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Chapter 1

Liouville Theorem On Integrable

Systems

1.1 Hamiltonian Systems

Let H(p, q) be a real function, p = (p1, . . . , pn), q = (q1, . . . , qn), where p, q ∈ Rn. A Hamiltonian

vector-field is defined as

(−∂qH, ∂pH) = (−∂q1H, . . . ,−∂qnH, ∂p1H, . . . , ∂pnH)

The function H itself is called in this context the Hamiltonian

The ODE system

ṗ = −∂qH, q̇ = ∂pH

is called a Hamiltonian System . The origin of Hamiltonian Mechanics goes back to Newtonian Mechanics

ẍ = F(x), x ∈ Rn

when the force F is generated via some potential U(x), i.e.

F(x) = −∇U(x)

Setting here

x = q, ẋ = p, H(p, q) =
p2

2
+ U(q)

one arrives at

ṗ = ẍ = −∇U(x) = −∇U(q) = −∂qH

q̇ = p = ∂pH

For instance, Newton’s Gravitational Law for two bodies defines the force via
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F = −const
|r|2

r

|r|

where r stands for the displacement vector for the location of the second body in relation to the first.

The potential here is

U(r) =
const

|r|

This is a particular case of a central field which is

F(r) = φ(r)
r

|r|

Where φ(r) is a scalar function.Central field motion has a remarkable feature: The vector

L = [r, ṙ]

called the angular momentum remains conserved along each trajectory, i.e.

d

dt
[r(t), ṙ(t)] = 0

(For obvious reason). Since each component of L is conserved, one has here n scalar function which are

conserved under the flow.

Definition 1.1. A real function which is conserved under the flow is called a conservation law or a first

integral of the system.

1.2 Commuting Vector-Fields and Poisson Brackets

Consider two ODE systems

ẋ = A(x), ẋ = B(x), x ∈ Rn

Denote by gA(x0, t) , respectively gB(x0, t), the solution of the system with initial condition gA(x0, 0) =

x0, respectively gB(x0, 0) = x0. One says the vector-fields A and B commute if for any x0, s, t > 0 the

following equality holds

gB(gA(x0, s), t) = gA(gB(x0, t), s)

We also say that the flows gA, gB commute. To measure ”how large” is the commutator of two vector-

fields A,B we use the Poisson Bracket which is defined as follows:

[A,B]j =

n∑
i=1

Bi∂xiAj −Ai∂xiBj

[A,B] = ([A,B]j)1≤j≤n

By direct calculation, one has the following
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Theorem 1.1. The vector fields A,B commute if and only if

[A,B] = 0

Note also that the Poisson Bracket obeys the Jacobi Identity:

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

1.3 Poisson Bracket of Hamiltonians and First Integrals

Let F (p, q), H(p, q) with p, q ∈ Rn be real functions. Consider the Hamiltonian vector-fields

A = (−∂qF, ∂pF ), B = (−∂qH, ∂pH)

By a direct calculation one has the following

Theorem 1.2.

[A,B] = (−∂qG, ∂pG)

where

G(p, q) =

n∑
i=1

∂piH∂qiF − ∂piF∂qiH

Thus, the poison bracket of Hamiltonian vector-fields is a Hamiltonian vector-field.

Definition 1.2. The function G is called the Poisson Bracket of the Hamiltonians F,H. It is denoted

via

G = (F,H)

By direct calculation, one can verify the following formula

(F,H)(x) =
d

dt
F
(
gtH(x)

) ∣∣∣
t=0

where gtH(x) stands for the follow of the Hamiltonian vector-field A = (−∂qH, ∂pH). This implies the

following:

Corollary 1.1. The function F (p, q) is a first integral of the Hamiltonian H if and only if (F,H) = 0.

Note that (H,H) = 0, thus H is a first integral. Of course, this can be checked via simple calculation:

d

dt
H(p(t), q(t)) = ∂pHṗ+ ∂qHq̇ = −∂pH∂qH + ∂qH∂pH = 0

1.4 Liouville Theorem

Definition 1.3. Two functions F1, F2 are involutions if [F1, F2] = 0

Consider the Hamiltonian system

ṗ = −∂qH, q̇ = ∂pH, p, q ∈ D ⊂ Rn
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Let F1 = H and assume that there are first integrals F2, . . . , Fn of this system such that the following

conditions hold

• (Fi, Fj) = 0 for all i, j

• F1, . . . , Fn are independent in D, i.e. the rank of their Jacobian matrix is equal to n.

It is convenient in this context to denote (p, q) ∈ R2n via x and the flow with given Hamiltonian F via

gtF (x).

Take arbitrary x0 ∈ D. Set fj = Fj(x
(0)), f = (f1, . . . , fn),

Mf = {x ∈ D : Fj(x) = fj , j = 1, . . . , n}

Since the Jacobian matrix of F1, . . . , Fn has rank n, Mf has a structure of a n-dimensional manifold in

R2n. Assume that

• Mf is compact and connected.

Note that since Fj ’s are first integrals Mf is invariant under the flow gt. Liouville Theorem states that

there is a diffeomorphism φ : Mf → Tn which conjugates the flow gt with the linear flow on the torus

Tn

ϕ̇ = ω

where ω ∈ Rn is a fixed vector.

To prove this theorem note first of all that M := Mf is invariant under gtFj
, j = 1, . . . , n. Moreover, the

flow commute. Set

g(t1,...,tn)(x) = gt11 g
t2
2 . . . gtnn (x), t = (t1, . . . , tn) ∈ Rn

Then t→ gt is an action of Rn on M , i.e.

gt+s = gtgs

due to the commutativity of g
tj
j . Fix x0 ∈M and set

g : Rn →M, g(t) = gt(x0)

Definition 1.4. The stationary group of x0 is defined via

Γ =
{
t ∈ Rn : gt(x0) = x0

}
Clearly Γ ⊂ Rn is a subgroup.

1. Let N be a smooth submanifold in Rm. That means for each x0 ∈ N there is a local chart

φ : U0 → N , where U0 = {y ∈ Rd : |y| < r0}, is a smooth map from U0 into Rm. In this case the

tangent space Tx can be identified with a linear subspace Jx0
⊂ Rm, dimJx0

= d = the dimension

of N .

2. Let G(x) be a vector-field in Rm and let gt be the flow defined via G. Let N be as in (1). Assume

that N is invariant under the flow. In this case G(x) ∈ Jx for each x ∈ L.
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3. Let us go back to the setting in the proof of Liouville Theorem. Let x0 ∈M be arbitrary. Consider

the map g(t) = gt(x0), then

∂tjg
∣∣∣
t=0

= Aj(x0)

where Aj(x0) is the Hamiltonian vector-field defined via Fj , i.e.

Aj(x0) = (−∂qFj , ∂pFj)
∣∣∣
x0

4. The rank of the system A1(x0), . . . , An(x0) is equal to n. Indeed, we know that the rank of the

system (∂qFj , ∂qFj), j = 1, . . . , n is n. The linear map defined via the 2n× 2n matrix

J =

[
0 −I
I 0

]

is invertible. J transforms the second system into the first one.

5. Due to (3),(4) the rank of the system ∂t1g
∣∣∣
t=0

, . . . , ∂tng
∣∣∣
t=0

is equal to n. Thus, locally g is a

diffeomorphism of a neighbourhood t = 0 onto a neighbourhood Ux0 ⊂M .

6. Since M is connected and g is onto. Indeed, since the map gt(x) is an action. The statement

follows from the following figure:

Here x0 → x is a arbitrary path in M connecting x0 with x,

x1 = gt1(x0), x2 = gt2(x1), . . . , x = gtr (xr−1)

7. Due to (6), one concludes that the stationary group Γ does not depend on x0, the group Γ is

discrete, i.e. there exists a neighbourhood U0 of t = 0 such that Γ ∩ U0 = {0}.

8.

Lemma 1.5. Let Γ be a discrete subgroup of Rn. Then one can find linearly independent vectors

e1, . . . , ek ∈ Γ such that

Γ = {y : y =

k∑
j=1

mjej ,mj ∈ Z}

Proof. Let e0 ∈ Γ, e0 6= 0. There exists e1 ∈ Γ such that e1 = λ1e0 where λ1 ∈ R, and

|e1| = min{|e| : e ∈ Γ ∩ Re0}
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Moreover,

Γ ∩ Re0 = {m1e1 : m1 ∈ Z}

If Γ = Γ ∩ Re0 then we are done. Let e ∈ Γ \ Re1. Consider

E2 = Re1 + Re = {y = λ1e1 + λe : λ1, λ ∈ R}

Split E2 into the ”fundamental parallelograms” as in the following figure

In P̄1 find e2 ∈ Γ \ Re1 which is the closest one to the line Re1. It may happen that e2 = e. Note

that

dist(e2,Re1) = min {dist(y,Re1) : y ∈ E2 ∩ Γ \ Re1}

Indeed, let ẽ ∈ E2 ∩ Γ \ Re1, dist(ẽ,Re1) < dist(e2,Re1). Let ẽ = λ1e1 + λe. Let for instance

λ1 ≥ 1. Let m1 = [λ1], µ1 = {λ1}, ê = µ1e1 + λe. Then clearly

dist(ê,Re1) = dist(ẽ,Re1)

ê = ẽ−m1e1 ∈ Γ

So, we can assume ẽ = λ1e1 + λe, 0 ≤ λ1 ≤ 1. One can see also that −1 ≤ λ ≤ 1. Using reflection

one can assume 0 ≤ λ ≤ 1. Thus, ẽ ∈ P1. Hence

dist(ẽ,Re1) = dist(e2,Re1)

Note that in any event

E2 = Re1 + Re2 = {y = λ1e1 + λ2e2 : λ1, λ2 ∈ R}

Once again using the fundamental domains with e2 ini the role of e1 we conclude that no point of

Γ can fall into the interior of P1 and neither into the interior of any Pj . That means

Γ ∩ E2 = {yLy = m1e1 +m2e2 : m1,m2 ∈ Z}

If Γ = Γ ∩ E2 then we are done. Otherwise we proceed with a similar argument.

9. Let Γ ⊂ Rn be a discrete subgroup. Consider the quotient group Rn/Γ. Let Γ = {m1e1 + . . . +

mnen : mj ∈ Z}. If k = n, then Rn/Γ is diffeomorphic to the torus Tn. If k < n, then Rn/Γ is
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diffeomorphic to Tk × Rn−k.

Proof. Assume k < n. Consider

Ek = {y = λ1e1 + . . .+ λkek : λj ∈ R}

Clearly one can assume that

Ek = {y = (y1, . . . , yk, 0, . . . , 0) : yj ∈ R, Rn = Ek × Rn−k

So, since Γ ⊂ Ek
Rn/Γ = (Ek/Γ)× Rn−k

Assume for simplicity k = 2. Then

E2/Γ = {λ1e1 + λ2e2 : 0 ≤ λ1, λ2 ≤ 1}x

where x stands for the identification of the points on the edges

λ2e2 = e1 + λ2e2, λ1e1 = λ1e1 + e2

Clearly E2/Γ is diffeomorphic to the torus T2.

10. The map φ : [t]Γ → gt(x0) is a diffeomorphism from Rn/Γ onto M .

The map is well-defined. Indeed, if t = s mod Γ then gt−s(x0) = x0, i.eg
t(x0) = gs(x0). Clearly

the map is smooth. If gt(x0) = gs(x0) then t = s mod Γ, i.e the map is injective. We know that

t→ gt(x0) is onto the manifold M . So, φ is one-to-one on M .

11. Since we assume that M is compact, Rn/Γ can not have a non-compact factor Rn−k, so k = n,

and Rn/Γ ' Tn. Thus, φ−1 is a diffeomorphism from M onto Tn.

12. Finally, consider the H-flow which is g(t,0,...,0)(x0), t ∈ R. The diffeomorphism φ−1 conjugates the

flow with the flow

(t1, . . . , tn) mod Γ→ (t1 + t, t2, . . . , tn) mod Γ

Again for simplicity consider n = 2, R2 = E2. Let (ω1, ω2) be the components of the standard basic

vector (1, 0) with respect to the lattice basis e1, e2 ∈ Γ. Then in the angular coordinates ϕ1, ϕ2 on

the torus the infinitesimal flow is

(ϕ1, ϕ2)→ (ϕ1, ϕ2) + (ω1, ω2)dt

ϕ̇1 = ω1, ϕ̇2 = ω2



Chapter 2

Lax Theorem On The

Korteweg-de-Vries Equation

The Korteweg-de-Vries Equation (KdV) is given by

ut + uux + uxxx = 0 (2.1)

This is an evolution equation in the sense that

ut = F (u, ux, . . .)

A first integral is a functional I(u, ux, . . .) which value is conserved along the flow of the equation. In

1968, Gardner, Kruskal and Miura discovered that KDV has infinitely many conservation laws. Here

are the first three integrals they discovered:

I1(u) =

∫
R
u2dx

I2(u) =

∫
R

(
u2

3
− u2

x

)
dx

I3(u) =

∫
R

(
1

4
u4 − 3uu2

x +
9

5
u2
xx

)
dx

In the same year Lax found the following fundamental mechanism built into the KdV equation. Consider

the Sturm-Liouville Operator

L(y) = −y′′ + vy

Taking here v = 1
6u(t, x) where u is a solution of KdV one obtains a one parameter family L(t) of linear

operators. Lax theorem says that L(t) is unitary conducted to L(0). In particular the spectrum of L(t)

is the same as the spectrum of L(0). Here is the derivation of Lax theorem.

Let L(t) be a one-parameter family of self-adjoint operating acting in the Hilbert space. Lax suggests

to find a condition which will allow to conjugate L(t) and L(0) via some unitary operator U(y),i.e.

8
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L(0) = U(t)−1L(t)U(t)

Assuming differentiability, one obtains

∂t(U
−1LU) = −U−1(∂tU)U−1LU + U−1∂LtU + U−1L∂tU = 0

The idea is to set

U(t) = exp(itA), with A∗ = A

It is more convenient to set B = iA,

U(t) = exp(tB), with B∗ = −B

Then U obeys

∂tU = BU

which leads to

−BL+ ∂tL+BL = 0

Thus if L(t) obeys

∂tL = BL− LB

with B∗ = −B, then L(t) indeed is unitary conjugated to L(0). Take

L(t) = ∂2
xx +

1

6
u

Then

∂tL =
1

6
∂tu

Take B0 = ∂x. Then B∗ = B,

[B0, L] =
1

6
∂xu

Thus, if

∂tu =
1

6
∂xu

then L(t) is unitary conjugate to L(0). Next choose

B = 24∂3
xxx + 3u∂x + 3∂xu

Then
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[B,L] = −∂3
xxxu− u∂xu

which leads to

∂tu = ∂tL = [B,L] = −∂3
xxxu− u∂xu

which is KdV. It turns out that KdV is a completely integrable infinite dimensional Hamiltonian system.



Chapter 3

Fundamental Solutions

3.1 The Variation of Parameters Method

Consider the Sturm-Liouville Equation

− y′′ + qy = λy (3.1)

This is a linear ODE. It has two fundamental solutions y1, y2 defined via their initial data

y1

∣∣
x=0

= 1 y′1
∣∣
x=0

= 0

y2

∣∣
x=0

= 0 y′2
∣∣
x=0

= 1

Any given solution y of is given via

y = C1y1 + C2y2, where C1 = y
∣∣∣
x=0

C2 = y′
∣∣∣
x=0

Here we want to view y1, y2 as functions of x, λ, q. We denote them as y1(x, λ, q), y2(x, λ, q). For technical

reasons it is convent to run q in the space L2
C[0, 1], the space of all complex esquire integrable functions

on [0, 1]. We want to develop series expansions of y1(x, λ, q), y2(x, λ, q) following the Picard iteration

method.

Theorem 3.1. Let f ∈ L2
C, a, b ∈ C. Set

cλ(x) = cos(
√
λx), sλ(x) =

sin(
√
λx)√
λ

, yf (x) =

∫ x

0

sλ(x− t)f(t)dt

y(x) = acλ(x) + bsλ(x) + yf (x)

The function y is the unique solution of the equation

y′′ = −λy + f, y(0) = a, y′(0) = b (3.2)

Proof. One has

yf (x) = sλ(x)

∫ x

0

cλ(t)f(t)dt− cλ(x)

∫ x

0

sλ(t)f(t)dt

11
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y′f (x) = cλ(x)

∫ x

0

cλ(t)f(t)dt+ λsλ(x)

∫ x

0

sλ(t)f(t)dt

y′′f (x) = −λsλ(x)

∫ x

0

cλ(t)f(t)dt+ λcλ(x)

∫ x

0

sλ(t)f(t)dt+
(
cλ(x)2 + λsλ(x)2

)
f(x) = −λyf (x) + f(x)

yf (0) = 0, y′f (0) = 0

Since

c′′λ = −λcλ, s′′λ = −λsλ

cλ(0) = 1, c′λ(0) = 0; sλ(0) = 0, s′λ(0) = 1

y obeys (3.1) . Let ỹ be another solution of (3.1). Then v = y − ỹ obeys

−v′′ = λv, v(0) = 0, v′(0) = 0

That implies v(x) = 0 for all x. Thus y is unique.

3.2 The Volterra Integral Method

Recall the following simple fact on Volterra Integral Equations:

Let K(x, t) be a function, α ≤ x, t ≤ β, with

C ≡ sup
x
|K(x, t)| < +∞

Consider the Volterra Integral Operator

[Ty](x) =

∫ x

α

K(x, t)y(t)dt, α ≤ x ≤ β

Then

||Tn|| ≤ Cn(β − α)n

n!

In particular, the integral equation

y − Ty = h

has a unique solution

y =

∞∑
n=0

Tnh

Theorem 3.2. Let y1 be the unique solution of the integral equation:

y(x) = cλ(x) +

∫ x

0

sλ(x− t)q(t)y(t)dt (3.3)

Then y obeys the Sturm-Liouville Equation (3.1) with y1(0) = 1, y′1(0) = 0. Similarly, let y2 be the
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unique solution of the integral equation

y(x) = sλ(x) +

∫ x

0

sλ(x− t)q(t)y(t)dt (3.4)

Then y obeys (3.1) with y2(0) = 0, y′2(0) = 1

Proof. This is a straight forward calculation for (3.3)

y′(x) = −λsλ(x) +

∫ x

0

cλ(x− t)q(t)y(t)dt

y′′(x) = −λcλ(x) + q(x)y(x)−
∫ x

0

λsλ(x− t)q(t)dt = −λy(x) + q(x)y(x)

y(0) = 1, y′(0) = 0

The case for y2 is similar.

3.3 The Non-Homogeneous Solution

Given u(x), v(x), the Wronskian [u, v] is defined via

[u, v](x) = u(x)v′(x)− u′(x)v(x)

If u, v obey (3.1) then [u, v]′ = 0, i.e. [u, v] does not depend on x. In particular, [y1, y2](x) = 1 for any

x.

Theorem 3.3. Let f ∈ L2
C, a, b ∈ C. The equation

−y′′ + qy = λy − f, y(0) = a, y′(0) = b

has unique solution

y(x) = ay1 + by2 +

∫ x

0

(y1(t)y2(x)− y1(x)y2(t))f(t)dt

Proof. Just as in theorem 3.1, the formula comes from the Cauchy method of the coefficients variation.

Instead of doing the Cauchy method, one can verify the identity directly like in theorem 3.1:

y′ = ay′1 + by′2 +

∫ x

0

(y1(t)y′2(x)− y′1(x)y2(t))f(t)dt

y′′ = ay′′2 + by′′2 + (y1(x)y′2(x)− y′1(x)y2(x))f(x) +

∫ x

0

((y1(t)y′′2 (x)− y′′1 (x)y2(t)) f(t)dt

Note that y1(x)y′2(x)− y′1(x)y2(x) = 1. Substituting here y′′j = (q − λ)yj , one obtains

y′′ = (q − λ)(ay1 + by2) + f + (q − λ)

∫ x

0

((y1(t)y2(x)− y1(x)y2(t))f(t)dt
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3.4 Basic Estimates

Here we want to develop “series expansion” for y1, y2.

y1(x) = cλ(x) +
∑
n≥1

Cn(x, λ, q), x ≥ 0

Cn(x, λ, q) =

∫
0≤t1≤...≤tn≤x

cλ(t1)

n∏
i=1

[sλ(ti+1 − ti)q(ti)] dt1 . . . dtn, tn+1 ≡ x

|Cn(x, λ, q)| ≤ exp (|=λ|x)

∫
0≤t1≤...≤tn≤x

n∏
i=1

|q(ti)|dt1 . . . dtn

∫
0≤t1≤...≤tn≤x

n∏
i=1

|q(ti)|dt1 . . . dtn =
1

n!

∫
[0,x]n

n∏
i=1

|q(ti)|dt1 . . . dtn

=
1

n!

(∫ x

0

|q(t)|dt
)n

≤ (||q||L2

√
x)n

n!

Combining the above inequalities gives

|Cn(x, λ, q)| ≤ exp(|=λ|x)
(||q||L2

√
x)n

n!

This estimate shows that the statements in Theorem 3.2 and the series expansion hold for q ∈ L2.

Similarly,

y2(x, λ, q) = sλ(x) +
∑
n≥1

Sn(x, λ, q)

Sn(x, λ, q) =

∫
0≤t1≤...≤tn≤x

sλ(t1)

n∏
i=1

[sλ(ti+1 − ti)q(ti)] dt1 . . . dtn, tn+1 ≡ x

|Sn(x, λ, q)| ≤ exp(|=λ|x)
(||q||L2

√
x)n

n!

Note also that

|y1(x, λ, q)|, |y2(x, λ, q)| ≤ exp(|=
√
λ|x+ ||q||L2

√
x)

Furthermore, one can see that the derivation works also for λ = 0 with s0(x) = x, c0(x) = 1. On the

other hand yj(x, λ, q) = yj(x, 0, q − λ). Thus

Cn(x, λ, q) =

∫
0≤t1≤...≤tn≤x

n∏
i=1

[(ti+1 − ti)(q(ti)− λ)] dt1 . . . dtn

Sn(x, λ, q) =

∫
0≤t1≤...≤tn≤x

t1

n∏
i=1

[(ti+1 − ti)(q(ti)− λ)] dt1 . . . dtn
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We have the following basic estimates:

∣∣∣y1(x, λ, q)− cos(
√
λx)
∣∣∣ ≤ exp(|=

√
λ|x+ ||q||)√
|λ|∣∣∣∣∣y2(x, λ, q)− sin(

√
λx)√
λ

∣∣∣∣∣ ≤ exp(|=
√
λ|x+ ||q||)√
|λ|∣∣∣∂xy1 +

√
λ sin(

√
λx)
∣∣∣ ≤ ||q|| exp(|=

√
λ|x+ ||q||)

∣∣∣∂xy2 − cos(
√
λx)
∣∣∣ ≤ ||q||√

λ
exp(|=

√
λ|x+ ||q||)

Proof. Due to the series expansion

|y1 − cos(
√
λx)| ≤

∑
n≥1

|Cn(x, λ, q)|

This implies the first estimate. The derivation of the rest of the estimates is similar.

3.5 Derivatives in λ and q

Let H be a Hilbert space. Let u0 ∈ H and let f(u) be a complex valued function defined in the ball

B(u0, r0) = {u : ||u− u0|| < r0}. Let u0 ∈ H. If there exists φ(u0) ∈ H such that

f(u)− f(u0) =
(
u− u0, φ(u0)

)
+ o(||u− u0||),

then f(u) is called complex differentiable at u = u0 and φ(u0) is called the gradient, ∂uf
∣∣∣
u=u0

= φ(u0).

Real derivatives are defined similarly. If B is a Banach space then the gradient ∂uf
∣∣∣
u=u0

defined as a

vector in the dual space B∗.

Example 3.1.

1. Let H = L2[0, 1],

f(q) =

∫ b

a

K(t)q(t), supK < +∞

Then f is complex differentiable

∂qf = K(t), 0 ≤ t ≤ 1

2. Let B = C[0, 1], 0 ≤ x ≤ 1,

f(q) = q(x)

Then f is complex differentiable,

∂qf(x) = δx ∈ B∗
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where

δx(v) = v(x), v ∈ B

Note that f from (1) is well defined on B and

(∂qf)(v) =

∫ 1

0

K(t)v(t)dt, v ∈ B

In what follows we always work in B = C[0, 1]. Let f(q), g(q) be functions on B then

∂q(f(q)g(q)) = g(q)∂qf + f(q)∂qg

provide the gradients ∂qf, ∂qg exist.

Example 3.2. Let y(x, q) be a function of x ∈ [0, 1] and q ∈ B. Assume that ∂qy(x, q) exists. Consider

f(x, q) = q(x)y(x, q)

Then

∂qf = y(x, q)δx + q(x)∂qy

Let f(x, q) be a function of x ∈ [0, 1], q ∈ B. Assume ∂qf, ∂xf exist. Assume also that ∂x∂qf and ∂q∂xf

exist and continuous in x, q. Then

∂x∂qf = ∂q∂xf

Similarly, provide that the gradients exist and continuous

∂2
xx∂qf = ∂q∂

2
xxf

Due to the series expansions previously, we have the following

Theorem 3.4. For any fixed x, yj(x, λ, q) is complex differentiable in λ and q, λ ∈ C, q ∈ L2. The

derivatives are continous

One can easily calculate the derivatives
∂Cn
∂q

,
∂Sn
∂q

It turns out that (∂yj/∂q) have nice formulas. To indicate here that the derivative is taken at fixed x

we denote it as (∂yj/∂q(t))(x), where t is the variable for the L2[0, 1] space.

Theorem 3.5.
∂yj
∂q(t)

(x) = yj(t)[y1(t)y2(x)− y1(x)y2(t)]�[0,x](t) (3.5)

∂y′j
∂q(t)

(x) = yj(t)[y1(t)y′2(x)− y′1(x)y2(t)]�[0,x](t) (3.6)

where �[0,x](t) stands for the indicator of [0, x].Furthermore,

∂yj
∂λ

(x) = −
∫ 1

0

∂yj
∂q(t)

dt (3.7)
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∂y′j
∂λ

(x) = −
∫ 1

0

∂y′j
∂q(t)

dt (3.8)

The gradients are continuous with respect to x, λ, q.

Proof. Though the theorem is stated in L2, we do it in B = C[0, 1] to make use of the derivatives

∂q(q(x)) = δx

We differentiate

−y′′j (x) + q(x)yj(x) = λyj(x)

with respect to q:

−(∂qyj|x (v))′′ + yj(x)δx(v) + q(x)(∂qyj|x (v) = λ(∂qyj|x (v))

with v ∈ B = C[0, 1]. Now we can apply Theorem 3.12. Note that

(∂qyj|x=0
) = 0, (∂qyj|x )|x=0

= ∂q(∂xyj|x=0
) = 0

Hence a, b = 0 in Theorem 3.12, i.e.

(∂qyj|x )(v) =

∫ x

0

(y1(t)y2(x)− y1(x)y2(t))yj(t)δt(v)dt

=

∫ x

0

[
(y1(t)y2(x)− y1(x)y2(t))yj(t)

]
v(t)dt

That verifies the first identity. Furthermore, differentiating the above with respect to x gives:

(∂qy
′
j|x

)(v) =

∫ x

0

[
(y1(t)y′2(x)− y′1(x)y2(t))yj(t)

]
v(t)

That verifies the second identity. Note that

yj(x, λ+ ξ, q) = yj(x, λ, q − ξ)

Using the chain rule on f(q(·, ξ)) gives:

∂ξf(q(·, ξ)) = ∂qf(∂ξq)

where ∂ξq is viewed as a vector in B. If ∂qf exists in L2, then

∂qf(∂ξq) =

∫ 1

0

(∂qf)(t)∂ξq(t)dt

Thus,

∂λyj = −
∫ 1

0

(∂qyj)(t)dt

i.e. the last 2 identities follow.



Chapter 4

The Dirichlet Spectrum

4.1 Counting Eigenvalues

Consider the Sturm-Liouville equation

− y′′ + qy = λy, x ≥ 0 (4.1)

λ is called a Dirichlet eigenvalue on [0, 1] if (4.1) has a non-trivial solution y with y(0) = 0, y(1) = 0. Let

y1(x, λ), y2(x, λ) be fundamental solutions. Let y be a solution with y(0) = 0, then y = ay1 + by2. Since

y1(0, λ = 1), y2(0, λ) = 0, one has a = 0. Thus the Dirichlet eigenvalues are the roots of the equation

y2(1, λ) = 0 (4.2)

Let q = 0. Then y2(x, λ) = λ−1/2 sin(x
√
λ) and the roots are as follows

λn = π2n2, n = 1, 2, 3, . . . (4.3)

All roots are simple. The collection of all Dirichlet eigenvalues is called the Dirichlet Spectrum.

Lemma 4.1 (Counting Lemma). Let N > 2e||q|| be an integer. Equation (4.3) has exactly N roots in

the half plane <λ < (N + 1/2)2π2

Proof. Recall the estimate ∣∣∣∣∣y2(1, λ)− sin
√
λ√

λ

∣∣∣∣∣ ≤ exp(||q||+ =
√
λ)

|λ|

We want to invoke Rouche’s Theorem. For that we want to compare |λ|−1/2 exp(|=
√
λ|) against

|λ|−1/2| sin
√
λ|. This is done in Lemma (4.3) (see below): If |z −mπ| ≥ π/4 for all m ∈ Z, then

4| sin z| > exp(|=z|)

So, provided that |λ|−1/2 exp(||q||) < 1/4, one has∣∣∣∣∣y2(1, λ)− sin
√
λ√

λ

∣∣∣∣∣ < | sin
√
λ|

|
√
λ|

18
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Let N be an integer, N > 2 exp(||q||). The function λ−1/2 sin
√
λ has exactly N roots in the half plane

<λ < (N + 1/2)2π2, see (4.3). For <λ = (N + 1/2)2π2 one has

|
√
λ−mπ| ≥ π

4

for any m ∈ Z.

|
√
λ| ≥

(
N +

1

2

)
π > 2π exp(||q||) > 4 exp(||q||)

This implies the statement due to Rouche’s Theorem.

Lemma 4.2. Let n > 2 exp(||q||+1), Equation (4.3) has exactly one root in the domain |
√
λ−nπ| > π/2.

Proof. If |
√
λ− nπ| = π/2, then |

√
λ−mπ| ≥ π/4 for any m ∈ Z.

|
√
λ| ≥

(
n− 1

2

)
π > 2π exp(||q||) > 4 exp(||q||)

and the statement follow from Rouche’s Theorem.

Lemma 4.3. If |z −mπ| > π/4 for any m ∈ Z. Then

4| sin z| > exp(|=z|)

Proof. Let z = x+ iy. One cane assume 0 ≤ x ≤ π/2. Recall

| sin(x+ iy)|2 = cosh2 y − cos2 x

Let first x ≥ π/6, so that cos2 ≥ (
√

3/2)2 = 3/4. Since cosh y ≥ 1 for any y, one has cosh2 y ≥ 4/3 cos2 x.

For 0 ≤ x ≤ π/6 we invoke the assumption |z| > π/4. So,

y2 ≥ (π/4)2 − x2 ≥ (5π2/144) ≥ 1/3

Recall that

cosh y = 1 +
y2

2!
+
y4

4!
+ . . . ≥ 1 +

y2

2

So,

(cosh2 y) ≥ 1 + y2 ≥ 4

3
≥ 4

3
cos2 x

Thus, in any event

| sin(x+ iy)|2 ≥ 1

4
cosh2 y >

1

16
exp(2|y|)

Theorem 4.1. If λ is a Dirichlet eigenvalue, then

∂λy2(1, λ)∂xy2(1, λ) =

∫ 1

0

y2
2(t, λ)dt (4.4)

If q is real then ∂λy2(1, λ) 6= 0. In particular, in this case all the roots of y2(1, λ) are simple.
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Proof. If one considers the ODE for y2 and differentiate with respect to λ, one obtains

y2

(
− (∂λy2)′′ + q∂λy2 = y2 + λ∂λy2

)
− ∂λy2

(
− y′′2 + qy2 = λy2

)

∴ y′′2∂λy2 − (∂λy2)′′y2 = y2
2

Note that

y′′2∂λy2 − (∂λy2)′′y2 − (y′2(∂λy2)− y2(∂λy2)′)′

Thus, ∫ 1

0

y2
2(t, λ)dt = y′2(∂λy2)− y2(∂λy2)′

∣∣∣t=1

t=0

Note that y2(0, λ) = 0 implies

∂λy2(0, λ) = 0

Since λ is a Dirichlet eigenvalue y2(1, λ) = 0. So,∫ 1

0

y2(t, λ)dt = ∂xy2(1, λ)∂λy2(1, λ)

as claimed in (4.1). Theorem (4.9) below says that all Dirichlet eigenvalues are real. So, y2(x, λ) is real.

That finishes the proof.

Theorem 4.2. If q is real then the Dirichlet eigenvalue are real.

Proof. Let y2(1, λ) = 0. Note that since q is real, one has

−y2

(
− y′′2 + qy2 = λy2

)
+ y2

(
− y′′2 + qy2 = λy2

)
⇐⇒ y2y

′′
2 − y′′2 y2 = (λ− λ)|y2|2

Thus,

(λ− λ)

∫ 1

0

|y2(t, λ)|2dt =

∫ 1

0

(y2(t, λ)y′2(t, λ)− y′2(t, λ)y2(t, λ))
′
dt

= (y2(t, λ)y′2(t, λ)− y′2(t, λ)y2(t, λ))
∣∣∣t=1

t=0

=0

4.2 Eigenfunctions

We denote the Dirichlet eigenvalues via µj = µj(q).

µi < µ2 < µ3 < . . . (4.5)

Due to Lemma (4.3)

|√µn − nπ| < π/2 for n > 2 exp(||q||) + 1 (4.6)
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Set

gn(x) = gn(x, q) =
y2(x, µn)

||y2(·, µn)||L2

(4.7)

gn(x) is an eigenfunction

||gn||L2 = 1, ∂xgn

∣∣∣
x=0

=
1

||y2(·, µn)||L2

(4.8)

Due to Theorem (4.1) one has also

gn(x) =
y2(x, µn)√

∂λy2(1, µn)∂xy2(1, µn)

∂xgn

∣∣∣
x=0

=
1√

∂λy2(1, µn)∂xy2(1, µn)

Lemma 4.4. If qm(x)→ q(x) pointwise and qm(x) are uniformly bounded, then µn(qm)→ µn(q)

Proof. It is easy to see that y2(1, λ, qm)→ y2(1, λ, q) uniformly for λ running in any bounded set. Since

the roots µ1(q) < µ2(q) < . . . are simple the statement follows.

To proceed we need to discuss briefly analytic functions defined on a Banach space B. This is defined

via weak analyticity:

z → f(q0 + zq)

is analytic in a small neighbourhood |z| < ρ(q0, q) for any q0, q.

Lemma 4.5. µn(q) is analytic around any real q0 ∈ L2

Proof. We know due to Theorem (4.1) that

∂λy2

∣∣∣
λ=µn(q)

6= 0

Therefore the statement follows from the implicit function theorem.

Theorem 4.3.

∂qµn = g2
n(t, q)

Proof. Differentiating

y2(1, µn(q), q) = 0

we obtain

(∂λy2(1, µn)(∂qµn) + (∂qy2)
∣∣∣
λ=µn(q)

= 0

By Theorem (3.5)

∂qy2(1, λ, q) = y2(t, λ, q) [y1(t, λ, q)y2(1, λ, q)− y1(1, λ, q)y2(t, λ, q)]�[0,1](t) = −y1(1, λ, q)y2(t, λ, q)2

Note that

1 = [y1, y2]x=1 = y1(1)∂xy2(1)− ∂xy1(1)y2(1) = y1(1)∂xy2(1)
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So,

∂qy2(1, λ, q) = − y2
2(t, λ, q)

∂xy2(t, λ, q)

Thus

∂qµn =
y2

2(t, µn)

∂λy2(1, µn)∂xy2(1, µn)
= g2

n(t)

Definition 4.6. (αn)n≥1 belongs to l2k if ∑
n≥1

(nkαn)2 < +∞

Clearly l2k is a Hilbert space. We write

βn = γn + l2k(n), n ≥ 1

if

βn = γn + αn, (αn)n≥1 ∈ l2k

Theorem 4.4. Let q ∈ L2, then

µn(q) = n2π2 +

∫ 1

0

q(t)dt−
∫ 1

0

q(x) cos(2πnx)dx+O
(

1

n

)
= n2π2 +

∫ 1

0

q(t)dt+ l2(n) (4.9)

gn(x, q) =
√

2 sin(πnx) +O
(

1

n

)
(4.10)

∂xgn(x, q) =
√

2πn cos(πnx) +O(1) (4.11)

uniformly in x and on bounded sets in L2.

Proof. We have
√
µn = nπ +O(1)

y2(x, µn) =
sin(
√
µnx)

√
µn

+O
(

1

|µn|

)
=

sin(
√
µnx)

√
µn

+O
(

1

n2

)
Thus, ∫ 1

0

y2
2(x, µn)dx =

∫ 1

0

sin(
√
µnx)

√
µn

dx+O
(

1

n3

)
=

1

2µn
+O

(
1

n3

)
Now use this on gn,

gn(x) =
y2(x, µn)

||y2(·, µn)||
=
√

2 sin(
√
µnx) +O

(
1

n

)
Note that µn(0) = n2π2,

µn(q)− n2π2 =

∫ 1

0

d

dτ
µn(τq)dτ =

∫ 1

0

dτ(∂qµn, q) =

∫ 1

0

dτ

[∫ 1

0

g2
n(t, τq)q(t)dt

]
= O(1)
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Thus,

µn = n2π2 +O(1)

√
µn = nπ +O

(
1

n

)
gn(x) =

√
2 sin(πnx) +O

(
1

n

)
Once again,

µn − n2π2 =

∫ 1

0

dτ

[∫ 1

0

2 sin2(nπt)q(t)dt+O
(

1

n

)]
=

∫ 1

0

dτ

[∫ 1

0

(q(t)− cos(2πnt)q(t))dt+O
(

1

n

)]
which implies (4.9) since ∑

n≥1

(∫ 1

0

cos(2πnt)q(t)dt

)2

≤ ||q||2L2 < +∞

Let us estimate ∂xgn. One has due to the basic estimates

∂xy2(x, λ) = cos(
√
λx) +O

(
1√
λ

)
Since

√
µn = nπ +O(1/n), we have

∂xy2(x, µn) = cos(nπx) +O
(

1

n

)
Since

1

||y2||
=
√

2
√
µn +O(1) =

√
2πn+O(1)

one obtains

∂xg2 =
∂xy2(x, µn)

||y2||
=
√

2πn cos(nπx) +O(1)

Set

an = y1(x, µn)y2(x, µn)

Corollary 4.1.

g2
n = 1− cos(2πnx) +O

(
1

n

)

∂xg
2
n = 2πn sin(2πnx) +O(1)

an =
1

2πn
sin(2πnx) +O

(
1

n2

)

∂xan = cos(2πnx) +O
(

1

n

)
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Proof. The first two estimates follow from Theorem (4.4). Due to the basic estimates

y1(x, λ) = cos(
√
λx) +O

(
1√
|λ|

)

for
√
λ =
√
µn = πn+O(1/n),

y1(x, µn) = cos(πnx) +O
(

1

n

)
Furthermore,

y2(x, µn) =
1

πn
sin(πnx) +O

(
1

n2

)
∂xy1(x, µn) = −πn sin(πnx) +O(1)

∂xy2(x, µn) = cos(πnx) +O
(

1

n

)
and the estimates for an follow.

4.3 Product Expansions

Theorem 4.5.

y2(1, λ, q) =
∏
m≥1

(
µm(q)− λ
m2π2

)

Proof.
µm(q)− λ
m2π2

= 1 +O
(

1

m2

)
The product p(λ) converges and defines an entire function of λ. The roots of p are λ = µn(q). So, p/y2

is an entire function with no zeros. We invoke the expansion

sin
√
λ√

λ
=
∏
m≥1

(
m2π2 − λ
m2π2

)

For rn = (n+ 1/2)2π2, n >> 1 one concludes

p(λ)(
sin
√
λ√

λ

) = 1 +O
(

log n

n

)

Recall that

y2(1, λ) =
sin
√
λ√

λ
+O

(
1

|λ|

)
Thus

p(λ)

y2(1, λ)
= 1 +O

(
log n

n

)
For |λ| = rn, n >> 1. By Liouville’s Theorem p(λ)/y2(1, λ) = 1 everywhere.
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Lemma 4.7. Let |am,n| = O(|m2 − n2|−1),m 6= n. Then

∏
m≥1,m 6=n

(1 + am,n) = 1 +O
(

log n

n

)

If
∑
|bn|2 < +∞ then ∏

m,n≥1,m 6=n

|1 + am,nbn| < +∞

Proof. ∑
m≥1,m 6=n

1

|m2 − n2|
=

∑
1≤m≤2n,m 6=n

1

|m2 − n2|
+
∑
m>2n

1

|m2 − n2|

For the first sum we have ∑
1≤m≤2n,m 6=n

1

|m2 − n2|
≤ 2

n

∑
1≤k≤n

1

k
≤ 2

n
log n

For the second sum we have ∑
m>2n

1

|m2 − n2|
≤
∑
k>n

1

k2
<

1

n

For n large, m 6= n, |am,n| < 1/2, | log(1 + am,n)| < 2|am,n|,

∑
m≥1,m 6=n

| log(1 + am,n)| ≤ 2
∑
|am,n| = O

(
log n

n

)

The proof of the second part is similar.

Lemma 4.8. Let zm = m2π2 +O(1). Then

F (λ) =
∏
m≥1

zm − λ
m2π2

is an entire function with roots at zm,

F (λ) =
sin
√
λ√

λ

(
1 +O

(
log n

n

))
, for |λ| = (n+ 1/2)2π2

Proof. Since
zm − λ
m2π2

= 1 +O
(

1

m2

)
The product converges and F (λ) is an entire function. Recall the product expansion

sin
√
λ√

λ
=
∏
m≥1

m2π2 − λ
m2π2

So,

F (λ) =
sin
√
λ√

λ

∏
m≥1

zm − λ
m2π2 − λ
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Let here |λ| = (n+ 1/2)2π2. Then, for m 6= n

zm − λ
m2π2 − λ

= 1 +O
(

1

|m2π2 − λ|

)
= 1 +O

(
1

|m2 − n2|

)
and for m = n

zm − λ
m2π2 − λ

= 1 +O
(

1

n

)

Lemma 4.9. Let zm = m2π2 +O(1). Then

Fn(λ) =
∏

m≥1,m 6=n

zm − λ
m2π2

is an entire function,

Fn(λ) =
(−1)n+1

2

(
1 +O

(
log n

n

))
Proof.

∂λ
sin
√
λ√

λ

∣∣∣
λ=n2π2

= ∂λ
∏
m≥1

(
m2π2 − λ
m2π2

)
=

1

n2π2

∏
m≥1,m6=n

m2π2 − n2π2

m2π2

∂λ
sin
√
λ√

λ

∣∣∣
λ=n2π2

=
(−1)n

2n2π2

Like in Lemma (4.8), for λ = n2π2 +O(1), one has

Fn(λ) = ∂λ
sin
√
λ√

λ

∏
m≥1,m 6=n

zm − λ
m2π2 − n2π2

= ∂λ
sin
√
λ√

λ

(
1 +O

(
log n

n

))

and the statement follows.

Corollary 4.2.

∂λy2(1, µn) =
∏

m≥1,m 6=n

µm − µn
m2π2

=
(−1)n

2n2π2

(
1 +O

(
log n

n

))

sgn(∂λy2(1, µn)) = (−1)n = sgn(∂xy2(1, µn))

Proof. The statement follows from Theorem (4.5) combined with Lemma (4.9) and Theorem (4.1)

4.4 A Basis For L2

Theorem 4.6. a) gn has exactly (n+ 1) roots on [0, 1]. The roots are simple, and

sgn∂xgn

∣∣∣
x=1

= (−1)n

b) If q be even, then gn is odd if n is even, gn is even if n is odd.

To prove this theorem we use the following
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Lemma 4.10 (Continuous Deformations). Let h(t, x) be continuously differentiable in t, x, t ∈ [0, 1], x ∈
[a, b]. Assume for each t, h(t, ·) has a finite number of zeros and all zeros are simple. Suppose also that

h(t, a) = h(t, b) = 0 for all t. Then h(0, ·) and h(1, ·) have the same number of zeros. Furthermore, if

a = ξ1(t) < . . . < ξn(t) = b are the roots then sgn∂xh
∣∣∣
ξj(t)

does not deepen on t.

Proof of (4.6). Part a) follows by applying the continuous deformation h(t, x) = gn(x, tq), 0 ≤ t, x ≤ 1.

Assume q is even, i.e. q(1 − x) = q(x). Then gn(1 − x) is an eigenfunction for µn, ||gn(1 − ·)|| = 1.

Hence,

gn(1− x) = αngn(x), αn ∈ {1,−1}

Taking the derivatives at x = 1, one obtains

−∂xgn
∣∣∣
x=0

= αn∂xgn

∣∣∣
x=1

Recall that ∂xgn

∣∣∣
x=0

= 1/||gn|| just from the definition of y2(x, λ). Furthermore,

sgn∂xgn

∣∣∣
x=1

= (−1)n =⇒ αn = (−1)n+1

Corollary 4.3.

sgn∂λy2(1, λ)
∣∣∣
λ=µn

= (−1)n

Proof. Due to Theorem (4.1)

∂λy2(1, λ)
∣∣∣
λ=µn

∂xy2(x, µn)
∣∣∣
x=1

=

∫ 1

0

y(t, µn)2dt > 0

Theorem 4.7. gn is an orthonormal basis in L2.

Proof. Orthogonality check:

(µm − µn)(gm, gn) = [gm, gn]
∣∣∣x=1

x=0
= 0

To show that the system is complete, introduce

Af =
∑
n≥1

(f, en)gn

where en =
√

2 sin(πnx). Note that

||Af ||2 =
∑
n≥1

|(f, en)|2 = ||f ||2

i.e. A is an isometry. Furthermore,

∑
n≥1

||(A− I)en||2 =
∑
n≥1

||gn − en||2 =
∑
n≥1

O
(

1

n2

)
< +∞
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Thus, A− I is Hilbert-Schmidt. Due to the Fredholm alternative , A is also onto since kerA = 0.

Recall

an(x, q) = y1(x, µn)y2(x, µn)

Theorem 4.8. 1.

(g2
n, ∂xg

2
n) = 0

2.

(am, ∂xg
2
n) =

1

2
δm,n

3.

(am, ∂xan) = 0

Proof. Recall that gk

∣∣∣
x=0

= gk

∣∣∣
x=1

= 0. So,

(g2
m, ∂xg

2
n) =

∫ 1

0

g2
m(x)∂xg

2
n(x)dx

=−
∫ 1

0

g2
n(x)∂xg

2
m(x)

=
1

2

∫ 1

0

(
g2
m(x)∂xg

2
n(x)− g2

n(x)∂xg
2
m(x)

)
dx

=

∫ 1

0

gm(x)gn(x)[gm, gn](x)dx

If m = n, then [gm, gn] = 0. Let m 6= n. Then

[gm, gn]′ = (gmg
′
n − g′mgn)′ = gmg

′′
n − g′′mgn = gm(q − µn)gn − (q − µm)gmgn = (µm − µn)gmgn

∴ gmgn =
1

µm − µn
[gm, gn]′

Substituting this back into gives∫ 1

0

gmgn[gm, gn](x)dx =
1

µm − µn

∫ 1

0

[gm, gn][gm, gn]′dx =
[gm, gn]2

2(µm − µn)

∣∣∣x=1

x=0
= 0

That finishes 1. Now for 2.

2(am, ∂xg
2
n =

∫ 1

0

(am∂xg
2
n − ∂xamg2

n)dx

=

∫ 1

0

(2y1y2gn∂xgn − ∂y1y2g
2
n − ∂xy2y1g

2
ndx)dx

=

∫ 1

0

(y2gn[y1, gn] + y1gn[y2, gn])dx

yj = yj(x, µm). If m = n, then [y2, gn] = 0, so∫ 1

0

y2gn[y1, gn]dx =

∫ 1

0

y2

||y2||
gn[y1, y2]dx =

∫ 1

0

g2
ndx = 1
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If m 6= n, then

(µm − µn)yjgn = ∂x[yj , gn]

thus∫ 1

0

(y2gn[y1, gn]+y1gn[y2, gn])dx =
1

µm − µn

∫ 1

0

([y2, gn]∂x[y1, gn] + [y1, gn]∂x[y2, gn]) dx =
[y1, gn][y2, gn]

µm − µn

∣∣∣x=1

x=0
= 0

That finishes 2. Part 2 is completely similar.

For q = 0

g2
n − 1 = − cos(2πnx)

∂xg
2
n = 2πn sin(2πnx)

These functions together with 1 are a basis in L2[0, 1]. We want to show that the same is true for q 6= 0.

However, the basis is not orthogonal anymore.

Definition 4.11. A map U : H1 → H2 is a linear isomorphism if it is a linear bijection and U,U−1 are

bounded.

Definition 4.12. dn ∈ H are linearly independent if for any m, dm 6∈ span{dn}n 6=m

Theorem 4.9.

U : (ξ, η)→
∑

ξn∂xg
2
n + η01 +

∑
n≥1

ηn(g2
n − 1)

is an isomorphism , U : l21 ×R× l2 → L2[0, 1]. The vectors 1, g2
n− 1 are orthogonal to the vectors ∂xg

2
m.

To prove this theorem, we prove the following first

Theorem 4.10. Let en be an orthonormal basis of the Hilbert space H. Let dn ∈ H be linearly inde-

pendent and obey ∑
||dn − en||2 < +∞ (4.12)

Then A : x →
∑

(x, en)dn is an isomorphism, H ←→ H. Furthermore, U : x → ((x, dn))n≥1 is an

isomorphism H ←→ l2

Proof. Since I(x) = x =
∑

(x, en)en and (4.12) holds, (I−A) is Hilbert-Schmidt. If (αn) ∈ l2,
∑
n αndn =

0, then αn = 0 for all n, since otherwise there would be N such that

dN =
∑
n 6=N

βndn ∈ span{dn : n 6= N}

contrary to the linear independence of dn, n ≥ 1. Therefore, kerA = 0 and the statement follows from

the Fredholm alternative.

Remark 4.13. Assume that dn obeys (4.12) and {dn} = H. Then U is an isomorphism. This is because

of the Fredholm alternative: kerA = {0} if and only if AH = H
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We will show now that the vectors 1, g2
n − 1, n = 1, 2, . . . are linearly independent. So are the vectors

∂xg
2
n, n = 1, 2, . . .. These sequences are mutually orthogonal and together constitute a basis in L2. The

map

U : (ξ, η)→
∑
n≥1

ξn∂xg
2
n + η0 +

∑
n≥1

ηn(g2
n − 1)

is a linear isomorphism: l21 × R× l2 → L2

Proof. By Theorem (4.8),

(am.∂xg
2
n) =

1

2
δm,n

Recall that gn

∣∣∣
x=0

= gn

∣∣∣
x=1

= 0. So, integrating by parts gives

(∂xam, g
2
n) = −δm,n

Recall also that am

∣∣∣
x=1

= am

∣∣∣
x=1

= 0. Hence

(∂xam, 1) = 0

Thus

(g2
n − 1, ∂xam) = −1

2
δm,n

Furthermore

g2
n − 1, 1) = (g2

n, 1)− 1 = ||g2
n|| − 1 = 0

This implies

g2
n − 1 6∈ {1, g2

m − 1,m 6= n,m = 1, 2, . . .}

Furthermore, we have

∂xg
2
n 6∈ span{∂xg2

m : m 6= n,m = 1, 2, . . .}

Due to Theorem (4.8),

(g2
m, ∂xg

2
n) = 0, m, n = 1, 2, . . .

Since gn

∣∣∣
x=0

= gn

∣∣∣
x=1

= 0 one has

(1, ∂xg
2
n) = 0

The statement regarding the linear independence and orthogonality follows from these relations. The

invertibility of U follows from Theorem (4.10)
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The Inverse Dirichlet Problem

Set

[q] =

∫ 1

0

q(x)dx, µ̃n(q) = µn(q)− n2π2 − [q], µ = ([q], (µ̃n)n≥1) ∈ R× l2

Theorem 5.1. µ̃ is a real analytic map µ : L2 → R× l2

∂qµ(v) = ([v], (g2
n − 1, v)n≥1)

Proof. Let p ∈2. Given N , there exists rp,N > 0 such that for ||q − p|| < rp,N , µ1, . . . , µN are real

analytic functions of q. Take N > 2 exp(||p||). Then N > 2 exp(||q||) for ||q − p|| < rp, provided ro is

small enough. It follows from the Counting Lemma that all µn’s are real analytic in ||q − p|| < rp,N .

Similarly,

g2
n(x, q) =

y2(x, µn)

∂λy2(1, µn)∂xy2(1, µn)

is real analytic in ||q − p|| < rp. Furthermore,

µn(q) = n2π2 + [q]− (cos(2πn, x), q) +O
(

1

n

)
for complex ||q − p|| < rp. The map is analytic,

∂µ̃n
∂q

= g2
n − 1

Remark 5.1. Let q∗x(x) = q(1−x), then clearly µn(q∗) = µn(q). So the map q → µ(q) is not injective.

We denote by E the set of all even functions q ∈ L2, i.e.

E = {q inL2 : q∗ = q}

We denote by µE the restriction of µ on E.

Theorem 5.2. µE is a local analytic diffeomorphism at each p ∈ E.

31
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Proof.

∂qµE(v) = ([v], (g2
n − 1, v)n≥1)

Recall that by Theorem (4.9) 1, g2
n − 1, n = 1, 2, . . . is a basis in E. Thus ∂qµE(v) is invertible.

Theorem 5.3 (Borg,1946). µE is injective on E.

To prove this theorem we need the following:

Lemma 5.2. Let f be meromorphic in C. If

sup
|λ|=rn

|f(λ)| = o

(
1

rn

)
For rn →∞, then ∑

Resf = 0

Proof. ∣∣∣∣∣
∫
|λ|=rn

f(λ)dλ

∣∣∣∣∣ ≤ o
(

1

rn

)
2πrn → 0

and the statement follows from the Cauchy Residue Theorem.

Proof of (5.3). Assume p, q ∈ E,µ(p) = µ(q). Consider

f(λ) = − (y2(x, λ, q)− y2(x, λ, p))(y2(1− x, λ, q)− y2(1− x, λ, p))
y2(1, λ, q)

f(λ) has simple poles at λ = µn. Recall

y2(1− x, µn) = (−1)ny2(x, µn)

So,

Resf
∣∣∣
λ=µn

=
(y2(x, µn, q)− y2(x, µn, p))

2

∂λy2(1, µn, q)
≥ 0

Furthermore,

|y2(x, λ, q)−y2(x, λ, p)||y2(1−x, λ, q)−y2(1−x, λ, p)| ≤ exp(|=
√
λ|x)√

|λ|
exp(|=

√
λ|(1− x))√
|λ|

=
exp(|=

√
λ|)

|λ|

Since from the basic estimates we had∣∣∣∣∣y2(1, λ)− sin
√
λ√

λ

∣∣∣∣∣ ≤ exp(||q||+ |=
√
λ|)

|λ|
= o

(
exp(|=

√
λ|)√

|λ|

)

Since ∣∣∣∣∣ sin
√
λ√

λ

∣∣∣∣∣ > exp(|=
√
λ|)

4
√
|λ|

, if |
√
λ−mπ| ≥ π

4
, ∀m

|y2(1, λ)| > exp(|=
√
λ|)

8
√
|λ|

, if |
√
λ−mπ| ≥ π

4
, ∀m
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Thus

|f(λ)| = o

(
1

|λ|3/2|

)
, for |λ| =

(
n+

1

2

)2

π2

That implies that ∑
Resf = 0

Hence,

y2(x, µn, q) = y2(x, µn, p) ∀x, n

Note that if y(x, λ, q) = y(x, λ, p) for some particular λ and all x, then p(x) = q(x) for almost all x.

Set (Flaska, McLaughlin 1976)

κn(q) = log
(

(−1)n∂xy2(1, µn)
)

= log

∣∣∣∣∂xgn(1, q)

∂xgn(0, q)

∣∣∣∣
Theorem 5.4.

κn(q) =
1

2πn
(sin(2πnx), q) +O

(
1

n2

)
= l21(n)

∂qκ = an(t, q)− [an]g2
n(t, q) =

1

2πn
sin(2πnt) +O

(
1

n2

)
uniformly on bounded sets.

Proof. Since ∂xy2(1, µn(q), q) 6= 0,κn(q) is a weakly continuous real analytic function. Furthermore,

∂qκn =
1

∂xy2(1, µn, q)

(
∂λy2

∣∣∣
x=1,λ=µn

∂qµn + ∂q∂xy2

∣∣∣
x=1,λ=µn

)
Recall that due to Theorem (3.5)

∂qy
′
2

∣∣∣
x=1

= y2(t)(y1(t)y′2(x)− y′1(x)y2(t)]�[0,x](t)
∣∣∣
x=1

= y1(t)y2(t)y′2(t)− y′1(1)y2(t)2

∂λ∂xy2

∣∣∣
x=1

= −y′2(1)

∫ 1

0

y1y2dt+ y′1(1)

∫ 1

0

y2
2(t)dt

Recall also that by Theorem (4.3)

∂qµn = g2
n(t) =

y2
2(t, µn)

||y2(·, µn)||2

One obtains

∂qκn =y1(t, µn)y2(t, µn)−
(∫ 1

0

y1(t, µn)y2(t, µ)dt

)
g2
n(t)

=an(t)− [an]g2
n(t)

=
1

2πn
sin(2πnt) +O

(
1

n2

)
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(See Corollary (4.1)) Furthermore, κn(0) = 0,

κn(q) =

∫ 1

0

d

dt
κ(tq)dt

=

∫ 1

0

dt

∫ 1

0

[(∂qκn)(tq)](s)q(s)ds

=

∫ 1

0

dt

∫ 1

0

(
1

2πn
sin(2πns) +O

(
1

n2

))
q(s)ds

=
1

2πn
(sin(2πnx, q) +O

(
1

n2

)
=l21(n)

Lemma 5.3.

(∂qκm, ∂x∂qκn) = 0

(∂qκm, ∂xµn) =
1

2
δm,n

(∂qµm, ∂x∂qµn) = 0

Proof. Using Theorem (5.4), Theorem (??) and Theorem (4.8)

∂qκm, ∂x∂qµn) = (am − [am]g2
m, ∂xg

2
n) =

1

2
δm,n

The verification of the rest is similar.

Theorem 5.5. The map q → (κm(q)), (µm(q)) is injective.

Proof. Assume κm(q) = κm(p), µn(q) = µn(p) for all m,n. Consider

f(λ) = − (y2(x, λ, q)− y2(x, λ, p))(y2(1− x, λ, q∗)− y2(1− x, λ, p∗))
y2(1, λ, q)

since κm(q) = κm(o), µn(q) = µn(p), we have

∂xy2(1, µn, q) = ∂xy2(1, µn, p)

where µn ≡ µn(p). Note also that

y2(1− x, µn, q∗) = − y2(x, µn, q)

∂xy2(x, µn, q)
∣∣∣
x=1

Since both sides are solutions of −y′′ + qy = µny with the same initial conditions at x = 1. The same

conclusion applies to p. Calculate:
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Resf
∣∣∣
λ=µn

=
(y2(x, µn, q)− y2(x, µn, p))

y2(1, µn, q)

 y2(x, µn, q)

∂xy2(x, µn, q)
∣∣∣
x=1

− y2(x, µn, p)

∂xy2(x, µn, p)
∣∣∣
x=1


=

(y2(x, µn, q)− y2(x, µn, p))
2

∂λy2(1, µn, q)∂xy2(x, µn, q)
∣∣∣
x=1

Recall that by Theorem (4.1)

∂λy2(1, λ, q)∂xy2(x, λ, q)
∣∣∣
x=1

=

∫ 1

0

y2(x, λ, q)2dx > 0

Thus, Resf
∣∣∣
λ=µn

> 0 for all n. One can invoke Lemma (5.2) to conclude that

∑
Resf

∣∣∣
λ=µn

= 0

Thus,

y2(x, µn, q) = y2(x, µn, p), ∀x

That implies q = p.

Lemma 5.4.

κ(q∗) = −κ(q)

In particular, q is even if and only if κ(q) = 0 .

Proof. We know from the proof of Theorem (5.5) that

y2(1− x, µn, q∗) = − y2(x, µn, q)

∂xy2(x, µn, q)
∣∣∣
x=1

Differentiating this identity at x = 0, we obtain

−∂ξy2(ξ, µn(q), q∗)
∣∣∣
ξ=1

= −
∂xy2(x, µn(q), q)

∣∣∣
x=0

∂xy2(x, µn(q), q)
∣∣∣
x=1

= − 1

∂xy2(x, µn(q), q)
∣∣∣
x=1

We also know that µn(q∗) = µn(q). Hence

κn(q∗) = ln(−1)n∂ξy2(ξ, µn(q∗), q∗)
∣∣∣
ξ=1

= log
(−1)n

∂xy2(x, µn(q), q)
∣∣∣
x=1

=− κn(q)

Furthermore, if q is even, then q∗ = q, and κn(q) = 0 for all n. Vice versa, assume κn(q) = 0 for all n.
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Then (κ(q∗), µ(q∗)) = (κ(q), µ(q)). By Theorem (5.5) q∗ = q, i.e. , q is even.

Set

Vn(x, q) = 2∂xg
2
n = 2∂x∂qµn

Wn(x, q) = −2∂x(an − [an]g2
n) = −2∂x∂qκn

Due to Corollary (4.1)

Vn = 4πn sin(2πnx) +O(1)

Wn = −2 cos(2πnx) +O
(

1

n

)
uniformly on bounded sets.

Theorem 5.6. (κ, µ) is a local real analytic diffeomorphism at each point q ∈ L2. The inverse for

dq(κ, µ) is a linear map from l21 × R× l2 → L2 given by

(dq(κ, µ)−1)(ξ, η) =
∑

ξnVn + η01 +
∑

ηnWn

Proof. µ is real analytic on L2. Let us check that κ is real analytic. Let p ∈ L2
R. WE know that µn, g

2
n

are analytic for ||q − p|| < rp. Furthermore, ∂xyn(1, λ, q) is analytic for ||λ− µn(p)|| < ρp, ||q − p|| < rp

and does not vanish (since ∂xy2(1, µn(o), p) 6= 0) by Theorem (5.4).

∂qκn = an − [an]g2
n

One can now repect the estimation from Theorem (5.4) to show that

κn(q) =
1

2πn
(sin(2πnx), q) +O

(
1

n2

)
uniformly for ||q − p|| < rp. Thus κ is real analytic map with values in l21. Let us now discuss the

derivative of the map (κ, µ):

v →
(

((∂qκ), v); [v]; ((∂qµ̃n), v)
)

By Theorem (5.4)

2πn∂qκn = (sin(2πnx), q) +O
(

1

n

)
By Theorem (4.4)

∂qµ̃n = −2 cos(2πnx) +O
(

1

n

)
To show that the derivative map is invertible, we invoke Theorem (4.12) . For that we need to show that

∂qκn, n = 1, 2, . . . ; 1; ∂qµ̃n, n = 1, 2, . . .

are linearly independent. Due to Lemma (5.3) for all m,n holds

(∂qκm, ∂x∂qµn) =
1

2
δm,n
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(∂qµm, ∂x∂qµn) = 0, for all m,n

Note that ∂qµ̃m = ∂qµm − 1, ∂x(∂qµ̃m) = ∂x∂qµm. Furthermore

∂qµn

∣∣∣
x=0,1

= 0, an

∣∣∣
x=0,1

− [an]g2
n

∣∣∣
x=0,1

= 0

Integrating by parts gives

(∂qµ̃m, ∂x∂qµn) = −(∂x(∂qµ̃m), ∂qµn) = −(∂x∂qµn, ∂qµn) = 0

(1, ∂x∂qµn) = 0

It follows from (??) that ∂x∂qµm is orthogonal to all vectors in (??) but ∂qκm. Therefore, if

∑
ξm∂qκm + η0 +

∑
ηn∂qµ̃n = 0

For some ((ξm), η0, (ηn)) ∈ l21 × R× l2, then ξm = 0 for all m ( The series here converges in L2). Recall

that the vectors 1, ∂qµ̃n are linearly independent (they form a basis of E by Theorem (4.9)). Hence,

ηn = 0, n = 0, 1, 2, . . . . We also have

∑
m

ξm∂qκm − sin(2πmx)||2 +
∑
|| − ∂qµ̃m − 2 cos(2πnx)||2 < +∞

Therefore the map

(ξ, η)→
∑
m

ξmm∂qκm + η0 +
∑
n

ηn∂qµ̃n

is an isomorphism from l2 × R× l2 onto L2. Therefore the derivative map ( v ∈ L2)

v →
(

(∂qκm, v)m, [v], (∂qµ̃n, v)n

)
∈ l21 × R× l2

is invertible. Therefore (κ, µ) is a local real analytic diffeomorphism. Let us calculate the inverse. Given

(ξm) ∈ l21, η0, (ηn) ∈ l2 we are looking for v such that

(∂qκm, v) = ξm, [v] = η0, (∂qµ̃n, v) = ηn

We invoke Lemma (5.3), we have

(∂qκm, 2
∑

ξm∂x∂qµn) =ξm

(∂qµ̃n, 2
∑
n

ξn∂x∂qµn) =0

(∂qµ̃n,−2
∑

ηr∂x∂qκr) =2(∂x∂qµn,
∑
m

ηr∂qκr)

=ηn

(∂qκm,−2
∑

ηr∂x∂qκr) =0

(1, 2
∑
n

ξn∂x∂qµn − 2
∑
r

ηr∂x∂qκr) =0

That verifies the formula for the inverse.



Chapter 6

Isospectral Sets, The κ-Flow

Given p ∈ L2[0, 1] set

M(p) = µ−1(µ(p))

Mn(p) = {q : µn(q) = µn(p)}

Note that since ∂qµn = g2
n > 0. Mn(p) is a smooth manifold. We know also that g2

n’s are linearly

independent, so

M1(p) ∩ . . . ∩Mn(p)

is a smooth manifold. Set

U0 = 1, Un = g2
n − 1, Vn = 2∂xg

2
n

Uη =
∑

ηnUn

Vξ =
∑

ξnVn

By Theorem (4.8), (??)

{Uη : η ∈ R× l2} ⊥ {Vξ : ξ ∈ l21}

R⊕ {Uη : η ∈ R× l2} ⊕ {Vξ : ξ ∈ l21} = L2

Theorem 6.1. a) For any p, M(p) is a real analytic submanifold of L2.

M(p) ⊂ {q : [q] = [p]}

b)

TqM(p) = {Vξ(q) : ξ ∈ l21}

NqM(p) = {Uη : η ∈ l2}

Proof.

(dqµ)(w) =
(

(Un, w) : n ≥ 0
)

38
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set kerq = ker dq. We want to show that dqµ restricted to ker⊥q is invertible. Clearly

ker⊥q = {Uη : η ∈ R× l2}

Recall that

(Um, Un) = δm,n +

(
cos(2πmx),O

(
1

n

))
+

(
cos(2πnx),O

(
1

m

))
+O

(
1

mn

)
So,

∑
m,n

((Um, Un)− δm,n)
2

=
∑
m,n

(
cos(2πmx),O

(
1

n

))2

+
∑
m,n

(
cos(2πnx),O

(
1

m

))2

+
∑
O
(

1

m2

)
O
(

1

n2

)

Due to Bessel inequality

∑
n

∑
m

(
cos(2πmx),O

(
1

n

))2

≤
∑
n

O
(

1

n2

)
< +∞

Thus, (
(Um, Un)

)
m,n
− I = Hilbert-Schmidt

Since Um is a basis in ker⊥q , ((Um, Un))m,n is one-to-one. By the Fredholm alternative (Um, Un)) is

invertible. That implies the statement.

Corollary 6.1. κ(q) defines ”global” coordinates on Mp.

dqκ(Vξ) = ξ

Proof. Recall that q → (µ(q),κ(q)) is an analytical embedding. The identity dqκ(Vξ) = ξ follows from

Lemma (5.3)

Let φt(q, ξ) be the flow of the vector-field Vξ. One has

φdt(q, ξ) = q + Vξdt+O(dt2),

κn
(
φdt(q, ξ)

)
= κn(q) +

(
∂qκn, dt

∑
m

ξmVm

)
+O(dt2) = κm(q) + ξndt+O(dt2),

κ
(
φt(q, ξ)

)
= κ(q) + tξ

The flow is defined as long as there is no blow up i.e. ||φt(q, ξ)|| does not how to +∞ when t→ t0

Lemma 6.1.

(q, Vn) = (−1)n
4 sinh(κn(q))

∂λy2(1, µn(q), q)

Proof.

(q, ∂xg
2
n) =

∫ 1

0

q2gn∂xgndx
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Recall that

−∂2
xxgn + qgn = µngn

so

(q, ∂xg
2
n) =2

∫ 1

0

(∂2
xxgn + µngn)∂xgndx

=

∫ 1

0

∂x

(
(∂xgn)2 + µng

2
n

)
=
(

(∂xgn)2 + µng
2
n

)∣∣∣x=1

x=0

=
(∂xy2(x, µn(q), q))2

∂λy2(1, µn(q), q)∂xy2(1, µn(q), q)

∣∣∣x=1

x=0

=
1

∂λy2(1, µn(q), q)

(
∂xy2(1, µn(q), q)− 1

∂xy2(1, µn(q), q)

)
We used ∂xy2(x, λ, q)

∣∣
x=0

= 1 for any λ. Recall that

κn(q) = log
(

(−1)n∂xy2(1, µn(q), q)
)

That implies the identity.

It is convenient to introduce the notation

γn =
(−1)n

∂λy2(1, µn(q), q)

By Corollary (??)

∂λy2(1, µn) =
(−1)n

2n2π2

(
1 +O

(
log n

n

))
So,

γn = n2π2

(
1 +O

(
log n

n

))
> 0, n >> 1

Furthermore, by Corollary (??)

∂λy2(1, µn) = − 1

n2π2

∏
m≥1,m6=n

µm − µn
m2π2

In particular, ∂λy2(1, µn) depends only on the Dirichlet spectrum. In other words we have the following

statement.

Lemma 6.2.

γn(φt(q)) = γn(q), n ≥ 1

We prove now

Lemma 6.3.

||φt(q, Vξ)||2 = ||q||2 + 8
∑
n≥1

γn(q)
(

cosh(κn(q) + tξn)− coshκn(q)
)
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Proof.
1

2
∂s||φs(q)||2s=0 = (q, Vξ(q)) =

∑
n≥1

ξn(q, Vn(q)) = 4
∑
n≥1

ξnγn(q) sinh(κn(q))

Thus, for general t we have the following

1

2
∂t||φt(q)||2 = 4

∑
n≥1

ξnγn(φt(q)) sinh(κ(φt(q))) = 4
∑
n≥1

ξnγn(q) sinh(κn(q) + tξn)

Note that here

|ξnγn sinh(κn + tξn)| = O
(
(ξ2
n + |ξnκn|)γn

)
provided |t| = O(1). Since γn = o(n2) and ξn,κn ∈ l21, the series here converges. Therefore

||φt(q)||2 − ||q||2 = 8
∑
n≥1

γn

∫ t

0

ξn sinh(κn + sξn)ds = 8
∑
n≥1

γn
(

cosh(κn(q) + tξn)− coshκn
)

Theorem 6.2. The Flow φt(q, Vξ) is well defined for all t.

Proof. Due to Theorem (5.5) the map q → (µ(q),κ(q)) is an injective diffeomorphism from L2 to l2× l21.

Since sup ||φt(q, Vξ)|| < +∞, the statement follows.

Remark 6.4. Since κ(φt(q)) = κ(q) + ξt, t ∈ R the set M(q) is unbounded.

For q ∈M(o) and ξ ∈ l21, set

expq(Vξ) = φt(q, Vξ)
∣∣∣
t=1

Note that

κ
(

expq(Vξ)
)

= κ(q) + ξ

Clearly we have the following statement

Theorem 6.3. For fixed q,expq(Vξ) is a real analytic isomorphism between TqM(p) ' l21 and M(p).

Corollary 6.2. There is a unique even point q0 ∈M(p). Moreover

||q0|| < ||q||, for any q ∈M(p)

Proof. Set q0 = expp(V−κ(p)). Then κ(q0) = κ(p)− κ(p) = 0. By Lemma (??) q0 is even. By Theorem

(5.5) the map q → (µ(q),κ(q)) is injective. Since µ(q) = µ(p) for q ∈ M(0), κ(q) 6= 0 for any q 6= q0.

Again by Lemma (??) no q 6= q0 is even. Furthermore, for any ξ 6= 0, one has due to Lemma (6.3)

|| expq0(Vξ)||2 =||q0||2 + 8
∑
n≥1

γn(q0)
(

cosh(κn(q0) + ξ)− coshκn(q0)
)

=||q0||2 + 8
∑
n≥1

γn(q0)
(

cosh ξ − 1
)
> ||q0||2
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Since the range of ξ → expq0(Vξ) is M(p), one has

||q0|| < ||q||, for any q ∈M(p)



Chapter 7

The Spectral Map Range, The

µ-Flow

Let µn(q) be the Dirichlet eigenvalues. In this section q ∈ L2 as usual, and

µ̃n(q) = µn(q)− π2n2 − [q], µ(q) = ([q], µ̃n(q), n ≥ 1) ∈ R× l2.

Our first goal is to show that the map is onto

S = {s, (γn) ∈ l2 : π2n2 + γn < π2(n+ 1)2 + γn+1}

Let I be the constant vector-field on R× l2 × l21

In = {o, δm,n;m ≥ 1, o ∈ l21} (7.1)

Consider its pull back via the map µ. By

(dqµ)−1In = −2∂x(an − [an]g2
n) = Wn(x, q) (7.2)

Set

Wη = η0 +
∑
n≥1

ηnWn, η ∈ R× l2 (7.3)

Let φt(q,Wη) be the Wη-flow. Clearly

µ
(
φt(q,Wη)

)
= µ(q) + tη (7.4)

consider φt(q,Wn). Then

µ
(
φt(q,Wn)

)
=

{
µm(q), m 6= n

µn(q) + t, m = n
(7.5)

As we know µn−1(q̃) < µn(q̃) < µn+1(q̃) for any q̃ ∈ L2 and any n. So

43
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µn−1(q) < µn(q) + t < µn+1(q) (7.6)

That defines the interval of t where there is a chance to define the flow. We want to show that for all t

in (7.6) the flow is indeed on defined. First of all we need some auxiliary lemmas.

Lemma 7.1. Let f be a nontrivial solution of

− y′′ + qy = λy (7.7)

and let g be a nontrivial solution of

− y′′ + qy = µy, µ 6= λ (7.8)

Then
[g, f ]

g
(7.9)

is a non trivial solution of

− y′′ +
(
q − 2∂2

xx log |g|
)
y = λy (7.10)

For λ = µ the general solution of (7.10) is as follows:

1

g

(
a+ b

∫ x

0

g2(s)ds

)
(7.11)

Here if g has roots, then the equation is considered between them.

Proof. The proof can be done just by direction calculation. Here is a slightly nicer way to verify the

claim. Set

A = g(∂x)
1

g
, A∗ = −1

g
(∂x)g

Using the equation

−g′′ + qg = µg

one obtains

A∗A = − d2

dx2
+ q − µ

So, f obeys

A∗Ay = (λ− µ)y (7.12)

Similarly, using the equation (g′′/g) = µ− q, one obtains

AA∗ = −∂2
xx −

g′′

g
+ 2

(
g′

g

)2

= −∂2
xx +

(
q − 2∂2

xx log |g|
)
− µ

Applying A to both sides to (7.12) one obtains

AA∗Ay = (λ− µ)Ay



Chapter 7. The Spectral Map Range, The µ-Flow 45

So, f is a solution of (7.12) then Af is a solution of

(
− ∂2

xx + (q − 2∂2
xx log |g|)

)
y = λy

Let us calculate Af :

Af = g(∂x)
f

g
= ∂xf − f

∂xg

g
=

[g, f ]

g

Note that [g, f ] can not be identically zero. This is because

[g, f ]′ = g∂2
xxf − f∂2

xxg = g(µ− q)f − f(λ− q)g = (µ− λ)gf

Let h obey

−∂2
xxh+ (q − 2∂2

xx log |g|)h = µh

Then

AA∗h =
(
− ∂2

xx + (q − 2∂2
xx log |g|)− µ

)
h = 0

on the other hand

AA∗h = −g∂x
(

1

g2
∂x(gh)

)
Thus, between any two roots of g

∂x(gh) = bg2

with b depending on these roots. That implies the second statement.

Lemma 7.2. Let g, h, f be non-trivial solutions:

−∂2
xxg + qg = µg, −∂2

xxh+ qh = νh, −∂2
xxf + qf = λf, λ 6=, µ, ν

Then
1

h

[
h,

1

g
[g, f ]

]
= (µ− λ)f − 1

g
[g, f ]∂x log |gh|

is a nontrivial solution of

−y′′ +
(
q − 2∂2

xx log |gh|
)
y = λy

Proof. This is just an iteration of the previous lemma.

Remark 7.3. Lemma 1 was discovered by Gaston Darboux in 1882.

Set

wn(x, λ, q) = y1(x, λ) +
y1(1, µn)− y1(1, λ)

y2(1, λ)
y2(x, λ)

wn is a unique solution of

−y′′ + qy = λy

with wn(0, λ) = 1, wn(1, λ) = y1(1, µn) provided λ 6= µm,m = 1, 2, . . .. At λ = µm with m 6= n, wn has

a pole. There is no singularity at λ = µn for ∂λy2(1, µn) 6= 0. Set

zn(x, q) = y2(x, µn(q), q)



Chapter 7. The Spectral Map Range, The µ-Flow 46

consider

ωn(x, λ, q) = [wn, zn], x ∈ [0, 1], λ ∈ (µn−1(q), µn+1(q))

Note that

ωn

∣∣∣
x=0

= wn

∣∣∣
x=0

∂xzn

∣∣∣
x=0
− ∂xwn

∣∣∣
x=0

zn

∣∣∣
x=0

= 1− ∂xwn
∣∣∣
x=0

0 = 1

ωn

∣∣∣
x=1

= wn

∣∣∣
x=1

∂xzn

∣∣∣
x=1

= y1(1, µn, q)∂xy2(1, µn, q) = 1, for all λ

ωn

∣∣∣
λ=µn

= [y1, y2] = 1, for all x

Lemma 7.4. The function ωn is strictly positive for x ∈ [0, 1], λ ∈ (µn−1(q), µn+1(q)).

Proof. Assume the statement fails. Then there exists λ0 ∈ (µn−1(q), µn(q)) ∪ (µn(q), µn+1(q)) and

0 < x0 < 1 such that ωn(x0, λ0, q) = 0 and ωn(·, λ0, q) has a local minimum at x = x0. One has

0 =∂xωn(x0, λ0, q)

=wn(x0, λ0, q)∂
2
xxy2(x0, µn(q), q)− ∂2

xxwn(x0, λ0, q)y2(x0, µn(q), q)

=− wn(x0, λ0, q)
(
µn − q

)
y2(x0, µn(q), q) +

(
λ0 − q

)
wn(x0, λ0, q)y1(x0, µn(q), q)

Since ωn(x0, λ0, q) = 0 we have also

0 = wn(x0, λ0, q)∂xy2(x0, λ0, q) = ∂xwn(x0, λ0, q)y2(x0, λ0, q)

If wn(x0, λ0, q) = 0 then ∂xwn(x0, λ0, q) 6= 0 and y2(x0, λ0, q) must vanish. Similarly, if y2(x0, λ0, q) = 0,

then wn(x0, λ0, q) must vanish. Thus wn(x0, λ0, q) = 0 and y2(x0, λ0, q) = 0, so

wn(x, λ0, q) = ∂xwn(·, λ0, q)
∣∣∣
x=x0

(x− x0) +O
(
(x− x0)2

)
y2(x, µn(q), q) = ∂xy2(·, µn(q), q)(x− x0) +O

(
(x− x0)2

)
Here

∂xwn(·, λ0, q)
∣∣∣
x=x0

6= 0, ∂xy2(·, µn(q), q)
∣∣∣
x=x0

6= 0

Hence,

∂ωn(x, λ0, q) = (λ0 − µn)∂xwn(·, λ0, q)
∣∣∣
x=x0

∂xy2(·, µn(q), q)
∣∣∣
x=x0

(x− x0)2 +O
(
(x− x0)3

)
This contradicts the assumption that ωn(·, λ0, q) has a local minimum at x = x0.

Theorem 7.1.

φt(q,Wn) = q − ∂2
xx logωn(x, µn + t, q)

for all µn−1 < µn(q) + t < µn(q).

Proof. Let wn,t = wn(x, µn + t, q), ωn,t = ωn(x, µn + t, q). By Lemma (??)

h =
1

zn
[wn,t, zn] =

ωn,t
zn
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obeys

−y′′ + (q − ∂2
xx log zn)y = (µn + t)t

By Lemma (6.1) ωn,t is strictly positive for x ∈ [0, 1], µn−1 < µn + t < µn+1. Therefore

qt = q − 2∂2
xx logωn,t

is in L2. Let zn,t = 1/h = zn/ωn,t. this function also belongs to L2. For j 6= n consider

zj,t ≡ zj −
1

µn − µj
[zn, zj ]

zn
∂x logωn,t

By Lemma (??), zj,t obeys

−y′′ + qty = (µj + δj,nt)t

Note also that zj,t

∣∣∣
x=0

= zj,t

∣∣∣
x=1

= 0. Recall that (µn + t) does not recover qt. For that we have to

verify that κj(qt) = κj(q) for all j. That is exactly what is needed to see that qt = φt(q,Wn). Recall

that

κj(qt) = log

∣∣∣∣∣∂xzj,t
∣∣
x=1

∂xzj,t
∣∣
x=0

∣∣∣∣∣ = log

∣∣∣∣∂xzj(1)

∂xzj(0)

∣∣∣∣ = κj(q)

Theorem 7.2. The range of the map µ is S ⊂ R× l2.

Proof. Let σ ∈ S be arbitrary. Clearly we can assume σ = (0, σ̃) where σ̃ ∈ l2. Consider

σN = (µ
(0)
1 , . . . , µ(0)

n , . . .), µ
(0)
j = π2j2

Clearly σN → µ(0). Since µ is a local diffeomorphism there exists N large enough such that σN = µ(q).

The vector fields Ik, k = 1, 2, . . . , N define flows which act transitively on Rn ⊂ l2. Since S is defined

via

π2n2 + γn < π2(n+ 1)2 + γn+1

The flows φtn(q), n = 1, . . . , N allow one to transform q into q̃ with (µ̃n(q̃))Nn=1 begin arbitrary, as long

as

µ̃n(q̃) < µ̃n+1(q̃)

Corollary 7.1. The sequence µ1 < µ2 < . . . < µn < . . . is a dirichlet spectrum if some q ∈ L2[0, 1] if

and only if

µn = π2n2 + s+ l2(n)

Remark 7.5. This result was discovered in Gelfand-Levitan’s 1951 paper which appeared in AMST,1,253-

304 1955.



Chapter 8

Interpolation Formula for Hill

Discriminants

Let y1(x, λ, q), y2(x, λ, q) be the fundamental solutions. The following function

∆(λ, q) = y1(1, λ, q) + ∂xy2(1, λ, q) (8.1)

is called the Hill discriminant. It is the trace of the fundamental matrix and it plays a very important

role in the periodic spectrum which we study in Part 9. Here we are concerned with the following

problem. Assume µn(p) = µn(q), n = 1, . . .. Assume also

∆(µn, p) = ∆(µn, q), n = 1, 2, . . . (8.2)

where µn = µn(p). We want to show that in this case

∆(λ, p) = ∆(λ, q) (8.3)

for all λ ∈ C. Since ∆(λ, p),∆(λ, q) are entire functions this is a problem of uniqueness and interpolation.

If we could interpolate ∆(λ, p) from λ = µn, n = 1, . . . to all λ ∈ C this would resolve the problem.

To do the interpolation one needs ”good” asymptotic for the function at |λ| → ∞. It turns out that

the function ∆(λ, p) does not obey the needed estimates at |λ| → ∞. First we will consider some other

important functions which do obey the needed estimates. That allows us to develop partial fraction

expansions for these functions. In regard of ∆(λ, p) = ∆(λ, q) we just consider ∆(λ, p) − ∆(λ, q) and

show that this function also obeys the needed estimates. Therefore it vanishes everywhere.

Lemma 8.1. Let f ∈ L1[0, 1]. Then for any ε > 0 there exists a constant C(ε) such that for any ξ ∈ C,

we have ∣∣∣∣∫ 1

0

f(x) cos(ξx)dx

∣∣∣∣ ≤ exp(|=ξ|)
(
ε+

C(ε)

|ξ|

)
∣∣∣∣∫ 1

0

f(x) sin(ξx)dx

∣∣∣∣ ≤ exp(|=ξ|)
(
ε+

C(ε)

|ξ|

)
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Proof. Given ε > 0, we find g ∈ C1[0, 1] such that∫ 1

0

|f(x)− g(x)|dx < ε

Then, ∣∣∣∣∫ 1

0

f(x) cos(ξx)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

g(x) cos(ξx)dx

∣∣∣∣+ max
x
| cos ξx|

∫ 1

0

|f(x)− g(x)|dx

Note that | cos ξx|, | sin ξx| ≤ exp(|=ξ|), and∫ 1

0

g(x) cos(ξx)dx =
g(x)

ξ
sin(ξx)

∣∣∣x=1

x=0
− 1

ξ

∫ 1

0

g′(x) sin(ξx)dx

and the estimate follows.

This version of the Riemann-Lebesgue Lemma allows us to improve a bit on the basic estimates and this

is exactly what we need. Now we introduce an important function which allows interpolation:

u(λ, p) = y1(1, λ, q)− ∂xy2(1, λ, q)

We want to estimate |u(λ, q)| using Lemma (8.1). Recall that

y1(x, λ) = cλ(x) +

∫ x

0

sλ(x− t)q(t)y1(t, λ)dt

y2(x, λ) = sλ(x) +

∫ x

0

sλ(x− t)q(t)y2(t, λ)dt

where

cλ(x) = cos(
√
λx), sλ(x) =

sin(
√
λx)√
λ

Furthermore,

∂xy2 = cλ(x) +

∫ x

0

cλ(x− t)q(t)y2(t, λ)dt

Thus,

u(λ) =

∫ 1

0

sλ(1− t)q(t)y1(t, λ)dt−
∫ 1

0

cλ(1− t)q(t)y2(t, λ)dt

Lemma 8.2. Given ε > 0 there exists a constant C(ε, q) such that

|u(λ)| ≤ 1√
|λ|

(
ε+

C(ε, q)√
|λ|

)
exp(|=

√
ξ|)

Proof. Using the integral equation for y1(x, λ), y2(x, λ), once again, one obtains

u(λ) =

∫ 1

0

sλ(1− t)q(t)cλ(t)dt+

∫ 1

0

sλ(1− t)q(t)
∫ 1

0

sλ(t− τ)q(τ)y1(τ)dτdt−

−
∫ 1

0

cλ(1− t)q(t)sλ(t)dt−
∫ 1

0

cλ(1− t)q(t)
∫ t

0

sλ(t− τ)q(τ)y2(τ)dτdt
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One has

|sλ(1− t)sλ(t− τ)y1(τ)| ≤exp(|=
√
λ|(1− t))√
|λ|

exp(|=
√
λ|(1− τ))√
|λ|

O
(

exp(|=
√
λ|τ)

)
=O

(
exp(|=

√
λ|)

|λ|

)

Also,

|cλ(1− t)sλ(t− τ)y2(τ)| ≤ exp(|=
√
λ|(1− t))exp(|=

√
λ|(1− τ))√
|λ|

O

(
exp(|=

√
λ|τ)√

|λ|

)

=O

(
exp(|=

√
λ|)

|λ|

)

Note that

sλ(1− t)cλ(t)− cλ(1− t)sλ(t) =
sin(
√
λ(1− 2t))√
λ

(8.4)

Thus

u(λ) =
1√
λ

∫ 1

0

sin(
√
λ(1− 2t)q(t)dt+O

(
exp(|=

√
λ|)

|λ|

)
Applying the estimate of Lemma (8.1) one obtains the statement.

We turn now to the interpolation formula for u(λ), λ ∈ C. Usually the derivation is done for the function

u−(z) = u(z2)

which plays an important role in the context of the periodic spectral problem.

Lemma 8.3. Let Γn = {|z| = π(n + 1/2)}. Given ε > 0, there exists C(ε) such that for n > N0 and

|z| = O(1) ∣∣∣∣∫
Γn

u−(ζ)

y2(1, ζ2)(ζ − z)
dζ

∣∣∣∣ ≤ C0

(
ε+

C(ε, q)

n

)
where C0 = C0(q).

Proof. Recall that for |λ| >> 1,∣∣∣∣∣y2(x, λ)− sin(
√
λx)√
λ

∣∣∣∣∣ = O

(
exp(|=

√
λ|x)

|λ|

)

Recall also that if minn |z −mπ| ≥ π/2 then

| sin(z)| ≥ 1

4
exp(|=z|)
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Hence, for |ζ| = π(n+ 1/2) with n >> 1 one has

|y2(1, ζ)2| & exp(|=ζ|)
|ζ|

&
exp(|=ζ|)

n

By Lemma (8.2)

|u(ζ)| ≤ 1

|ζ|

(
ε+

C(ε, q)

|ζ|

)
exp(|=ζ|)

Setting ζ = Rn exp(iθ), 0 ≤ θ ≤ 2π where Rn = π(n + 1/2), noting that dζ = Rni exp(iθ)dθ, and

supposing |ζ − z| ∼ Rn one obtains∫
Γn

|u−(ζ)|
|y2(1, ζ)||ζ − z|

|dξ| .
(
ε+

C(ε, q))

|ξ|

)
as claimed.

Corollary 8.1. For z2 6= µk,

u−(z) = y2(1, z2)

∞∑
k=1

√
µku−(

√
µk)

∂λy2(1, µk)(µk − z2)

Proof. By the Cauchy Reside Theorem for z 6= µk

1

2πi

∫
Γn

u−(ζ)

y2(1, ζ2)(ζ − z)
dζ =

u−(z)

y2(1, z2)
+

∑
√
µk<π(n+1/2)

u−(
√
µk)

±√µk − z
Res

1

y2(1, ζ2)

∣∣∣
ζ=±√µk

Note that

Res
1

y2(1, ζ2)

∣∣∣
ζ=±√µk

=
1

∂ζy2(1, ζ2)

∣∣∣
ζ=±√µk

=
±1

2∂λy2(1, µk)
√
µk

and the statement follows

We turn now to the main question: Does (8.2) imply (8.3), i.e. ∆(λ, p) = ∆(λ, q) ? Just like in (8.3) -

(??) one obtains

∆(λ) = 2cλ(1) +

∫ 1

0

sλ(1− t)q(t)cλ(t)dt+

∫ 1

0

cλ(1− t)q(t)sλ(t)dt+O

(
exp(|=

√
λ|)

|λ|

)

Instead of (8.4) this time we have

sλ(1− t)cλ(t) + cλ(1− t)sλ(t) =
sin
√
λ√

λ

Thus,

∆(λ, q) = 2 cos
√
λ+

sin
√
λ√

λ

∫ 1

0

q(t)dt+O

(
exp(|=

√
λ|)

|λ|

)
(8.5)

Set
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S(λ, q) = ∆(λ, q)− 2 cos
√
λ− [q]

sin
√
λ√

λ

Theorem 8.1. For λ 6= µk,

S(λ) = y2(1, λ)

∞∑
k=1

S(µk)

∂λy2(1, µk)(µk − λ)

Proof. Goes the same way as Corollary (8.1)



Chapter 9

Periodic Spectrum

Consider the Sturm-Liouville Equation

− y′′ + qy = λy (9.1)

with periodic boundary conditions (P)

y(1) = y(0), y′(1) = y′(0)

and anti-periodic conditions (AP)

y(1) = −y(0), y′(1) = −y′(0)

The Floquet matrix is as follows,

F (λ, q) =

(
m1 m2

m′1 m′2

)
, mj = yj(1, λ, q), m′j = ∂xyj(1, λ, q)

Note that

detF (λ, q) = [y1, y2]
∣∣∣
x=1

= 1 (9.2)

Hill’s Discriminant is as follows

∆ = trace(F ) = m1 +m′2

λ called a periodic (respectively anti-periodic) eigenvalue if there exists a non-trivial solution of (9.1)

which obey the condition (P) (respectively (AP)). Recall that if y is a solution of (9.1) then(
y(1)

y′(1)

)
= F

(
y(0)

y′(0)

)

Thus, λ is a (P) (resp. (AP)) eigenvalue if and only if the matrix F (λ, q) has an eigenvalue 1 (resp. -1).

Since detF =1, the eigenvalues of F are as follows

∆±
√

∆2 − 4

2

53
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Thus the (P) (resp. (AP)) eigenvalue equation is as follows

∆ = 2 (resp. ∆ = −2) (9.3)

Recall the basic estimates

∣∣∣y1(x, λ, q)− cos(
√
λx)
∣∣∣ ≤ exp(|=

√
λ|x+ ||q||

√
x)√

|λ|

∣∣∣∂xy2(x, λ, q)− cos(
√
λx)
∣∣∣ ≤ ||q||exp(|=

√
λ|x+ ||q||

√
x)√

|λ|

Thus,

∣∣∣∆(λ)− 2 cos
√
λ
∣∣∣ ≤ (1 + ||q||)√

|λ|
exp(|=

√
λ|x+ ||q||) (9.4)

The function 2 cos
√
λ is the Hill discriminate for q = 0. It is analytic and the roots of (2 cos

√
λ∓ 2) are

π2n2, n-even (respectively n-odd). Now, just as in Part 4, one has the following

Lemma 9.1. Let N be an integer N > N(q). Then (∆(λ)∓ 2) has exactly 2n− 1(respectively 2n) roots

in the half-plane <
√
λ < π2(2n+ 1/2)2. The function y2(1, λ) has exactly 2n+ 1 roots in this half-plane.

• For real q, the roots of ∆∓ 2 = 0 are real (again due to self-adjointness)

• m1(λ, q)m′2(λ, q)−m′1(λ, q)m2(λ, q) = 1

If λ is a Dirichlet eigenvalue then m2(λ, q) = 0. So

m1(µn(q), q)m′2(µn(q), q) = 1

For real q we have : sgnm′2(µn(q), q) = (−1)n.

∆(µn) = m1(µn) +m′2(µn) =
1

m′2(µn)
+m′2(µn)

{
≥ 2 if n is even

≤ −2 if n is odd

Due to the basic estimates, one has

∂λ∆− ∂λ(2 cos
√
λ) = o

(
|=
√
λ|√
|λ|

)
(9.5)

• Once again, one obtains the bouncing lemma for ∂∆. The function ∂λ(2 cos
√
λ) has simple zeros

at λ = π2k2, k = 1, 2, . . . ( There is no zero at λ = 0). That implies the following statement: The

function ∂λ∆ has exactly (2n− 1) zeros in the Half-Plane <
√
λ ≤ π2(2n+ 1/2)2.

• Since ∆(λ) + 2 has exactly 2n roots on the interval (−∞, π2(2n + 1/2)2), its derivative ∂λ∆ has

(2n− 1) roots interlacing the roots of the function (Rolle’s Theorem). Thus, all the roots of ∂λ∆

are real and they interlace the roots of ∆(λ) + 2 (Some may coincide).

• For q = 0, ∆(λ) = 2 cos
√
λ, which has the following graph
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In the general case we know that

∆(λ)→∞ as λ→ −∞

∆(λ)− 2 cos
√
λ→ as λ→∞

∆(λ)∓ 2 has (2n-1) (Respectively 2n) roots on (−∞, π2(2n+ 1/2)2.

∆(µk)

{
≥ 2, if k is even

≤ 2, if k is odd

µ1 < µ2 < . . . < µ2n < π2(2n+ 1/2)2 < µ2n+1

Let ∆(λ0) = 2,∆(λ) > 2 for λ < λ0. Between λ0 and the next root of ∆(λ) = 2 seats a roots of

∆(λ) = −2. Indeed, assume ∆(λ0) = 2,∆(λ̃) = 2 and all 2n roots of ∆(λ) + 2, λ ∈ (−∞, π2(n+ 1/2)2)

belong to (λ̃, π2(n+ 1/2)2). Then by Rolle’s Theorem ∂λ∆(λ) would have a roots on (λ0, λ̃) and at least

(2n− 1) roots on (λ̃, π2(2n+ 1/2)2). Thus there exists: λ0 < λ1 < π2(2n+ 1/2)2 such that

∆(λ0) = 2, ∆(λ1) = −2

∆(λ)− 2 has (2n− 2) roots on (λ1, π
2(2n+ 1/2)2),∆(λ) + 2 has (2n− 1) roots on (λ1, π

2(2n+ 3/2)2).

Note that ∂λ∆ 6= 0 for λ ∈ (λ0, λ1) since otherwise ∂λ∆ would have, 2n roots on (−∞, π2(2n+ 1/2)2).

In particular :

∆(λ) strictly decreases on (λ0, λ1)

Obviously, there exists λ1 ≤ λ2 < π2(2n + 1/2)2 such that ∆(λ2) = −2, ∂λ∆ has a simple roots on

[λ1, λ2]. Note that λ2 = λ1 is possible, as it is the case for q = 0. Just as above, using a counting

argument one concludes that there exists λ2 < λ3 < π2(2n+ 1/2)2 such that ∆(λ3) = 2 and

∆(λ) strictly increases on (λ2, λ3)

Finally, one obtains

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ≤ λ4n < λ4n+1 ≤ λ4n+2 < π2(2n+ 1/2)2
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where

∆(λ0) = ∆(λ4k+3) = ∆(λ4k+4) = 2 & ∆(λ4k+1) = ∆(λ4k+2)

The graph of ∆(λ) looks as follows

Note that since ∆(µn) ≥ 2 if n is even, and ∆(µn) ≤ −2 if n is odd and µ1 < µ2 < . . . < µ2n <

π2(2n+ 1/2)2 < µ2n+1 < . . .. The µk are situated as follows

λ1 ≤ µ1 ≤ λ2, λ3 ≤ µ2 ≤ λ4, . . .

Note also that µk mat lie on the edge of [λ2k−1, λ2k]

Lemma 9.2. For any t ∈ R the periodic spectra of q(t+ x) is the same as for q(x).

Proof. Let y(x) be an eigenfunction of

−∂2
xxy + q(x)y(x) = λy(x)

with y(1) = y(0), ∂xy(1) = ∂xy(0). Since y(x) is a solution of a linear differential equation it is defined

for all x. Since the initial conditions at x = 1 are the same as for x = 0, one have

y(1 + x) = y(x)

i.e. y(x) is a 1-periodic function. Given t ∈ R, y(t+ x) obeys

−∂xxy(t+ x) + q(t+ x)y(t+ x) = λy(t+ x)

y(t+ 1) = y(t), ∂xy(t+ x)
∣∣∣
x=1

= ∂xy(t+ x)
∣∣∣
x=0

That proves the statement.

• The Dirichlet eigenvalues for q(t + x) are different from the dirichlet eigenvalues for q(x). Let us

denote them as

µ1(t) < µ2(t) < . . .

• The following identities are important



Chapter 9. Periodic Spectrum 57

∆2(µn)− 4 =
(
y1(1, µn) + ∂xy2(1, µn)

)2 − 4

=
(
y1(1, µn)− ∂xy2(1, µn)

)2
+ 4y1(1, µn)∂xy2(µn)− 4

=
(
y1(1, µn)− ∂xy2(1, µn)

)2
+ 4[y1, y2]

∣∣∣
x=µn

− 4 =
(
y1(1, µn)− ∂xy2(1, µn)

)2

i.e.

√
∆(µn)2 − 4 = ±

(
y1(1, µn)− ∂xy2(1, µn)

)
(9.6)

since y1(1, µn)∂xy2(1, µn) = [y1, y2]x=µn
= 1, one has

y1(1, µ) =
1

∂xy2(1, µn)

thus

√
∆(µn)2 − 4 = ±

(
1− (∂xy2(1, µn))2

∂xy2(1, µn)

)
(9.7)

• Now we will derive a system of differential equation for µn(t).

Lemma 9.3.
d

dt
µn(t) = ±

√
∆(µn(t), q(t+ ·))2 − 4

∂λy2(1, µn(t), q(t+ ·)

Proof. using the notation µn(p) one has

d

dt
µn(t) =

(
∂pµn

∣∣∣
p=q(t+·)

, q′(t+ ·)
)

recall that

∂pµn(p) = g2
n(x, p)

So,
d

dt
µn =

∫ 1

0

g2
n(x)q′(t+ x)dx = −

∫ 1

0

2gng
′
nq(t+ x)dx

since gn(0) = gn(1) = 0. Note that

gnq(t+ x) = µngn + g′′n
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hence,

d

dt
µn =− 2

∫ 1

0

g′n(µngn + g′′n)dx

=−
∫ 1

0

(µn(g2
n)′ + (g′2n )′dx

=− µng2
n

∣∣∣x=1

x=0
− g′2n

∣∣∣x=1

x=0

=− g′2n (1) + g′2n (0)

=− (∂xy2(1, µn))2

||y2(·, µn)||2
+

1

||y2(·, µn)||2

=
1− (∂xy2(1, µn))2

||y2(·, µn)||2

Recall that ∂λy2(1, µn)∂xy2(1, µn) = ||y2(·, µn)||2. Thus

d

dt
µn =

1− (∂xy2(1, µn))2

∂λy2(1, µn)∂xy2(1, µn)
= ±

√
∆(µn(t), q(t+ ·))2 − 4

∂λy2(1, µn(t), q(t+ ·)

see (9.6).

Corollary 9.1. Let q ∈ L2 be arbitrary. Let λ0 < λ1 ≤ λ2 . . . be the periodic and snit-periodic eigen-

values of q. Let µn(t) be the Dirichlet eigenvalues of q(t + x), λ2n−1 ≤ µ(t) ≤ λ2n(t). For any n there

exists t′n, t
′′
n such that µnt

′
n) = λ2n−1 and µn(t′′n) = λ2n

Proof. If λ2n−1 = λ2n then µn = λ2n−1. Let λ2n−1 < λ2n. We have

dµn
dt

= σn

√
∆(µn(t), q(t+ ·))2 − 4

∂λy2(1, µn(t), q(t+ ·)
, σn = ±

Note that since dµn/dt is continuous, σn can not change unless µn(t) hits one of the edges, since

sgn∂λy2(1, µn(t)) = (−1)n. Furthermore, ∂λy2 = O(1) . Therefore,∣∣∣∣dµndt
∣∣∣∣ ≥ p > 0 as long as µn(t) ∈ [λ2n−1 + δ, λ2n − δ]

That implies the statement.

Corollary 9.2.

λ2n−1, λ2n = n2π2 + [q] + l2(n)

Proof. We have that µn(t) = n2π2 + [q] + l2(n) uniformly in t. Therefore the statement follows from

Corollary (9.1)

Corollary 9.3.

∆2(λ)− 4 = 4(λ0 − λ)
∞∏
n=1

(λ2n−1 − λ)(λ2n − λ)

n4π4

Proof. Since λ2n−1, λ2n = n2π2 +O(1), the produce converges and defines an entire function P (λ) which

zeros are exactly z = λk, k = 0, 1, 2, . . .. Just like in Lemma (4.8) one obtains the identity.
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Isospectral set. Let L2
0 = {q ∈ L2[0, 1] : [q] = 0}

Iso(q) = {p ∈ L2
0 : λk(p) = λk(q), k = 1, 2, . . .}

For a < b, denote [|a, b|] the following set

[|a, b|] = {(a, 0) ∪ (b, 0)} ∪
(
(a, b)× {−1, 1}

)
Clearly [|a, b|] can be identified with the circle. For convenience we identify if with the circle centred at

(a+ b)/2 and radius (b− a)/2.

Given p ∈ Iso(q) set σn(p) = sgn(y1(1, µ(p), p) − ∂xy2(1, µn(p), p)). Note that since ∆2(µn) − 4 =

(y1(1, µn)− ∂xy2(1, µn))2, one has

σn(p) = 0 ⇐⇒ µn(p) ∈ {λ2n−1(p), λ2n(p)} (9.8)

Consider the map

Φ : p→ (µn(p), σn(p)) ∈
∏

λ2n−1<λ2n,n≥1

[|λ2n−1, λ2n|]

Theorem 9.1. Φ is a diffeomorphism from Iso(q) onto the torus
∏
λ2n−1<λ2n,n≥1[|λ2n−1, λ2n|].

Proof. We know that p→ (µn(p)) is real analytic. We know also that y1(1, µn(p), p)− ∂xy2(1, µn(p), p)

are real analytic. Using (9.8) one can easily verify that Φ is smooth. To show that Φ is injective we

prove the following formula.

∂xy2(1, µn(p), p) =
1

2

(
∆(µn(p), p)− σn(p)

√
∆2(µn(p), p)− 4

)
(9.9)

for all n, including the cases of σn(p) = 0. To verify the above, we invoke the identities

∆2(µn(p), p)− 4 =
(
y1(1, µn)− ∂xy2(1, µn)

)2
(9.10)

y1(1, µn(p), p) =
1

∂xy2(1, µn(p), p)
(9.11)

Since ∆2(µn)− 4 ≥ 0, we have

√
∆2(µn(p), p)− 4 = σn(p)

(
1

∂xy2(1, µn(p), p)
− ∂xy2(1, µn(p), p)

)
(9.12)

Solving this quadratic equation one obtains

∂xy2(1, µn) =
1

2

(
−σn(p)

√
∆2(µn(p), p)− 4±∆(µn(p), p)

)
(9.13)

To determine the ± sign here, consider for instance n odd, i.e

∆(λ2n−1) = ∆(λ2n) = −2, ∆(µn) ≤ −2
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Recall that ∂xy2(1, µn) = (−1)n. So, ∂xy2(1, µn) < 0 if σn(p) = 1 then

1

∂xy2(1, µn)
− ∂xy2(1, µn) > 0

That implies ∂xy2(1, µn) ≤ −1, Clearly,

|∆(µn)| <
√

∆2(µn)− 4

That implies we need the + sign in (9.13). One can verify that it is + in all possible cases. That validates

(9.9). Since λk(p) = λk(q) for p ∈ Iso(q) it follows from corollary (9.2) that

∆2(λ, p)− 4 = ∆2(λ, q)− 4 for p ∈ Iso(q)

Thus

∂xy2(1, µn(p), p) =
(
−σn(p)

√
∆2(µn(p), q)− 4 + ∆(µn(p), q)

)
(9.14)

So, if Φ(p) = Φ(r) then µn(p) = µn(r), σn(p) = σn(r) and ∂xy2(1, µn(p), p) = ∂xy2(1, µn(r), r), for

all n with λ2n−1 < λ2n. If λ2n−1 = λ2n then σn(p) = 0, µn(p) = p for all p ∈ Iso(q). That implies

∂xy2(1, µn(p), p) = ∂xy2(1, µn(q), q) for all such n. Thus,

∂xy2(1, µn(p), p) = ∂xy2(1, µn(r), r) for all n ≥ 1

Recall that

κn(p) = log(−1)n∂xy2(1, µn(p), p)

Thus κn(p) = κn(r) for all n. By Theorem (5.5) one concludes p = r. So, Φ is indeed injective. Let

(µn, σn) ∈
∏
λ2n−1<λ2n,n≥1[|λ2n−1, λ2n|] be arbitrary. Recall that

λ2n−1, λ2n = n2π2 + l2(n), λ2n−1 ≤ µn ≤ λ2n (9.15)

Therefore

µ̃n = µn − n2π2 ∈ l2(n)

Set

κn = log

(
(−1)n

2

(
∆(µn, q)− σn

√
∆2(µn, q)− 4

))
We want to estimate κn. For that we use corollary (9.2):

|∆2(µn)− 4| = 4(µn − λ0)
(λ2n − µn)(µn − λ2n−1)

n4π4

∣∣∣∣∣∣
∏

m6=n,m≥1

(λ2m−1 − µn)((λ2m − µn)

m4π4

∣∣∣∣∣∣ (9.16)

Due to Lemma (4.9) the product here is O(1) ( due to (9.15) Lemma (4.9) applies). Together with (9.15)

this implies

∆2(µn)− 4 =
l2(n)× l2(n)

n2
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Thus √
∆2(µn)− 4 = l21(n) (9.17)

∆(µn) = 2(−1)n +O
(
l2(n)× l2(n)

n2

)
=⇒ κn = l21(n)

By Theorem (??) there exists a unique p ∈ L2[0, 1] such that

µn(p) = µn, κn(p) = κn

We need to show that λk(p) = λk for all k. We have

log(−1)n∂xy2(1, µn(p), p) = κn = log

(
(−1)n

2

(
∆(µn, q)− σn

√
∆2(µn, q)− 4

))
i.e.

∂xy2(1, µn(p), p) =
1

2

(
∆(µn, q)− σn

√
∆2(µn, q)− 4

)
Recall that

∆(µn(p), p) =
1

∂xy2(1, µn(p), p)
+ ∂xy2(1, µn(p), p)

Hence,

∆(µn(p), p) =
2

∆(µn(q), q)− σn
√

∆2(µn(q), q)− 4
+

1

2

(
∆(µn(q), q)− σn

√
∆2(µn(q), q)− 4

)
= ∆(µn(q), q)

i.e. ∆(µn, p) = ∆(µn, q), n = 1, 2, . . .. Due to Theorem (4.5)

y2(1, λ, p) =
∏
n≥1

(
µn − λ
n2π2

)
= y2(1, λ, q), for all λ ∈ C

Since [p] = [q], Theorem (??) implies that ∆(λ, p) = ∆(λ, q) for all λ ∈ C. In particular λk(p) = λk(q)

for all k. Thus p ∈ Iso(q). We have µn(p) = µn(q), [p] = [q],

κn(p) = log

(
(−1)n

2

(
∆(µn, q)− σn

√
∆2(µn, q)− 4

))

∂xy2(1, µn(p), p) =
1

2

(
∆(µn, q)− σn

√
∆2(µn, q)− 4

)
The last equation implies σn(p) = σn. Thus, Φ(p) = (µn, σn).



Chapter 10

Description of the Periodic

Spectrum

Let

u(λ) =
1

2
(y1(π, λ) + ∂xy2(π, λ))

Let λ0 < λ−1 ≤ λ
+
1 < λ−2 ≤ λ

+
2 < . . . be the periodic and anti-periodic eigenvalues. The λj are the roots

of 1− u(λ)2 =. Replacing q by q − λ0 we assume in this section that λ0 = 0. Set u+ = u(z2). Consider

the roots of the equation

1− u+(z)2 = 0 (10.1)

and enumerate them as follows

α∓2k−1 =
√
λ∓2k−1, u+(α∓2k−1) = −1

α∓2k =
√
λ∓2k, u+(α∓2k) = 1

and denote

α∓−(2k−1) = −α∓2k−1 & α∓−2k = −α∓2k

Let
√

1− u+(z)2 be the branch of the square roots with =z > 0 which has a continuation of (0, α−1 ) and√
1− u2

+(x) > 0, for x ∈ (0, α−1 ). Set

θ(z) =

∫ z

0

u′t(ζ)√
1− u2(ζ)

dζ, =z > 0 (10.2)

Lemma 10.1. For =z > 0, cos θ(z) = u+(z),

Proof. The function arccosw is analytic in the domain C \ ((−∞,−1) ∪ (1,∞)) and obeys (arccosw)′ =

−(1 − w2)−1/2. Thus θ′ = (arccosu+(z))′ provided u+(z) belongs to this domain. Since u+(z) is a

non-constant analytic function u−1 (−∞,−1] ∪ [1,∞)) consists of a countable union of analytic curves

and points. Therefore the upper half plane splits into a union of domains and curves such that in each

domain

θ′ = (arccosu+(z))′, θ(z) = arccosu+(z) + 2πlj , lj ∈ Z

62
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holds. Thus cos θ(z) = u+(z) everywhere except a union of some curves. Since both functions are

analytic in the upper half plane. cos θ(z) = u(z),=z > 0

Lemma 10.2. The function θ(z) can be extended analytically via the reflection principle θ(z̄) = θ(z),

into the domain C \ ∪k∈Z\{0}[α+
k , α

+
k ]. The identity cos θ(z) = ut(z) holds.

Proof. We verify first that θ can be extended continuously to the real axis, =z = 0, i.e. the limit

lim
z→x0,=z>0

θ(z)

exists for any x0 ∈ R. For x0 6= a±j this is clear since integrand in (10.2) is continuous in the neigh-

bourhood of x0. Take x0 = α−j . Assume first that α−j is a simple root of (10.1), i.e λ−j < λ+
j , α

−
j < α+

j .

Then

1− u2
t (z) = (z − x0)ϕ(x0, z)

where ϕ(x0, z) is analytic for z in a neighbourhood of x0, ϕ(x0, x0) 6= 0, then∣∣∣∣∣∣ 1√
1− u2

+(z)

∣∣∣∣∣∣ ≤ C(x0)√
|z − x0|

The integral ∫ z

x0

∣∣∣∣∣∣ u′+(ζ)√
1− u2

+(ζ)

∣∣∣∣∣∣ |dζ| (10.3)

converges and continuities follows. If α−j is a double root, then u′+(αj) = 0 and the estimation of the

integral is even better. Note that this argument also verifies the correctness of the definition of (10.2).

Thus θ(z) can be extended continuously to the real axis.

Recall that θ(z) = arccosu+(z) + 2πlj , z ∈ Dj , and the Dj ’s are domains which together with part

of their boundaries partition the upper half-plane, =z > 0. Recall also that −1 ≤ u+(x) ≤ 1 for

R\∪k∈Z\{0}[α−k , α
+
k ]. So, arccosut(x) assumes real values on this set. Die to the continuity one conclude

that for x in this set, the following holds

=θ(x) = 0

Therefore the reflection principle applies and the statement follows

Lemma 10.3. θ(z) conformally maps the upper half-plane onto

Θt{hk} = {=θ > θ} \
∞⋃

k=−∞

{θ : <θ = kπ, 0 ≤ =θ ≤ hk} (10.4)

where h0 = 0, and hk = h−k, and
∑
k2h2

k < +∞. Furthermore, θ(0) = 0 and

lim
y→+∞

θ(iy)

iy
= π

Proof. We will identify the image of the real axis under θ. We use θ(x) = arccosu+(x) and continuity.

We have θ(0) = 0. Since u(x) decreases from u(0) = 1 to u(α−1 ) = −1, we have θ(x) = arccosu(x),
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where arccos(1) = 0, arccos(−1) = π. Thus θ(x) increase from θ(0) = 0 to θ(α−1 ) = π, when 0 ≤ x ≤ α−1 .

For x ∈ (α−1 , α
+
1 ), u(x) < −1. For t ∈ (−∞,−1), we use

arccos t = π + i log(−t−
√
t2 − 1)

since

cos(π + i log(−t−
√
t2 − 1)) =− 1

2

(
exp(− log(−t−

√
t2 − 1)) + log(log(−t−

√
t2 − 1))

)
=− 1

2

(
1

(−t−
√
t2 − 1)

+ (−t−
√
t2 − 1)

)
=t

π + i log(−t−
√
t2 − 1)

∣∣∣
t=−1

= π = θ(α−1 )

On the interval (α−1 , α
+
1 ) the function u+(x) has two monotonicity intervals, (α−1 , γ1) and (γ1, α

+
1 ),

where ∂xut
∣∣
x=γ1

= 0. Therefore for x ∈ (α−1 , α
+
1 ), θ(x) = π + i log(−u+(x) −

√
u+(x)2 − 1),<θ(x) =

π,=θ(x) = log(−u+(x)−
√
u2

+(x)− 1), =θ(x) increases from 0 to some value h1 when α−1 ≤ x ≤ γ1 and

then decreases from h1 to 0 when γ1 ≤ x ≤ α+
1 .

e.t.c. Thus θ indeed maps the real axis onto the boundary of Θ+{hk}. Moreover when x runs

(−∞,∞), θ(x) runs the boundary of Θ+ from left to right. By the argument principle θ(z) confor-

mally maps =z > 0 onto Θ+{hk}.
By construction, h0 = 0, since u is even we have h−k = hk. We need to estimate hk. Recall that due to

Corollary (9.2) we have

|∆2(λ)− 4| = 4|λ− λ0|
|λ−n − λ||λ+

n − λ|
n4

∣∣∣∣∣∣
∏

m6=n,m≥1

λ−m − λ)(λ+
m − λ)

m4

∣∣∣∣∣∣ (10.5)

We have λ±m = m2 + [q] + l2(m). For λ−m ≤ λ ≤ λ+
m, Lemma (4.9) says that the product here is O(1).

Hence

0 ≤ ∆2(λ)− 4 =
l2(n)× l2(n)

n2
, for λ−n ≤ λ ≤ λ+

n

thus

|∆(λ)| ≤ 2 +
l2(n)× l2(n)

n2
, for λ−n ≤ λ ≤ λ+

n (10.6)
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So

max
α−n≤x≤α+

n

|u+(x)| ≤ 1 +
l2(n)× l2(n)

n2

We go back to the formula for arccosu+(x) for α−k ≤ x ≤ α
+
k :

arccos t = kπ + i log(|t|+
√
t2 − 1)

here t = u+(x), and

|t| ≤ max
α−k ≤x≤α

+
k

|u+(x)| ≤ 1 +
l2(k)× l2(k)

k2
=⇒ log(|t|+

√
t2 − 1) ≤ l2(k)

k
= l21(k)

Lemma 10.4. Let θ be a conformal map from the upper half-plane =z > 0 onto the Domain Θ{hk}
with H ≡ suphk < +∞, θ(0) = 0,

lim
y→+∞

θ(iy)

iy
= π

The following statements hold:

• u(z) = cos θ(z) is an entire function,

max
|z|≤R

log |u(z)| ≤ πR+H

sup
x∈R
|u(x)| = cosh(H)

• let α±k = θ−1(kπ ± 0). Then

1 ≥ α−k − α
+
k−1 ≥

2

π coshH

2hk
π
≥ α+

k − α
−
k ≥

hk
π coshH

2|k|
π coshH

≤ |α±k | ≤ |k|
(

1 +
2H

π

)
• For x ∈ (α−k , α

+
k ),

0 < =θ(x) ≤ π
√

coshH
√

(x− α−k )(α+
k − x)

Proof. u(z) = cos θ(z) is analytic in =z > 0, continuous on =z = 0 for x ∈ (α+
k−1, α

−
k ),=θ(x) = 0. For

x ∈ [α−k , α
+
k ], θ(x) = πk + iη(x), 0 ≤ η ≤ hk,

cos θ(x) = (−1)k cosh η(x)

=u(x) = 0

By the symmetry principle, u has an extension to the entire plane C. Since =θ(z) is harmonic in the

upper half plane, =z > 0, and continuous on =z ≥ 0, one has

=θ(z) = ay +
y

π

∫ ∞
−∞

=θ(t)
(x− t)2 + y2

dt, z = x+ iy, with a > 0 (10.7)
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Since

lim
y→+∞

θ(iy)

iy
= π

one concludes a = π. Clearly,

0 ≤ =θ(x) ≤ suphk = H, −∞ < x < +∞

0 ≤ y

π

∫ ∞
−∞

=θ(t)
(x− t)2 + y2

dt ≤ H, −∞ < x < +∞, y > 0

π=z ≤ =θ(z) ≤ π=z +H (10.8)

In particular,

|u(z)| = | cos θ(z)| ≤ cosh |=θ(z)| ≤ cosh(π|=z|+H)

max
|z|≤R

log |u(z)| ≤ πR+H (10.9)

as claimed. Furthermore,

sup
x
|u(x)| = sup

x
| cos θ(x)| = sup

k
coshhk = coshH (10.10)

We turn now to bullet two. One has

θ(α−k ) = kπ, θ(α+
k−1) = (k − 1)π

u(α−k )− u(α+
k−1) = cos(kπ)− cos((k − 1)π) = 2(−1)k

On the other hand

|u(α−k )− u(α+
k−1)| ≤

(
max
x
|u′|
)

(α−k − α
+
k−1)

Since u(z) is an entire function of exponential type π, and sup{|u(x)| : x ∈ R} ≤ coshH, the Bernstein

inequality say that

|u′(x)| ≤ π coshH, −∞ < x < +∞

Thus

α−k − α
+
k−1 ≥

2

π coshH

as claimed. Let α−k ≤ x ≤ α
+
k . One has |u(α−k )| = 1,∣∣∣|u(x)| − 1

∣∣∣ ≤ max
ξ
|u′(ξ)|(α+

k − α
−
k ) ≤ π cosh(H)(α+

k − α
−
k

Now just as in the proof of lemma (10.3) one obtains

|= arccosu(x)| ≤ π cosh(H)(α+
k − α

−
k )

Hence,

hk ≤ π cosh(H)(α+
k − α

−
k )

as claimed. Now we want to estimate (α−k − α
+
k−1) from above. Since θ(z) has an analytic continuation

through [α+
k−1, α

−
k ], the partial derivatives of θ are well defined for x ∈ (α−k−1α

+
k ), y = 0. Note that
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g(z) = =θ(z)− π=z is non-negative in =z > 0, g(z) ≥ 0 and g(x) = 0 for x ∈ (α−k−1α
+
k ). That implies

∂yg(x+ iy)
∣∣∣
y=0
≥ 0, for x ∈ [α−k−1α

+
k ]

Hence,

∂y=θ(x+ iy)
∣∣∣
y=0
≥ π for x ∈ [α−k−1α

+
k ]

By Cauchy-Riemann, one obtains

∂x<θ(x+ iy)
∣∣∣
y=0
≥ π, for x ∈ [α−k−1α

+
k ]

On the other hand, θ(α−k )− θ(α+
k−1) = π. Thus

π ≥
∫ α+

k

α−k−1

∂x<θ(x)dx ≥ π(α−k − α
+
k−1)

Next we estimate α+
k − α

−
k from above. Let z(θ) be the inverse for θ(z). Set

zk(θ) =
1

π

√
(θ − kπ)2 + h2

k

The function zk maps conformly the domain

Θk = {=θ > 0} \ {<θ = kπ, 0 ≤ =θ ≤ hk}

onto the upper half plane. Clearly for θ ∈ ∂Θ{hj} we have

=zk(θ)−=z(θ) = =zk(θ) ≥ 0

Recall also that due to (10.12)

=z(θ) ≤ =θ
π

Clearly

=zk(θ) =
=θ
π

+O
(

1

|θ|

)
, |θ| → ∞

Thus

lim
|θ|→∞

(=zk(θ)−=z(θ)) ≥ 0

Due to the maximum principle for harmonic functions

=zk(θ)−=z(θ) ≥ 0, for θ ∈ Θ{hj}

Let ~n be the normal vector on ∂Θ{hj} directed inside of the domain Θ{hj}. Let Lk = {<θ = πk, 0 ≤
=θ ≤ hk}. Note that =zk(θ) − =z(θ) = 0 on Lk. Note the following. The function z(θ) maps the

straight segments Lk onto a segment [α−k , α
+
k ]. So, the symmetry principle applies. Namely, for each of

the following two domains
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The function z(θ) has an analytic continuation in the domains Dl ∪Lk ∪D∗l , Dr ∪Lk ∪D∗r respectively.

The function z(θ) itself is discontinuous on Lk, but for symmetrical continuations the partial derivatives

are well-defined and Cauchy-Riemann applies. The same applies to zk(θ). Denote these continuations

as z(l), z
(l)
k , z(r), z

(r)
k respectively.

∂x

(
=z(l)

k −=z
(l)
) ∣∣∣
<θ=kπ

≤ 0, ∂x

(
=z(r)

k −=z
(r)
) ∣∣∣
<θ=kπ

≥ 0

∂x=z(l)
∣∣∣
<θ=kπ

≤ 0, ∂x=z(r)
∣∣∣
<θ=kπ

≥ 0

That implies

|∂x=z(·)| ≤ |∂x=z(·)
k | on Lk

By Cauchy-Riemann

|∂y<z(·)| ≤ |∂yz(·)
k | on Lk

Hence,

α+
k − α

−
k ≤

∫ hk

0

(
|∂yz(l)

k |+ |∂yz
(r)
k |
)
dy =

2

π
hk

as claimed. One has (with α±0 = 0)

α+
k =

k∑
j=1

(α+
j − α

−
j ) + (α−j − α

+
j−1)

α+
k ≤

2

π

k∑
j=1

hj + k ≤ k
(

1 +
2H

π

)

α+
k ≥

2k

π coshH

as claimed. The estimation for α−k is similar. That finishes the second claim. To verify the third,

consider

f(x) = (−1)ku(x)−
[
1 + (x− α−k )(α+

k − x)
π2

2
coshH

]
Recall that u(α±k ) = (−1)k. So, f(α±k ) = 0. Furthermore,

f ′′(x) = (−1)ku′′(x) + π2 coshH

Due to the Bernstein inequalities,

|u′′(x)| ≤ π2 coshH
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Thus f ′′(x) ≥ 0. Therefore

f(x) ≤ 0 for α−k ≤ x ≤ α
+
k

0 ≤ (−1)ku(x) ≤ 1 + (x− α−k )(α+
k − x)

π2

2
coshH ≤ cosh(π

√
coshH(x− α−k )(α+

k − x))

cosh ξ ≥ 1 + ξ2/2. On the other hand for x ∈ [α−k , α
+
k ]

θ(x) = kπ + i=θ(x)

u(x) = cos θ(x) = (−1)k cosh(=θ(x))

That implies

=θ(x) ≤ π
√

coshH(x− α−k )(α+
k − x)

as claimed.

Lemma 10.5. (??) Using the notations of the previous lemma, assume

h−k = hk,
∑

(khk)2 < +∞

Then

• u(z) is an even function,

u(z) = cos(πz)− d1

z
sin(πz) +

g(z)

z

where

g(z) =

∫ π

0

g̃(t) sin(zt)dt, g̃ ∈ L2[0, π]

• α±k = θ−1{kπ ± 0} obey

α±−k = −α∓k , α±k = k − d1

πk
+ l21(k)

Proof. Let θ1(z) = −θ(−z̄). The θ1(z) maps conformly =z > 0 on Θ{hk} since

−Θ{hk} = Θ{hk}

Furthermore, limy→+∞(iy)−1θ(iy) = π and θ1(0) = 0. Hence θ = θ1. In particular for x ∈ (−∞,∞),−θ(−x) =

θ(x). That implies

−θ(−z) = θ(z), u(−z) = cos(θ(−z)) = cos(−θ(z)) = u(z)

Hence α±−k = −α∓k . Using the estimates from Lemma (10.4) one has

∫ α+
k

α−k

|t|s=θ(t)dt ≤
(
max{|α−k |, |α

+
k |}
)s
hk(α+

k − α
−
k ) ≤ 2

π

(
1 +

2H

π

)s
|k|sh2

k

Since
∑
k2h2

k < +∞, ∫ ∞
−∞
|t|s=θ(t)dt ≤ C < +∞, s = 0, 1, 2
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Due to Poissons Formula for =z > 0,

θ(z) = πz + d+
1

π

∫ ∞
−∞

1 + tz

t− z
=θ

1 + t2
dt

Note that
1 + tz

t− z
1

1 + t2
= − t

1 + t2
− 1

z
+

t

z(t− z)

Hence

θ(z) = πz + d− 1

π

∫ ∞
−∞

t

1 + t2
=θ(t)dt− 1

πz

∫ ∞
−∞
=θ(t)dt+

1

πz

∫ ∞
−∞

t

t− z
=θ(t)dt := φ(z) + b

Since θ(−z) = −θ(z), φ(−z) = −φ(z), b = 0. So

θ(z) = πz +
1

z
(d1 + ψ(z))

d1 = − 1

π

∫ ∞
−∞
=θ(t)dt < 0

ψ(z) =
1

π

∫ ∞
−∞

t

t− z
=θ(t)dt

ψ(−z) = ψ(z)

Note that ψ(x) is well defined for x ∈ R, moreover,

ψ(x) = lim
y→0

ψ(x+ iy)

let x ∈ (α+
n−1, α

−
n ). Then

ψ(x) =
1

π

∫ ∞
−∞

t

t− x
=θ(t)dt =

1

π

∑
k

∫ α+
k

α−k

t

t− x
=θ(t)dt

The denominator here does not vanish since x ∈ (α+
n−1, α

−
n ). For k 6= n−1, n, t ∈ [α−k , α

+
k ] due to lemma

(10.4)

t− x ≥ 2

π
coshH

∫ α+
k

α−k

|t|
|t− x|

=θ(t)dt ≤ 1

x

∫ α+
k

α−k

(
t2π coshH

2
+ |t|

)
=θ(t)dt

Hence,

1

π

∣∣∣∣∣∣
∑

k 6=n−1,n

∫ α+
k

α−k

t

t− x
=θ(t)dt

∣∣∣∣∣∣ ≤ 1

πx

(
C2π coshH

2
+ C1

)
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Furthermore, using the estimates in Lemma (10.4) one has

∣∣∣∣∣
∫ α+

n−1

α−n−1

t

t− x
=θ(t)dt

∣∣∣∣∣ ≤π√coshH(max
±
|α±n−1|)

∫ α+
n−1

α−n−1

√
(t− α−n−1)(α+

n−1 − t)

α+
n−1 − t

dt

≤π
√

coshH|n− 1|
(

1 +
2H

π

)√
α+
n−1 − α

−
n−1

∫ α+
n−1

α−n−1

dt√
α+
n−1 − t

≤
√

coshH|n− 1|
(

1 +
2H

π

)
(4hn−1)

The evaluation of the integral over [α−n , α
+
n ] is completely similar. Thus, for x ∈ [α+

n−1, α
−
n ] one has with

some constant B,

|ψ(x)| ≤ B
∣∣∣∣ 1

|x|
+ |n− 1|hn−1 + |n|hn

∣∣∣∣ (10.11)

for x ∈ [α−n , α
+
n ], one has

ψ(x) = x

(
θ(x)− πx− d1

x

)
= x

(
nπ +−=θ(x)− πx− d1

x

)
,

|x||=θ(x)| ≤ |x|hn ≤ |n|
(

1 +
2H

π

)
hn∣∣∣∣ψ(α−n )− α−n

(
nπ − πα−n −

d1

α−n

)∣∣∣∣ ≤ n(1 +
2H

π

)
hn,

|ψ(x)− ψ(α−n )| ≤
∣∣∣∣x(nπ − πx− d1

x

)
− α−n

(
nπ − πα−n −

d1

α−n

)∣∣∣∣+ 2n

(
1 +

2H

π

)
hn

≤|n|π(x− α−n ) + π(x− α−n )(|x|+ |α−n |) + 2n

(
1 +

2H

π

)
hn

≤B|n|hn

Note that (10.11) applies to x = α−n . Thus, (10.11) holds for all x ∈ (−∞,∞) ( with some adjustment

to the constant B). Thus implies |ψ(x)| → 0 with |x| → ∞ and∫ ∞
−∞
|ψ(x)|2dx < +∞

Recall that u(z) = cos θ(z). Set

g(z) = z

(
u(z)− cos(πz) +

d1 sin(πz)

z

)
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one has

u(x) = cos θ(x) = cos

(
πx+

d1

x
+
ψ(x)

x

)
= cos(πx) cos

(
d1

x
+
ψ(x)

x

)
− sin(πx) sin

(
d1

x
+
ψ(x)

x

)
= cos(πx)

(
1 +O

(
1

x2

))
− sin(πx) sin

(
d1

x
+
ψ(x)

x

)
= cos(πx)− sin(πx) sin

(
d1

x
+
ψ(x)

x

)
+O

(
1

x2

)

=⇒ g(x) = −ψ(x) sin(πx) +O
(

1

|x|

)
, &

∫ ∞
−∞

g(x)2dx <∞

Furthermore, g(z) is an entire function of exponential type π, i.e

|g(z)| ≤ exp(π|z|)

By the Pely-Wiener Theorem, we have

g(z) =

∫ π

0

g̃1(t) exp(−itz)dt

where g̃1 ∈ L2[0, π]. The function u(z) is even. So g(z) is odd. Therefore,

g(z) =

∫ π

0

sin(tz)g̃(t)dt, g̃ ∈ L2[0, π]

Finally, one has

θ(α±k ) = kπ,

kπ = πα±k +
1

α±k
(d1 + ψ(α±k )),

α±k = k − d1

πα±k
−
ψ(α±k )

πα±k

Since |α±k | & k and
∑
k |ψ(α±k )|2 < +∞, one obtains

α±k = k − d1

πk
+
ε±k
k
,
∑
k

|εk|2 < +∞

Now we can state the main result, the Marchenko-Ostrovski Theorem (1975)

Theorem 10.1.

−∞ < λ0 < λ−1 ≤ λ
+
1 < λ−2 ≤ λ

+
2 < . . .
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In order {λ+
k }∞k=0 and {λ−k }∞k=1 be the periodic and anti-perioidc spectra of the Sturm-Liouville operator

−y′′ + qy = λy, 0 ≤ x ≤ 1

with q ∈ L2, it is necessary and sufficient that

λ±k = λ0 + z2(kπ ± 0)

where z(θ) is a conformal map from the domain Θ+{hk} onto the upper half-plane, h0 = 0, hk = h−k∑
(khk)2 < +∞

z(0) = 0, lim
θ→+∞

1

iθ
z(iθ) =

1

π

Proof. The necessity was already proven. Let z(θ) be as in the statement of the theorem. We can assume

λ0 = 0. Let θ(z) be the inverse function, u(z) = cos θ(z). By Lemma (??), one has

u(z) = cos(πz)− d1

z
sin(πz) +

g(z)

z

g(z) =

∫ π

0

g̃(t) sin(zt)dt, g̃ ∈ L2[0, π] (10.12)

Moreover, let λ±k be the roots of the equation u(z) = ±1, α±k =
√
λ±k , k > 0, α±−k = −α±k . Then

α±k = k − d1π

k
+
ε±k
k
,
∑
|ε±k |

2 < +∞

Let z(θ) = z(θ). Then z maps C \ ∪k{<θ = kπ : −hk ≤ =θ ≤ hk} onto C \ [∪k>0{=z = 0 : α−k ≤ <z ≤
α+
k } ∪ ∪k<0{=z = 0 : α+

k ≤ <z ≤ α
−
k }]. Pick an arbitrary point,

θk = kπ + ih′k, −hk ≤ h′k ≤ hk, k = 1, 2, . . .

on “ one side of the slit ”

µk = z2(θ′k)

Clearly

(α−n )2 = λ−n ≤ µn ≤ λ+
n = (α+

n )2

α±n =n2 − 2d1

π
+ 2ε±n +O

(
1

n2

)
=n2 + C0 + l2(n)

µn =n2 + C0 + l2(n)

Set σn = sgnh′n,

κn = log
(

(−1)n(u(
√
µn)− σn

√
u2(
√
µn)− 1)

)
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We need to estimate κn. The Bernstein inequality is not good enough for that. Since u(0) = 0, u(
√
z)

is an entire function of exponential type π. Due to Lemma (4.9)

u(
√
z)− 1 = z

(z − λ−n )(λ+
n − z)

n4

∏
m6=n,m≥1

(z − λ−m)(λ+
m − z)

m4

Just as in the proof of Theorem (9.3),

κn ∈ l21(n)

Therefore exists unique q(x) ∈ L2[0, π] such that

µn(q) = µn, κn(q) = κn

In particular,

u(
√
µn)− σn

√
u2(
√
µn)− 1 =

∆(µn, q)

2
− σn

√(
∆(µn, q)

2

)2

− 1

Note that

ξ ±
√
ξ2 − 1 = t =⇒ ξ =

1

2

(
t+

1

t

)
Thus

u(
√
µn) =

∆(µn, q)

2

Due to (10.12) the interpolation applies, thus

u(z) = y2(π, z2, q)

∞∑
n=1

√
µn

(
∆(µn,q)

2

)
∂λy2(π, µn, q)(µn − z2)

=
∆(z2)

2

=⇒ ∆(z) = 2u(
√
z)

The roots of

∆(z) = ±2

are (α±n )2 = λn, n = 1, 2, . . ..
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