = 0 for all n. Vice versa, assume »,(q) = 0 for all n.
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Then (>2(q*), 1(¢*)) = (5¢(q), p(q)). By Theorem (5.5) ¢* = ¢, i.e. , ¢ is even. O

Set
Vn(xv Q) = 283:92 = 28;86an

Wn(m,q) = —2(993(&” - [an]gi) = —26$8q%n

Due to Corollary (4.1))

V,, = 4nnsin(2rnz) + O(1)

1
W, = —2cos(2mnz) + O (n)

uniformly on bounded sets.

Theorem 5.6. (5, 1) is a local real analytic diffeomorphism at each point ¢ € L?. The inverse for

dg (3¢, 1) is a linear map from 13 x R x 2 — L? given by

(dg(32, 1)) (Em) =D &V +mol + > 1 Wa

Proof. u is real analytic on L?. Let us check that s is real analytic. Let p € L. WE know that s, g2
are analytic for ||¢ — p|| < rp. Furthermore, 0,y (1, A, ¢) is analytic for ||A — p,(p)|| < pp. |lg — p|| <7
and does not vanish (since d,y2(1, 1, (0),p) # 0) by Theorem ([5.4)).

Ogtn = an — [a’n]gfl

One can now repect the estimation from Theorem (5.4)) to show that

n(q) = QL(sin(mmx),q) o (1>

™ n2

uniformly for ||g — p|| < 7,. Thus s is real analytic map with values in /. Let us now discuss the

derivative of the map (¢, u):
0= (((@42), 0): 0] ((Dfin) v))
By Theorem
20y sy, = (sin(2mnx), q¢) + O (711)

By Theorem (4.4))
1
Ogfin = —2cos(2mnz) + O <)

n

To show that the derivative map is invertible, we invoke Theorem (4.12)) . For that we need to show that
Ogtn, m=1,2,...;1;04ftn, n=12,...
are linearly independent. Due to Lemma (5.3 for all m, n holds

1
(aq%mv a:vaq,un) = §5m7n
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(Ogttm; O0qpin) =0,  for all m,n

Note that Ogfim = Ogttm — 1, 0z (Ogfim) = 020 pbm. Furthermore
aq,un " =0, an - [an]gi =0

=0,1 z=0,1 z=0,1

Integrating by parts gives

(aqﬂmaazaqﬂn) = *(az(aqﬁm)a aq,un) = *(@caq,umaqﬂn) =0
(1,0;0q4tr) =0

It follows from (??) that 0,04k is orthogonal to all vectors in (??) but J,s¢,,. Therefore, if

Z gmaq%m + 1o + Z nnaqﬁn =0

For some ((£,,),70, (7n)) € 13 x R x [2, then &, = 0 for all m ( The series here converges in L?). Recall
that the vectors 1,0y, are linearly independent (they form a basis of E by Theorem (4.9)). Hence,
N, =0,n=0,1,2,.... We also have

ngaq%m —sin(2rma)||* + Z || = Ogfim — 2 cos(2mnz)||* < 400
m

Therefore the map
(57 7]) — ngmaq%m + 1Mo + Z nnaqﬁn
m n

is an isomorphism from [2 x R x [? onto L?. Therefore the derivative map (v € L?)

v — ((aqum)m, [v], (aqﬁn,v)n) €l xRxI?

is invertible. Therefore (3¢, 11) is a local real analytic diffeomorphism. Let us calculate the inverse. Given

(&) € 12,10, (nn) € 12 we are looking for v such that

(811%"“”) =&m, [v] = To; (aqﬂnvv) =1Tn

We invoke Lemma (5.3), we have

(aq%ma 2 Z gmaxaqﬂn) =£m
(8q/1na 2 Z gnaxaq,un) =0

(aq/]na —2 Z nrazaq%r) ZQ(awaana Z nraq%r)

=n
(Dg2m> =2 Op0y36) =0
(17 2Z€naa;8q;un - 2an818q%7") =0

That verifies the formula for the inverse. O



Chapter 6

Isospectral Sets, The »-Flow

Given p € L?[0,1] set

My (p) = {q : pn(q) = pn(p)}

Note that since dyu, = g2 > 0. M,(p) is a smooth manifold. We know also that g2’s are linearly
independent, so
Ml(p) n...N Mn(p)

is a smooth manifold. Set
Up=1, Uy=gy—1, Vp=20g,

Un = Z nnUn
VE = Z ann
By Theorem (4.8), (?7)

{Uy:meRx PP} L{V;:£€l3}

Re{Uy:neRxPro{Ve:eli} =L

Theorem 6.1. a) For any p, M(p) is a real analytic submanifold of L?.
M(p) € {q:[d] = [p]}

b)
T,M(p) = {Ve(q) : £ € 3}

N,M(p) = {U, :n €}

Proof.
(dgp)(w) = (U, w) i1 2 0)

38
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set ker, = kerd,. We want to show that d,u restricted to ker;‘ is invertible. Clearly

kequ:{Un:nE]Rxl?}

(U Un) = 6mn + <Cos(2ﬂ'm:c), o <i>> + (cos(Zﬂ'nx),O (;)) Lo <Tin>

Recall that

So,

Z (U, Up) = 6mm)? = Z (Cos(27rm;v) (@] 1 )24—2 cos(2mnzx), O el 2—}—2 (@] L (@] 1
m,n " " . m,n 7 n m,n 7 m m2 n2
Due to Bessel inequality

>0 <COS(2ﬂmx),O (i))Q < zﬂ:o (nlz> < 4o

n m

Thus,
((Um, Un)) — I = Hilbert-Schmidt

m,n

Since U, is a basis in keré‘7 (U, Un))m.n is one-to-one. By the Fredholm alternative (U,,,U,)) is

invertible. That implies the statement. O

Corollary 6.1. »(q) defines "global” coordinates on M.
dge(Ve) = ¢

Proof. Recall that ¢ — (11(q), »(g)) is an analytical embedding. The identity dgs¢(Ve) = £ follows from

Lemma (j5.3)) O
Let ¢'(g,&) be the flow of the vector-field V¢. One has

¢(q, &) = q + Vedt + O(dt?),

o (6(06)) = eala) + <8q%m d’fZ&an) + O(dt?) = s4n(4) + Endt + O(dr?),

m

#(6'(0.)) = (@) + ¢

The flow is defined as long as there is no blow up i.e. ||¢*(q,&)|| does not how to +oco when ¢t — ¢

Lemma 6.1. 4sinh(3,(q))
e Asinh(se,(q))
(¢, V) = (=1) Oy2(1, pn(q), q)

Proof.
roof. X
0
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Recall that
78:295971 + q9n = UnGn

SO

1
(¢ 000%) =2 / (020 + 1ingn) Dagnda
0

_ (0zy2(2, pn(g), 9))* z=1
y2(1, pn(q), 9)0xy2(1, pn(q), q) la=0

1

1
“ony2(L, in(q), q) (8$92(1aun(q),q) _ a)

2y2(1, 1 (q), q)

We used 0,y2(z, A, q)‘m:0 =1 for any X. Recall that

sn(q) = log ((—1)" 2y2 (1, 1in (), q))

That implies the identity. O

It is convenient to introduce the notation

L
" a)\yQ(l,Mn(q), Q)
By Corollary (?7)

2272

it G2 (140 (422))

So,

1
Yo = nm? <1+O(oin)> >0, n>>1

Furthermore, by Corollary (?7?)

N | P

m>1,m#n

In particular, O y2(1, ur) depends only on the Dirichlet spectrum. In other words we have the following

statement.

Lemma 6.2.

We prove now

Lemma 6.3.
16" (q, VOII* = [lall” + 8> ¥ (q) ((cosh(36,(q) + t&n) — cosh s, (q))

n>1
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Proof. .
§8S||¢s( )Hs 0= Q7V§ Zgn Q7 = 4Z€n'7’n Slnh %n(q))

n>1 n>1

Thus, for general ¢t we have the following

%at\wt(q)n?:4Z§m<¢f(q ) sinh(s(¢'(q))) =4 _ &nyn(g) sinh (36, (q) + t&n)

n>1 n>1
Note that here
|0 m SInh (56, 4+ t6,)| = O (€2 + |€nsen|)1n)

provided |t| = O(1). Since v, = o(n?) and &,, 5, € I3, the series here converges. Therefore

1" (@)]I* - HqIIQ—SZ%/ &nsinh(s5, + 56, )ds = 8 v (cosh(se,(q) + t&5) — cosh sz,,)

n>1 n>1

Theorem 6.2. The Flow ¢'(q, V) is well defined for all t.

Proof. Due to Theorem (5.5)) the map ¢ — (u(q), »(q)) is an injective diffeomorphism from L? to [2 x [2.
Since sup ||¢(q, Ve)|| < 400, the statement follows. O

Remark 6.4. Since »(¢'(q)) = »(q) + &t, t € R the set M(q) is unbounded.

For ¢ € M(0) and & € I2, set

exp,(Ve) = 6'(a. Vo) _

Note that
w(expy(Ve)) = »(q) +¢€

Clearly we have the following statement
Theorem 6.3. For fized q,exp,(Ve) is a real analytic isomorphism between Ty M (p) ~ 13 and M (p).

Corollary 6.2. There is a unique even point qo € M(p). Moreover

llgoll < llgll,  for any q € M(p)

Proof. Set qo = exp,(V_.(p)). Then 3(qo) = 5(p) — 5(p) = 0. By Lemma (?7?) qo is even. By Theorem

(5-5) the map ¢ — (u(q), »(q)) is injective. Since p(q) = p(p) for ¢ € M(0), 5(q) # 0 for any g # qo.
Again by Lemma (??) no ¢ # qo is even. Furthermore, for any £ # 0, one has due to Lemma (6.3)

Il exp,, (Ve)lI* =llgoll* + 8>~ 7a(q0) (cosh(s4,(qo) + €) — cosh 54, (o))

n>1

=llgol1> + 8> 7n(a0)(cosh & — 1) > ||qol[?

n>1
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Since the range of £ — exp, (Ve) is M(p), one has

llqo] < |lql|, for any q € M(p)

42



Chapter 7

The Spectral Map Range, The
1-Flow

Let p,,(q) be the Dirichlet eigenvalues. In this section ¢ € L? as usual, and

fin(q) = pn(q) — 70 — [q],  p(q) = (la], fin(q),n > 1) € R x 1.

Our first goal is to show that the map is onto
S={s,() € : 7 + 7, <7 (n+1)* + i1}
Let I be the constant vector-field on R x 12 x [2
L, ={0,0mn;m>10¢€ 3
Consider its pull back via the map p. By
(dgr) ™' = ~205(an — [an]gr) = Wa(z,q)
Set

Wn:no+Zr;an, neR x>

n>1

Let ¢'(gq, W,) be the W,-flow. Clearly

(9" (¢, W) = plq) +tn

consider ¢'(q, W,,). Then

(6 (g, W) = { Mug)(a)_,t :iz

As we know fi,—1(q) < pn(G) < pin+1(qG) for any ¢ € L? and any n. So

43

(7.1)

(7.2)

(7.3)
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pn-1(q) < pn(q) +t < piny1(q)

44

(7.6)

That defines the interval of ¢ where there is a chance to define the flow. We want to show that for all ¢

in (7.6) the flow is indeed on defined. First of all we need some auxiliary lemmas.

Lemma 7.1. Let f be a nontrivial solution of
-y +tay=X\y
and let g be a nontrivial solution of
—y'tay=py, p#A

Then
9, f]

9

is a non trivial solution of
—y" + (a 203, log lgl)y = Ny

For A = u the general solution of (7.10) is as follows:

(aro [ )

Here if g has roots, then the equation is considered between them.

(7.11)

Proof. The proof can be done just by direction calculation. Here is a slightly nicer way to verify the

claim. Set ) )
A=g(0z)-, A"=-—(02)yg
g g
Using the equation
—9" +a9=ng

one obtains )

d
A'A=——— —
ar? +q—p
So, f obeys

ATAy = (A —py

Similarly, using the equation (¢”/g) = p — ¢, one obtains

AA* = —9? g—// 2’ 2— 02 0921

Applying A to both sides to ((7.12]) one obtains

AA* Ay = (N — p)Ay

(7.12)
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So, f is a solution of ([7.12]) then Af is a solution of
(= 0%, + (¢ =202, loglg]))y = Ay

Let us calculate Af:

f

ag =gtont o,y 220 0]

) )

Note that [g, f] can not be identically zero. This is because
9. £ = 902 = fOg = 9(u— ) f = f(A = @)g = (= N)gf

Let h obey
—07,h+ (¢ — 202, 10g |g|)h = ph
Then
AAh = (=03, + (g — 202, log |g]) — u)h =0
on the other hand )
AA*h = —g0, (gzﬁx(gh))

Thus, between any two roots of g
Oy (gh) = b92

with b depending on these roots. That implies the second statement. O

Lemma 7.2. Let g, h, f be non-trivial solutions:
—02,9+4a9 = pg, —05h+aqh=vh, . f+af =\, X#pv

Then

1 1 1
[t 3t0.01) = =07 = L. 0. 1og g

is a nontrivial solution of
—y" + (q— 202, log|ghl) y = Ay

Proof. This is just an iteration of the previous lemma. O

Remark 7.3. Lemma 1 was discovered by Gaston Darboux in 1882.

Set
Y1 (1, pn) —y1(1,A)

wyp(x, N, q) =y1(x, \) +
( q) yl( ) yQ(l,)\)

ya(z, \)

wy, is a unique solution of

-y +qy =My

with w, (0, A) = 1,w, (1, \) = y1(1, p,) provided X # pi,m = 1,2,.... At A = p,,, with m # n, w,, has
a pole. There is no singularity at A = u,, for dxya(1, p,) # 0. Set

Zn(2,q) = y2(z, 11n (), @)
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consider
wn(xv )\aQ) = [wn; Zn]a T € [07 ]-L A € (Mnfl(Q),NnJrl(Q))
Note that
Wn = wy, Op2n, — OgpWw, Zn =1- 0w, 0=1
=0 x=0 =0 =0 x=0 x=0
Wn, = Wn Oz 2n = yl(lu Moy Q)axy2(17/1'n7 Q) =1, for all A
=1 =1 =1
W, = [y1,y2] =1, for all
A=pn

Lemma 7.4. The function w, is strictly positive for x € [0,1], A € (tn—1(q), tnt1(q))-

Proof. Assume the statement fails. Then there exists A\g € (tn—1(q), tn(q)) U (ttn(q), n+1(q)) and

0 < z¢ < 1 such that wy,(zg, Ao, ¢q) = 0 and w,(+, A, ¢) has a local minimum at = z¢. One has

0 :aan(x()a )‘05 q)
an(ﬂcm Ao, Q)aizyQ(ﬂUo; ,Un(Q)> Q) - aizwn(ﬁo, Aos (1)92(9607 Mn(Q)a CI)
= — Wy (20, 05 q) (1tn — @) y2(20, 1 (0), @) + (Ao — @) wy (w0, Mo, QY1 (%o, 1a(4), q)

Since wy, (g, Ao, ¢) = 0 we have also
0 = wn (20, Ao, 9)0zY2(T0, Ao, ) = Ozwn (o, Ao, q)y2(T0, Xos q)

If wy, (20, Ao, ¢) = 0 then dywy, (20, Ao, ¢) # 0 and ya(zo, Ao, ¢) must vanish. Similarly, if yo (29, Ao, ¢) = 0,
then w,, (2o, Ao, ¢) must vanish. Thus w,, (xg, Ao, ¢) = 0 and y2(xg, Ao, ¢) = 0, so

(x —x0)+ O ((x - zO)Q)

T=x0

wn(x7 >\O, q) - a{twn('a )‘05 q)

Y2z, (), 9) = 0xya (-, pin (@), ) (& — w0) + O ((z — 20)?)

Here

Oewa( 20,0)| A0, Duvals11n(4),0)

=x9

£0

T=T0

Hence,

Own (x, Mo, @) = (Ao — pin)Ozxwn (-, Ao, q)‘ 0xy2(, 1in (@), q)

=0

(x—20)* + 0O ((x - xo)g)

T=Tq
This contradicts the assumption that wy, (-, Ao, ¢) has a local minimum at = = x. O

Theorem 7.1.
¢'(q, Wy) = q — 02, logwn (2, i + t,q)

Jor all pin—1 < pin(q) + 1t < pin(q).
Proof. Let wy, = wy (T, fin, + t,q), wn,t = wn (T, tn, +t,q). By Lemma (?7)

1 w.
h = *[wn,ty Zn] = Tt
n ZTL
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obeys
—y" + (¢ — 92,108 20)y = (pn + 1)t

By Lemma (6.1]) w,, ¢ is strictly positive for z € [0, 1], -1 < fin +t < pint1. Therefore
¢ =q- 28;6 log wh, ¢
is in L2. Let Znt = 1/h = 2z, Jwy, ;. this function also belongs to L?. For j # n consider

1 [Zn, 2;]

_— Oy logwy, ¢
Hn — Hj  Zn

Zj,t = Zj —

By Lemma (?7), z;, obeys
—y" +q'y = (1 + Gjnt)t

Note also that zj,t‘ = Zj’t’ = 0. Recall that (u, + t) does not recover ¢'. For that we have to

x=C( =1
verify that »;(q") = »;(q) for all j. That is exactly what is needed to see that ¢ = ¢'(g, W,,). Recall
that
Oxzj(1)] _
92,0y = 9

. Opz
%j(Q):log azt’
x~],

=0

Theorem 7.2. The range of the map p is S C R x 2.
Proof. Let 0 € S be arbitrary. Clearly we can assume o = (0,5) where & € [2. Consider

oN = (W w0, WY = a?
Clearly o™ — p(0). Since y is a local diffeomorphism there exists N large enough such that o = u(q).
The vector fields I, k = 1,2,..., N define flows which act transitively on R® C [2. Since S is defined

via

n? 44, < 772(n + 1)2 + Yna1

The flows ¢! (q), n =1,..., N allow one to transform ¢ into ¢ with (f,(§)))_, begin arbitrary, as long
as
ﬂn(d) < ﬂn+1(d)
O

Corollary 7.1. The sequence py < pig < ... < fip, < ... is a dirichlet spectrum if some q € L*[0,1] if
and only if

i = 702 + 5+ 1%(n)

Remark 7.5. This result was discovered in Gelfand-Levitan’s 1951 paper which appeared in AMST,1,253-
304 1955.



Chapter 8

Interpolation Formula for Hill

Discriminants

Let y1(x, A, ), y2(x, A, ¢) be the fundamental solutions. The following function

is called the Hill discriminant. It is the trace of the fundamental matrix and it plays a very important
role in the periodic spectrum which we study in Part 9. Here we are concerned with the following

problem. Assume g, (p) = un(q),n =1,.... Assume also

A(pin,p) = Aptn,q), n=1,2,... (8.2)

where i, = p,(p). We want to show that in this case

A(Ap) =AM 9) (8.3)

for all A € C. Since A(X, p), A(], q) are entire functions this is a problem of uniqueness and interpolation.
If we could interpolate A(\,p) from A = p,, n = 1,... to all A € C this would resolve the problem.
To do the interpolation one needs ”good” asymptotic for the function at |A| — oo. It turns out that
the function A(A, p) does not obey the needed estimates at |A| — oco. First we will consider some other
important functions which do obey the needed estimates. That allows us to develop partial fraction
expansions for these functions. In regard of A(\,p) = A()\, ¢) we just consider A(\,p) — A(), ¢) and

show that this function also obeys the needed estimates. Therefore it vanishes everywhere.

Lemma 8.1. Let f € L'[0,1]. Then for any € > 0 there exists a constant C(e) such that for any & € C,

we have c
< exp((3¢)) (e + G

< exp(i3e) (e+ <)

1
/ f(x) cos(€x)dx
0

/01 f(x)sin(éx)dx

48
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Proof. Given € > 0, we find g € C''[0,1] such that

/ |f(x x)|dx < €
/ ) cos(Ex)dx

Note that |cos§;z:| |sin x| < exp(|S¢]), and

1 _9(@)
/0 g(x) cos(€x)dx = ¢

Then,

) cos(€x)dx

+max|cos§:n|/ |f(x) — g(x)|dx

r=1

: Lt
sin(&x) - g/o g (z) sin(&x)dx

z=0

and the estimate follows.
O

This version of the Riemann-Lebesgue Lemma allows us to improve a bit on the basic estimates and this

is exactly what we need. Now we introduce an important function which allows interpolation:

U(}\,p) = yl(la )‘7 Q) - a:ry2(17 )‘7Q)

We want to estimate |u()\, ¢)| using Lemma (8.1]). Recall that

nieh) =) + | " — (bt N)dr

yal N) = s (x) + / " ox(@ — Dq(t)ya(t, Ndt

where 7
sin(v Azx)
ex(z) = cos(VAz), sa(z) = ——2
NE) (VAz), sa(z) 7
Furthermore,
O = er(a) + [ exle— Oaltyalt, N
0
Thus,

1 1
u(\) = / sx(1 = B)a(t)yn (8, A)dt — / ex(1 — D)q(t)ya(t, Nt

Lemma 8.2. Given € > 0 there exists a constant C(e,q) such that

‘W(+O(f> PV

Proof. Using the integral equation for y; (2, A), y2(x, A), once again, one obtains

1 1 1
u()) = / s (1 — Dq(t)e(t)dt + / sx(1 - Da(t) / $x(t — 7)a(r)un (r)drdt—
_ / ex(1— q(t)si(t)dt — / ex(1 - D)qt) / SA(t — )a(r)ya(r)drdt
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One has
53 (L= )sa(t = T (1) sexm*f%'('l ~D RIS (exp(iava)
_o [e2(SvAD)
‘O< B} )
Also,
o e (SVAI(L=1)) [ exp(ISVAIT)
lex(1 = t)sa(t — 7)y2(7)| <exp(ISVA(1 1)) NDY 0( NG )
_o [e2(SVAD)
o (=)
Note that .
sx(1 = t)ea(t) — ea(1 - t)sa(t) = “mf{%)) (8.4)
Thus 7
R N A exp(|SVA))
u()\)—ﬁ/o (VA 2t)q(t)dt+(’)< N )

Applying the estimate of Lemma ({8.1)) one obtains the statement.
O

We turn now to the interpolation formula for u(A), A € C. Usually the derivation is done for the function
u_(2) = u(z?)
which plays an important role in the context of the periodic spectral problem.

Lemma 8.3. Let T',, = {|z| = w(n + 1/2)}. Given € > 0, there exists C(€) such that for n > Ny and

= u(0) Cle.q)
I3 e <0 (+ )

Proof. Recall that for |A\| >> 1,

where Cy = Cy(q).

sin(v/Az)

y2(x7>‘) - \/X

Al

o (expu%mx))

Recall also that if min, |z — mm| > 7/2 then

1
[sin(2)] > 7 exp(|3])
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Hence, for |¢| = m(n + 1/2) with n >> 1 one has

exp(|S¢]) - exp(S¢])

2>

By Lemma ({8.2))

1 € Cle.q) exp(|S
u<<)ls|<|< + e ) p(13¢))

Setting ¢ = R, exp(if),0 < 6 < 27 where R, = w(n + 1/2), noting that d¢ = R,iexp(i6)dd, and

supposing |( — z| ~ R,, one obtains

u_ (0)  Clew)
/pn |y2<17<>|<z|'d5'5(+ @ )

as claimed.

Corollary 8.1. For 2% # uy,

B ) > fru— (/i)
u-@) =1L ) 5 e — )

Proof. By the Cauchy Reside Theorem for z # uy

1 u_(¢) u_(2) u_(/f)
— d¢ = R
2 Jo, w0 T L) M<%+1/2) =z () ety

Note that

1 1 +1
Resi‘ - 7‘ -
yo(1,¢%) le=2vme  Ocya(1,¢?) lc=2ymn  20ay2(1, pr) /B

and the statement follows O

We turn now to the main question: Does (8.2) imply (8.3), i.e. AN\, p) = AN, q) ? Just like in (8.3)) -
(?7) one obtains

A(N) :2cx(1)+/0 sx(l—t)Q(t)c,\(t)dtJr/O ex(l = 1)g(t)sx(t)dt + O <exlo(:)\i‘s|\f)\l)>

Instead of (8.4]) this time we have

sx(L = D)ea(t) + ex(L — B)sa(t) = Sh\l}f
Thus,
_ sinvA ! exp(\gﬁD
AN, q) =2cos VA + 7 /0 q(t)dt+ O <|>\| > (8.5)

Set
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sin v\

S\, q) =A(N\q) — 2cos VA — [q] 5y

Theorem 8.1. For \ # g,

- > S(px)
S(A) = y2(1,A) ; 8/\y2(17uk>k(,uk =)

Proof. Goes the same way as Corollary (8.1)) O



Chapter 9

Periodic Spectrum

Consider the Sturm-Liouville Equation
-y +ay=X\y (9.1)
with periodic boundary conditions (P)

and anti-periodic conditions (AP)

The Floquet matrix is as follows,

my m
F(X\q) = ( ! ,2> mj =y;(1, A, q), mj=0.y;(1,)q)
my My
Note that
det FI(\, q) = [y1,y2] = 1 (9.2)

Hill’s Discriminant is as follows
A = trace(F) = mq + mj

A called a periodic (respectively anti-periodic) eigenvalue if there exists a non-trivial solution of (9.1))
which obey the condition (P) (respectively (AP)). Recall that if y is a solution of (9.1)) then

<y<1>> e <y<0>>
y'(1) ¥/ (0)

Thus, A is a (P) (resp. (AP)) eigenvalue if and only if the matrix F'(), ¢) has an eigenvalue 1 (resp. -1).

Since det F' =1, the eigenvalues of F are as follows

A++vVA2 -4
2

53
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Thus the (P) (resp. (AP)) eigenvalue equation is as follows

A=2 (resp. A =-2) (9.3)

Recall the basic estimates

exp(|SVAlz + [lgllv/)
v

exp(|SVAlz + (gl V)
VI

‘yl(% Aq) — COS(\/XQ:)‘ <

Ouya(w, A ) = cos(VA)| < llg|
Thus,

(1 + llal)
’A(A) — 2cos ﬁ‘ < W

The function 2 cos v/A is the Hill discriminate for ¢ = 0. It is analytic and the roots of (2 cos VA F2) are

72n?2, n-even (respectively n-odd). Now, just as in Part 4, one has the following

exp(|SV Az + [lgl|) (9-4)

Lemma 9.1. Let N be an integer N > N(q). Then (A(N)F2) has ezxactly 2n — 1 (respectively 2n) roots
in the half-plane RV < 72(2n+1/2)%. The function y»(1,\) has exactly 2n+ 1 roots in this half-plane.

e For real g, the roots of A F2 = 0 are real (again due to self-adjointness)
L4 ml()‘> q)m/Q()‘7 Q) - m/1<)\a Q)m2<)\7 q) =1
If X is a Dirichlet eigenvalue then ma (A, q) = 0. So
mi(ptn(9); )M (pn(a),q) = 1
For real ¢ we have : sgnm/(u,(q),q) = (—=1)™.

2 if n is even

—2 if nis odd

/ 1 / 2
A(pn) = ma(pn) +ma(pn) = m +ma(pn) { <

Due to the basic estimates, one has

(9.5)

ONA —Dx(2cosVA) =0 <|S\/X|>

VIAl
e Once again, one obtains the bouncing lemma for da. The function 9y (2 cos \&) has simple zeros

at A =72k% k =1,2,... ( There is no zero at A = 0). That implies the following statement: The
function dyA has exactly (2n — 1) zeros in the Half-Plane Rv/\ < 72(2n + 1/2)2.

e Since A()) + 2 has exactly 2n roots on the interval (—oo,7%(2n + 1/2)?), its derivative 9\A has
(2n — 1) roots interlacing the roots of the function (Rolle’s Theorem). Thus, all the roots of \A

are real and they interlace the roots of A(X\) + 2 (Some may coincide).

e For ¢ =0, A(\) = 2cos VA, which has the following graph
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In the general case we know that
A(A) 500 as A— —o0

A(N) —2cosVA = as A — oo

A()) F 2 has (2n-1) (Respectively 2n) roots on (—oo, m2(2n + 1/2)2.

> 2, if kiseven

A
(“’“){ <2, ifkisodd

< pg < ... < lUop <7r2(2n+1/2)2 < U2n+1

Let A(Xg) = 2,A(N\) > 2 for A < Xo. Between Ao and the next root of A(X) = 2 seats a roots of
A()\) = —2. Indeed, assume A(X\o) = 2, A(A) = 2 and all 2n roots of A(X) + 2, € (—oo, 72(n + 1/2)?)
belong to (X, 72(n+1/2)%). Then by Rolle’s Theorem 9y A()) would have a roots on (Ag, A) and at least
(2n — 1) roots on (X, 72(2n 4 1/2)?). Thus there exists: A\g < A1 < 72(2n + 1/2)? such that

Ado) =2, A(\) = -2

A()) — 2 has (2n — 2) roots on (A1, 7%(2n + 1/2)?), A()\) + 2 has (2n — 1) roots on (Ay, 7%(2n + 3/2)?).
Note that 9xA # 0 for A € (Ao, A1) since otherwise dyA would have, 2n roots on (—oo, 7%(2n + 1/2)?).

In particular :

A(X) strictly decreases on (Mg, A1)

Obviously, there exists \; < Xy < 72(2n + 1/2)? such that A(X\y) = —2,0,A has a simple roots on
[A1, A2]. Note that Ay = A; is possible, as it is the case for ¢ = 0. Just as above, using a counting
argument one concludes that there exists Ao < A3 < 7%(2n + 1/2)? such that A(A3) = 2 and

A()) strictly increases on (A2, Az)

Finally, one obtains

/\0 <A <)< )\3 <M <...< )\4n < >\4n+1 < /\4n+2 < 7T2(2TL+1/2)2
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where
A(Ao) = A(Aak43) = AQukra) =2 & A(Agpy1) = A(Aap2)

The graph of A(X) looks as follows

Note that since A(py,) > 2 if n is even, and A(u,) < —2 if nis odd and p1 < pe < ... < po, <
72(2n +1/2)? < pant1 < .... The py are situated as follows

A< < A2, A3 < pe <Ay,
Note also that pj mat lie on the edge of [Agk—1, Aak]
Lemma 9.2. For any t € R the periodic spectra of q(t + x) is the same as for q(z).

Proof. Let y(z) be an eigenfunction of
~ 0.y + a(@)y(x) = My(w)

with y(1) = y(0), 0;y(1) = 0,y(0). Since y(z) is a solution of a linear differential equation it is defined
for all z. Since the initial conditions at z = 1 are the same as for x = 0, one have

y(1 +2) =y(z)
i.e. y(z) is a 1-periodic function. Given t € R, y(¢t + ) obeys
Oyt + ) +q(t + 2)y(t + ) = My(t + 2)

y(t+1) =y(t),0y(t + ) = Ly(t+ )

r= x=0

That proves the statement. O

e The Dirichlet eigenvalues for g(t + x) are different from the dirichlet eigenvalues for g(x). Let us

denote them as
Nl(t) < ,U,Q(t) < ...

e The following identities are important
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A% () — 4

i.e.

thus

:(yl(la Nln) - a:cyZ(]-a ﬂn))Q + 4y1(17 Nn)a:vy2(/in) -4
=(1 (L pn) = et (L))" +dlymel| _ —4= (n(pm) = Daga( )’
Alpn)? —4 = :t(yl(lvﬂn) — Oxya2(1, U7L>) (9.
since yl(lvﬂn)azy2(1vﬂn) = [2/17112]1:#" = ]-7 one has
1
Lp)= 7
yl( M) amy2(17,un)
1-— (6xy2(17/14n))2>
Alpn)? — 4=+ 9.
('u ) < 31@/2(17/%) (

e Now we will derive a system of differential equation for g, (t).

Lemma 9.3.

d oo VA (b g+ )7 4

@un(t) N 3,\y2(1»/in(t>7Q(t+ )

Proof. using the notation p,(p) one has

recall that

So,

a ,
G0 = (o] a+)

Optin(p) = ga(x, p)

d 1 1
Ll / g2 (2)q/(t + z)d = — / 2ndq(t + 2)dr

since ¢,,(0) = gn(1) = 0. Note that

Inq(t + ) = pngn + gg

o7
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hence,

d 1
— iy, = — 2/ 90 (ngn + gi)dz
dt o

- / (n(02) + (g2

x=1 r=1

2
O_gn

2
= 7 Hndn z=0

=— g7 (1) + ¢,2(0)
_ (aryQ(lvun))2 + 1
y2Co )12 (g2 )12
:1 — (awa(L/f"n))z
y2(-, o)l 2

Recall that d\ya(1, 1tn)dey2(1, fin) = ||y2(:, ttn)||*. Thus

iu 1= O, pn))? \/A (n (), q(t + )2 —4
dt"" "~ Ozy2(L i) Oate (L) Oat(l, un() q(t+-)

see . O

Corollary 9.1. Let ¢ € L? be arbitrary. Let \g < A1 < A\a... be the periodic and snit-periodic eigen-
values of q. Let u,(t) be the Dirichlet eigenvalues of q(t + x), Aon—1 < p(t) < Aon(t). For any n there
exists th, 7 such that pntl) = Aan—1 and pn(th) = Aoy,

n»'n

P?”OOf. If Aoj,—1 = Ao, then Wyp = Aon_1. Let Aop_1 < Ao,. We have

dpn _ /A (®). gt +))? — 4
dt " Oay(Lpa(t),q(t+)

Note that since du,/dt is continuous, o, can not change unless u,(¢) hits one of the edges, since
sgndrya(1, pn(t)) = (=1)". Furthermore, dyy2 = O(1) . Therefore,

o, =t

> p >0 as long as p,(t) € [Aap_1 + 3, Aoy, — J]

dun
dt

That implies the statement. [

Corollary 9.2.
Aon—1, Az = w2 + [q] + 1(n)

Proof. We have that p,(t) = n?7? + [g] + [?(n) uniformly in t. Therefore the statement follows from

Corollary (9.1)) O
Corollary 9.3.
= )\2n 1 (>\2n - )\)
AZ(A) —4=4(X — A H s

Proof. Since Aoy, 1, Aan = n?m%+O(1), the produce converges and defines an entire function P(\) which
zeros are exactly z = A\, k =0,1,2,.... Just like in Lemma (4.8)) one obtains the identity. O
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Isospectral set. Let L2 = {q € L?[0,1] : [¢] = 0}

Iso(q) ={p € L?) s xe(p) = Me(g), k=1,2,...}

For a < b, denote [|a, b|] the following set

[la,b]] = {(a,0) U (b,0)} U ((a,b) x {~1,1})
Clearly [|a, b|] can be identified with the circle. For convenience we identify if with the circle centred at

(a+b)/2 and radius (b — a)/2.

Given p € Iso(q) set 0,(p) = sgu(y1(L, 1(p),p) — Oay2(1, in(p), p)). Note that since A%(u,) —4 =
(y1(1, ) — O2y2(1, pn))?, one has

on(p) =0 <= pn(p) € {A2n-1(p), A2n(p)} (9.8)

Consider the map

Q:p— (pn(p),on(p)) € H [[A2n—1, A2n]

Azn—1<A2n,m2>1

Theorem 9.1. ® is a diffeomorphism from Iso(q) onto the torus [[,, | -y, n>1llA2n—1;A2n]]-

Proof. We know that p — (i, (p)) is real analytic. We know also that y1 (1, pn(p), p) — 02y2(1, un(p), »)
are real analytic. Using one can easily verify that ® is smooth. To show that & is injective we

prove the following formula.

1

w2 (1, pin(p), ) = 3 (A(un(p)m) — on(P)V A% (n(p), p) — 4) (9.9)

for all n, including the cases of o,,(p) = 0. To verify the above, we invoke the identities

A2(11,(p),p) — 4 = (y1(1, pin) — Oatia(1, 1))’ (9.10)

1

y1(1, un(p),p) = Bra (L () 1) (9.11)

Since A%(u,) —4 > 0, we have

1
A2(py(p),p) —4=op —————— — 0,y2(1, pn(p), ) 9.12
(kn(P), P) on(p) <8xy2(1’un(p)’p) y2(1, pn(p), p) (9.12)
Solving this quadratic equation one obtains
1
Ouya (L, pn) = 5 <_Un(p)\/A2(Mn(p)ap) -4+ A(un(p),p)) (9.13)

To determine the + sign here, consider for instance n odd, i.e

AAzn-1) = A(Aon) = =2, Apa) < =2
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Recall that dyy2(1, uy) = (=1)™. So, dpy2(1, un) < 0 if 0, (p) = 1 then

1

— — Ouya(1, ) >0
D22 (1, fin) el pn)

That implies 0,y2(1, p,) < —1, Clearly,

[Apn)] < VA (pn) — 4

That implies we need the + sign in (9.13]). One can verify that it is 4 in all possible cases. That validates
(©.9). Since Ax(p) = Ai(q) for p € Iso(q) it follows from corollary (9.2)) that

A2(\,p) —4 =A%\, q) —4 for p € Iso(q)

Thus

D2y2(1, pin (p), p) = (fan(p)\/N(un(p), q) — 4+ Apn(p), Q)) (9.14)

SO, if (I)(p) = (P(T) then /Ln(p) = ,LLn(T)7Jn(p) = Un(T) and 3zy2(1,/ln(17)7p) = zyQ(la.un(T)vT)a for
all n with g1 < Aop. If Aop_1 = Aoy then o,(p) = 0, un(p) = p for all p € Iso(q). That implies

Ozy2(1, pn (p), p) = 0xy2(1, un(q), q) for all such n. Thus,

0:y2(1, n(p),p) = Oxy2(1, pn(r),r) foralln >1

Recall that

#n(p) = 10g(=1)"02y2(1, un(p), )
Thus s, (p) = »,(r) for all n. By Theorem ([5.5) one concludes p = r. So, ® is indeed injective. Let
(bn,0n) € 1_[/\2n71</\2ngl[|/\2n_17 Az2y|] be arbitrary. Recall that
A1, Ao = 0272 +12(n),  Aan—1 < fin < Aop (9.15)

Therefore

fin = pin — n2m% € 1%(n)

Set

sn = log <(21)n (A(#mQ) — 0V A% (i, q) — 4)>

We want to estimate sz,. For that we use corollary (9.2):

()\271 - ,un)(,un - )\2n71) H (>\2m71 - Mn)(()‘Qm - ,un)

A1) = 4] = 4(s0 — ho) e bl (9.16)

m#n,m>1

Due to Lemma (4.9)) the product here is O(1) ( due to (9.15) Lemma (4.9) applies). Together with (9.15))
this implies
12(n) x 12(n)

A2(/J/n) —4= n2
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Thus
A%(un) — 4 =1}(n) (9.17)
Apn) =2(=1)" + O (W)

= s, =13(n)

By Theorem (??) there exists a unique p € L?[0, 1] such that

fin(p) = pin,  #n(p) =
We need to show that Ag(p) = A for all k. We have

(="

5 (A(Mm‘I) — oV A% (i, q) — 4))

log(—l)" myQ(laMn(p)7p) = Xn = IOg (

h (A(ume) — 0V A% (n, q) *4>

|~

amyQ(L ,un(p)7p) =

Recall that

Alpin(p),p) = m + 01 (1, pin(p), )
Hence,
2 1
An,: 7Ana_0'nA2n7_:An7
(1n(p):) = sty (Alhal) 0 (1(0).:0) —4) = A1a(0). )

ie. Alun,p) = Alpn,q), n=1,2,.... Due to Theorem (4.5))

n—A
y2(17)‘7p): H <IJ‘> :yQ(la)‘7Q)v forall A€ C

2.2
n=7
n>1

Since [p] = [g], Theorem (??) implies that A(A\,p) = A(A, q) for all A € C. In particular Ax(p) = A\x(q)
for all k. Thus p € Iso(q). We have p,(p) = 1n(q), [p] = lg,

(=n"
2

sn(p) = log Alpns @) — on /A2 (pn, q) — 4
(5 )

(A(um q) = on /A% (n, q) — 4)

The last equation implies o,,(p) = 0. Thus, ®(p) = (tin, on). O

N —

8$y2(1= :un(p)>p) =



Chapter 10

Description of the Periodic

Spectrum

Let )
u()‘) = 5 (yl (777 >‘) + 8903/2(7(7 )‘))

Let Ao < A\] <A <)\, <AJ <...be the periodic and anti-periodic eigenvalues. The \; are the roots
of 1 —u()\)? =. Replacing ¢ by ¢ — A\g we assume in this section that A\g = 0. Set u; = u(z?). Consider

the roots of the equation

1—ui(2)?=0 (10.1)

and enumerate them as follows

F o F Fy_
ag, =\ Ag  us(ag,) =1
and denote
F — _~F F oo _,7F
QO (ok—1) = T2k & aly, =—ay,

Let y/1 — u4(2)? be the branch of the square roots with 3z > 0 which has a continuation of (0,a; ) and
\/1—ui(z) >0, for z € (0,07). Set

_ 7 w(Q)
T V0

Lemma 10.1. For Sz > 0,cos86(z) = uy(2),

0(z) ¢, Sz>0 (10.2)

Proof. The function arccosw is analytic in the domain C\ ((—o0, —1) U (1, 00)) and obeys (arccosw)’ =
—(1 — w?) 72, Thus ¢ = (arccosu, (z))" provided u(z) belongs to this domain. Since uy(z) is a
non-constant analytic function u=! (—oo, —1] U [1,00)) consists of a countable union of analytic curves
and points. Therefore the upper half plane splits into a union of domains and curves such that in each
domain

0" = (arccosuy(z)), 6(z) = arccosuy(z)+2nl;, 1 €Z

62
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holds. Thus cosf(z) = u,(z) everywhere except a union of some curves. Since both functions are

analytic in the upper half plane. cos6(z) = u(z),3z > 0 O

Lemma 10.2. The function 6(z) can be extended analytically via the reflection principle 0(z) = 0(2),
into the domain C\ Uyez qor[a;, af|. The identity cos6(z) = u(2) holds.

Proof. We verify first that 6 can be extended continuously to the real axis, Iz = 0, i.e. the limit

lim  0(z)
z2—x0,32>0
exists for any xg € R. For zy # a this is clear since integrand in is continuous in the neigh-
bourhood of x. Take xo = aj Absume first that o is a simple root of ( -7 Le \; <Afa; <af.
Then

1—u2(z) = (2 — z0)p(z0, 2)

where ¢(xg, z) is analytic for z in a neighbourhood of xg, ¢(xg,xg) # 0, then

C(wo)

|\/1—uJr |Z*$O‘

/ O g (10.3)
w0 | \T— w2 (Q)

The integral

converges and continuities follows. If a; is a double root, then v/, (o;) = 0 and the estimation of the
integral is even better. Note that this argument also verifies the correctness of the definition of .
Thus 6(z) can be extended continuously to the real axis.
Recall that 0(z) = arccosuy(z) + 27lj,z € Dj, and the D;’s are domains which together with part
of their boundaries partition the upper half-plane, Sz > 0. Recall also that —1 < wuy(z) < 1 for
R\ Urezy\foy [y, > F1. So, arccos u; () assumes real values on this set. Die to the continuity one conclude
that for z in this set, the following holds

SO(x) =0

Therefore the reflection principle applies and the statement follows O

Lemma 10.3. 6(z) conformally maps the upper half-plane onto

O {hi} = {30 > 6} \ G {0: R0 = kr,0 < S0 < hy} (10.4)
k=—oc0

where hog = 0, and hy = h_y, and > k?h} < +oo. Furthermore, 6(0) = 0 and

lim 0(iy)

y—+oo 4y

=T

Proof. We will identify the image of the real axis under 8. We use 6(z) = arccos u4 () and continuity.

We have 6(0) = 0. Since u(x) decreases from u(0) = 1 to u(a;) = —1, we have 6(z) = arccosu(z),
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where arccos(1) = 0, arccos(—1) = w. Thus 6(z) increase from 6(0) = 0to 8(aj ) =7, when 0 <z < aj .

For x € (a],af), u(z) < —1. For t € (—o0, —1), we use
arccost = m +ilog(—t — V12 — 1)
since

cos(m +ilog(—t — V2 — 1)) =— (exp(— log(—t — vt?2 — 1)) + log(log(—t — V2 — 1)))

(Hlﬂl) +(—t— V2 — 1))

7w+ ilog(—t — V2 — 1)

=7 =6(a;)

t=—1
On the interval (aj,af) the function uy(z) has two monotonicity intervals, (aj,7y1) and (y1,a7),
where Bmut|gc=71 = 0. Therefore for x € (aj,a]),0(z) = 7 + ilog(—uy () — Vur(z)2 —1),R0(x) =
7, S0(x) = log(—uq (z) — y/ul (z) — 1), SO(x) increases from 0 to some value hy when a7 <z <~; and

then decreases from h; to 0 when 7, <z < af.

] {ﬂ -

N 2HD=0

e.t.c. Thus 0 indeed maps the real axis onto the boundary of ©,{hy}. Moreover when x runs
(—00,00),0(z) runs the boundary of ©4 from left to right. By the argument principle 6(z) confor-
mally maps Sz > 0 onto O {h}.

By construction, hg = 0, since u is even we have h_j = hi. We need to estimate hi. Recall that due to

Corollary (9.2) we have

[A%(X) — 4] = 4]X = Ao

A7 — AJAF — A An — A)(AE — A

m#
m#n,m>1

We have \f = m? + [q] +1%(m). For \,, < A < A}, Lemma (4.9) says that the product here is O(1).
Hence
12 12
0§A2(A)—4:M, for Ao <A< AF
n

thus
12(n) x I?(n)

AW <2+

, for A, <A< AF (10.6)
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So 12(n) x 12(n)

max |uy(z)| <1+ 3

an <z<af n

We go back to the formula for arccosuy () for o <a < a;:
arccost = km + ilog(|t| + V12 — 1)

here t = uy(x), and

[t| <  max . luy(z)] <1+ Ek) x P (k) = log(|t|+ vt2—1) < (k) =13 (k)

a, <z<a; k2 k
O

Lemma 10.4. Let 6 be a conformal map from the upper half-plane Sz > 0 onto the Domain O{hy}
with H = sup hy, < 400, 8(0) =0,
0(i
lim (Zy)
y—+oo iy

=7
The following statements hold:

e u(z) = cosf(z) is an entire function,

max log|u(z)| < 7R+ H
|z|<R

sup |u(z)| = cosh(H)

z€R
o let aff =0 (kr +£0). Then
2
Loy —ai > o
7r
Lhk > af - hi

—ar > —r
k k= rcosh H

2|k| N 2H
— < <I|kl |1+ —
FCOShH_|ak|_| < * 7r)

o Forz € (o ,a)),

0<Sb(z) < choshH\/(x —a; ) (af —2)

Proof. u(z) = cosf(z) is analytic in Sz > 0, continuous on Iz = 0 for z € (o, ), S0(z) = 0. For

v € oy, af],0() = whk + in(@),0 <0 < hy,
cosO(z) = (—1)* coshn(x)

Su(z) =0

By the symmetry principle, © has an extension to the entire plane C. Since $6(z) is harmonic in the

upper half plane, &z > 0, and continuous on ¥z > 0, one has

v o[ S0 -
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Since

one concludes a = 7. Clearly,
0 <Q0(z) <suphr =H, —oco<z< 400

0<? <
Vi

*° S0(t
782 < Q0(2) <78z + H (10.8)

In particular,
|u(2)] = | cosB(2)| < cosh|F0(z)| < cosh(m|Sz| + H)

‘n‘lax logu(z)| < 7R+ H (10.9)
z|<R
as claimed. Furthermore,
sup |u(x)| = sup | cos f(x)| = sup cosh hy, = cosh H (10.10)
T T k

We turn now to bullet two. One has
0(cy, ) = km, 0(0[;_1) =(k-m

u(ay) —u(agf ;) = cos(km) — cos((k — 1)) = 2(—1)"
On the other hand
fular) —u(ai_y)| < (max|u'l) (a7 —ai_y)

Since u(z) is an entire function of exponential type m, and sup{|u(z)| : z € R} < cosh H, the Bernstein
inequality say that
|u'(z)] < mcosh H, —oo <z < 400
Thus
_ + S 2
oy —« —
k k=1 = ncosh H

as claimed. Let o, < x < ajf. One has |u(a; )| =1,
‘|u(m)| - 1‘ < max ' (§)|(0f — o) < mweosh(H)(af —a;
Now just as in the proof of lemma one obtains
|Sarccosu(z)| < meosh(H)(aff — ay))

Hence,
hy < meosh(H)(af — o))

as claimed. Now we want to estimate (o, — ;) from above. Since 6(z) has an analytic continuation

through [o; |, ], the partial derivatives of 6 are well defined for x € (a;_,af), y = 0. Note that
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g(z) = 30(z) — 7Sz is non-negative in Iz > 0,g(z) > 0 and g(z) = 0 for € (o, ;). That implies

dyg(x + iy)‘ >0, fora € [, o]
y=0

Hence,

0,30 (z + ly)‘ . > forz € la,_af]
y=

By Cauchy-Riemann, one obtains

0RO (x + zy)‘ . >m, forz€la, jof
y=

On the other hand, 6(c; ) — () ;) = m. Thus

a+
> / ' 0, R0(z)dz > (o — o )

k-1
Next we estimate o — a; from above. Let 2(6) be the inverse for 6(z). Set
n(0) = % (0 — km)? + 12
The function z; maps conformly the domain
Or = {380 >0} \ {N0 = kmr,0 <30 < hy}
onto the upper half plane. Clearly for § € 00{h;} we have
Sz (0) — S2(0) = Sz,(0) >0

Recall also that due to (10.12))

Clearly

Thus
lim (Szk(0) — Sz(0)) >0

|6]— 00

Due to the maximum principle for harmonic functions
Sz () — S2(0) >0, for 0 € ©{h,;}

Let 7 be the normal vector on 0©{h;} directed inside of the domain ©{h;}. Let L; = {R0 = 7k,0 <
30 < hy}. Note that Sz, (0) — Sz(0) = 0 on Li. Note the following. The function z(6) maps the
straight segments Lj, onto a segment [oy, o[,:]. So, the symmetry principle applies. Namely, for each of

the following two domains



CHAPTER 10. DESCRIPTION OF THE PERIODIC SPECTRUM 68

'ﬁ’.TI'-hE- ‘g ke

The function z(#) has an analytic continuation in the domains D; U Ly U D, D, U Lj, U D} respectively.
The function z(0) itself is discontinuous on Ly, but for symmetrical continuations the partial derivatives

are well-defined and Cauchy-Riemann applies. The same applies to z;(6). Denote these continuations

as Z(l)7zl(€l),z(’"),zl(;) respectively.

0, (844 - 820} | <0, 9, (32 -9:)]| >0

RO=kn RO=kn

>0

&D%z(l)) <0, 9,320 >
RO=km

RO=km

That implies

By Cauchy-Riemann
0,720 < 9,2’ on Ly

Hence,

hg 2
Oc; —a, < /0 <|8yz’(€l)‘ + |8yzl(€7”)|> dy = ;hk

as claimed. One has (with aF = 0)

as claimed. The estimation for o, is similar. That finishes the second claim. To verify the third,

consider )
f(z) = (=1)*u(z) - [1 + (z — ay ) (aff — x)% coshH}

Recall that u(aif) = (=1)*. So, f(aif) = 0. Furthermore,
f"(x) = (=1)*u"(z) + 7 cosh H

Due to the Bernstein inequalities,
|u” (x)] < 7% cosh H
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Thus f”(x) > 0. Therefore
fl@) <0 fora;ﬁxﬁa;

0 < (=1)Fu(z) <1+ (z — ap ) (o) — x)% cosh H < cosh(W\/cosh H(z — ayp ) (o) —2))

cosh¢ > 1+ ¢2/2. On the other hand for z € [y, o} ]
0(z) = kr +iS0(x)

u(z) = cos B(x) = (—1)* cosh(36(z))

That implies

S0(x) < ﬂ\/coshH(a: —ap ) (o) — )

as claimed. O

Lemma 10.5. (??) Using the notations of the previous lemma, assume
h i = hy, Z(khk)2 < +o0

Then

e u(z) is an even function,

where
o(2) = /O () sin(zt)dt, g e L2[0,7]

. af =0~ {kr £0} obey
d
of, = —af, of=k- ﬂ_—]l{: + 12 (k)

Proof. Let 61(z) = —0(—%). The 61(z) maps conformly Sz > 0 on ©{h;} since

—O{hr} = O{hy}

Furthermore, lim,_, ; o (iy) ~*0(iy) = m and 6;(0) = 0. Hence § = ;. In particular for z € (—oc, 00), —60(—x)

O(x). That implies

Hence aj_tk = —aj . Using the estimates from Lemma (10.4) one has

.
@ s 2 2H\®

[ 00 < mxlog e )" (ot - o) < 2 (14 25) Jrpng
a; iy T

Since ) kzhi < +o00,
(oo}
tPSO(t)dt < C < 400, s=0,1,2
It]

— 00
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Due to Poissons Formula for Sz > 0,

1 1 S
H(z):ﬁz—i—d—i—f/ iz S0
™

o t—z 1412
Note that
I+t 1t 7}+4j47
t—z 1482 1412 2z z(t—2)
Hence
0(z) =7z +d 1/00 Lot 1/w“9(t)dt+1/oo L s0(t)dt = o(2) +
Z) =Tz T _001+t2\y oA _Oo\y Tz _Ootfz\g o :

Since 0(—z) = —0(2),d(—2) = —¢(2),b=0. So

0(z) = m+ ~(d + U()

1 o0
dy = _7/ S6(t)dt < 0

W(z) = %/_OO tfzgo(t)dt
Y(—2) = ¢(2)

Note that ¢(z) is well defined for x € R, moreover,

U(w) = lim vz +iy)

1 [ 1 al oy
Y(z) = = SO(t)dt = = S6(t)dt
/ i zk: /a

TS ot—2 t—x

The denominator here does not vanish since z € (a_,, ;). Fork#n—1,n,t € [, , ;] due to lemma

n—1"%n
(110.4))
2
t—x > —coshH
T
+ +
Yt 1 [“ (t?mcosh H
o(t)dt < — ——— +|t| | SO(t)dt
/ak Foa] o) _x/a< 2 +||)“()
Hence,

+
1 Ykt 1 h H

- Z / SO(t)dt| < — (W + C1>
T af t—x ™ 2

k#n—1,n
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Furthermore, using the estimates in Lemma (10.4]) one has

+ + - +
“ i fe—an et~
——S0(t)dt SWVCoshH(max|af71|)/ 1 _ dt
Q, t—zx * a, Qpy — 1

N
2 H o dt

<mVcosh H|n — 1| <1+> at | —a; e
P _

2H
<Vcosh H|n — 1| (1 + ) (4hp—1)
T

The evaluation of the integral over [, , o;] is completely similar. Thus, for z € [a;}_, a;; ] one has with

some constant B,

1
()| < B’|x|+ n = 1hn_1 + |n|hn (10.11)

for z € [a;,, a;t], one has

W(z) =z (H(x) — oz — Cfvl) _ <m +—S0(z) — T2 — dl) ,

X
2H
12]|96(2)] < [zl < |n] (1 n ) h
T

‘w(a;)—a; (nw—wa;—dlﬂ <n<1—|—2H> P
™

(e79)

d d 2H
x(mr—mc—l)—a; (nﬂ—wa;—l>’+2n(1+)hn
x % ™

2H
Shnfr(e — o) + o = (el +lagl) +20 (14 2 )

|9p(x) = (e, <

<Bln|hy,

Note that (10.11) applies to = ;. Thus, (10.11) holds for all € (—o0,00) ( with some adjustment
to the constant B). Thus implies |¢(z)| — 0 with |z| — oo and

(o)
/ [ (2)|?dz < 400
Recall that u(z) = cos6(z). Set

dy sin(rz) )

g(z) = 2 (u(z) — cos(mz) + ——
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one has
u(x) = cos B(z) = cos (m+ e )
= cos(mz) cos (dl + Y(z) ) sin(7x) sin (il + 77[’(33))

T

x
= cos(mx) <1+(’)< ! )) — sin(mz) sin (dl—|—¢(x)>
22 x x

= cos(mz) — sin(mz) sin (Ci} + wff)) +0 (;)

= g(z) = —(z) sin(rz) +0< ! ) & /Oo g(z)%dz < oo

|| oo

Furthermore, g(z) is an entire function of exponential type =, i.e
lg(2)| < exp(r[2])
By the Pely-Wiener Theorem, we have
g(z) = /07r g1 (t) exp(—itz)dt
where §; € L2[0,7]. The function u(z) is even. So g(z) is odd. Therefore,
g(z) = /OTr sin(t2)g(t)dt, g € Lo[0,7]

Finally, one has
0(ai) = kn,

1
km = ﬁaf + a—i(dl + T/J(Oéki)),
k

+

+_ dq 1/J(05k)
Qg =R——F — =
Ty, T,

Since |ai| > k and 3, [(aif)]? < +oo, one obtains

Now we can state the main result, the Marchenko-Ostrovski Theorem (1975)

Theorem 10.1.
—00< A < A] AT <Ay <Af <
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In order {\[}52, and {\ }32, be the periodic and anti-perioidc spectra of the Sturm-Liouville operator
-y +ay=2Xy, 0<z<1
with q¢ € L?, it is necessary and sufficient that
A =N + 22 (kT £0)
where z(0) is a conformal map from the domain ©4{hy} onto the upper half-plane, ho = 0, hy, = h_

Z(k’hk)2 < +o00

z(0)=0, lim i2(10) .

6—+o0 10 T

Proof. The necessity was already proven. Let z(6) be as in the statement of the theorem. We can assume

Ao = 0. Let 6(z) be the inverse function, u(z) = cosf(z). By Lemma (??), one has

u(z) = cos(mwz) — — sin(mwz) + @
o(z) = / () sin(zt)dt, § e L2[0, 7] (10.12)
0
Moreover, let )\ki be the roots of the equation u(z) = %1, af = )\,f, k>0, aj_[k = —af. Then

din
ai:k—%—i—%, Z|ef\2<+oo

Let 2(6) = 2(f). Then z maps C \ Up{RO = kr : —hy < 30 < hy} onto C\ [Up>0{S2z =0:0q; <Rz <
az} UUk<0{S2z=0: a; < Rz < oy, }]. Pick an arbitrary point,

Hk:k’fr-l-ih;c, —hkghjcghk, k=1,2,...

on “ one side of the slit ”

Clearly
=n? 4+ Cy + 1%(n)
ftn, =n? + Co + 12 (n)

Set o, = sgnh/,,

sn = Tog ((=1)" (u(y/Fim) — ony/w2(v/Fim) — 1))
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We need to estimate s¢,. The Bernstein inequality is not good enough for that. Since u(0) = 0, u(/2)
is an entire function of exponential type 7. Due to Lemma (4.9))

n4
m#n,m>1

Just as in the proof of Theorem (|9.3]),

», € l%(n)

Therefore exists unique g(x) € L?[0, 7] such that

pn(q) = pns  2n(q) = 3

In particular,

() — o fuR () —1 = Bl WM) -

2
Note that ) )
E+VE2-1=t = §—2<t+t>
Thus A )
ns 4
u(y/iin) = =5L

Due to (10.12)) the interpolation applies, thus

A(pn,
Tn( (l2 Q)) A2
Q(W,Mn,q)(/ln - Z2) 2

_ 2
U(Z) - yz(’ﬂ',Z 7q)ng1 8)\3./

= A(z) = 2u(V/2)

The roots of
Az) = +2

are (af)2=\,,n=1,2,.... O
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