
APM 462: Nonlinear Optimization

Midterm Test
June 28, 2016.

Time: 90 minutes.

1. [10 points] Consider the problem

minimize: f(x, y, x) = x

50 + exp(y + x) + x

3
y

99 + sin(z)

subject to: g(x, y, z) = x

2 � xy + y

2 + z

2  10,

where f, g are fuctions from R3 to R. Does this problem have a solution? Justify your
answer. Hint: you may use the inequality |ab|  1

p |a|
p + 1

q |b|
q.

Solution. The feasible set {(x, y, x) 2 R3 | g(x, y, z)  10} is closed since g is con-
tinuous. We show the feasible set is also bounded, hence compact. Since a continuous
function on a compact set attains its minimum, and f is continuous, the problem has a
solution.

By the inequlity, |xy|  1
2 |x|

2 + 1
2 |y|

2, since

10 � x

2 � xy + y

2 + z

2 � x

2 � |xy|+ y

2 + z

2

� x

2 � (
1

2
|x|2 + 1

2
|y|2) + y

2 + z

2

� 1

2
(x2 + y

2) + z

2
,

any (x, y, z) in the feasible set satisfies 1
2(x

2 + y

2) + z

2  10. So the feasible set is

contained in the set {(x, y, x) 2 R3 | 1
2(x

2 + y

2) + z

2  10}, which is bounded (being an
ellipsoid).

2. [10 points] Consider the problem

minimize: f(x, y, x) = x

6
y

5
z

4

subject to: h1(x, y, z) = x

2 + y

2 + z

2 � 1 = 0

h2(x, y, z) = y

2 � z

2 = 0.

a) What does it mean for a point (a, b, c) to be a regular point for the constraints?

b) Is the point (1, 0, 0) a regular point for the constraints? Justify your answer.

Solution. a) A point (a, b, c) is a regular point for the constraints if rh1(a, b, c) =
(2a, 2b, 2c) and rh2(a, b, c) = (0, 2b,�2c) are linearly independent vectors.

1



2

b) Since rh1(1, 0, 0) = (2, 0, 0) and rh2(1, 0, 0) = (0, 0, 0) are linearly dependent, the
point (1, 0, 0) is not a regular point of the constraints.

3. [15 points] Assume that f is a convex function on Rn, and that L : Rm ! Rn is a�ne,
which means that it has the form

L(x) = Bx+ c

where B is an n⇥m matrix and c 2 Rn.

Let g(x) = f(L(x)), and prove that g is a convex function on Rm.

Solution. Let ↵,� � 0, and ↵ + � = 1. Note that L(↵x + �y) = B(↵x + �y) + c =
↵Bx+ �By + c = ↵(Bx+ c) + �(By + c) = ↵L(x) + �L(y).

By convexity of f we have, g(↵x+�y) = f(L(↵x+�y)) = f(↵L(x)+�L(y))  ↵f(L(x))+
�f(L(y)) = ↵g(x) + �g(y).

4 [15 points] Let f be a C

1 function on Rn. Recall the method of steepest descent for
minimizing f ,

xk+1 := xk � ↵krf(xk).

Prove that rf(xk+1) ·rf(xk) = 0.

Solution. f(xk+1) = f(xk�↵krf(xk)) = min
s�0

f(xk�srf(xk)), hence 0 = d
ds |s=↵kf(xk�

srf(xk)) = rf(xk+1) · (�rf(xk)).

5. [15 points] Suppose that Q is a positive definite, symmetric, n⇥ n matrix, and that
v 6= 0 and b are vectors in Rn. Solve the problem

minimize: f(x) =
1

2
x ·Qx� b · x

subject to: h(x) = v · x = 0.

Here x denotes a point in Rn. Your answer should express the minimum point x⇤ and a
Lagrange multiplier � in terms of Q, b and v. It might have the form: “x⇤ = . . ., where
� satisfies . . .,”

Solution. By the first order neccessary conditions for local minimum, x⇤ must satisfy:
rf(x⇤) + �rh(x⇤) = (Qx

⇤ � b) + �v = 0. Hence x

⇤ = Q

�1(b� �v). To find �, multiply
both sides of the last equation by v: 0 = v ·x⇤ = v ·Q�1

b��v ·Q�1
v. Solving for � we get,

� = v·Q�1b
v·Q�1v . Checking 2nd order conditions at x⇤, we have r2

f(x⇤)+�r2
h(x⇤) = Q+�0
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is positive definite, hence x

⇤ is a strict local minimum. Since f is strictly convex, x⇤ is
the unique global minimum.

6. [20 points] Consider the problem

minimize: f(x, y) = x

3 + y

2

subject to: g(x, y) = (x+ 1)2 + y

2 � 1  0.

a) Show that all the points which satisfy the constraints are regular.

b) Find all points which satisfy the 1st order conditions for local minimum.

c) Which of the points you found in part b) satisfy the 2nd order necessary conditions?
Justify your answer.

d) Which of the points you found in part b) is a local minimum? Justify your answer.

Solution. (a) If the constraint is inactive at (x, y) there is nothing to check, so (x, y)
is regular. If (x, y) is active for the constraint, i.e. g(x, y) = 0, then since rg(x, y) =
(2(x+ 1), 2y) 6= (0, 0), the point (x, y) is regular.
(b) The 1st order conditions for local minimum give: rf(x) + µrg(x) = (3x2, 2y) +
µ(2(x + 1), 2y) = 0, where µ � 0. This implies 2y(1 + µ) = 0, hence either y = 0 or
µ = �1. Since µ is non-negative, it cannot equal �1. Since g(x, y) = 0, y = 0 implies
that x = 0 or x = �2. So the candidates for local minimum point are (0, 0) and (�2, 0).
(c) The 1st order conditions above imply that µ = 0 at (0, 0) and that µ = 6 at (�2, 0).

Note that r2
f(x, y) =

✓
6x 0
0 2

◆
and r2

g(x, y) =

✓
2 0
0 2

◆
. The tangent space to the

constraint at (0, 0) is the line x = 0, and the tangent space to the constraint at (�2, 0)
is the line x = 0 well.

So at (0, 0) we have,r2
f(0, 0)+0r2

g(0, 0) =

✓
0 0
0 2

◆
, and at (�2, 0) we have,r2

f(�2, 0)+

6r2
g(�2, 0) =

✓
0 0
0 14

◆
. Both are positive semidefinite, so the 2nd order necessary con-

ditions are satisfied (we don’t need to restrict attention to the tanget space in this case
since the matrices are positive semidefinite).
(d) The point (0, 0) is not a local minimum: if we move a bit in the direction (0,�1)
the objective function f is getting smaller. The point (�2, 0) is a regular point and the
constraint g(x, y) = 0 is strongly active at this point since µ = 6 > 0. The tanget space
to the strongly active constraint at (�2, 0) is the line x = 0 so the 2nd order su�cient

condition is (0, y)[r2
f(�2, 0) + 6r2

g(�2, 0)]

✓
0
y

◆
= (0, y)

✓
0 0
0 14

◆✓
0
y

◆
= 14y2 > 0 for

all (0, y) 6= (0, 0), hence (�2, 0) is a strict local minimum.
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7. [15 points] Fix a point y 2 Rn and let f : Rn ! R be the square of the distance to
y, that is f(x) := ||y � x||2 = (y1 � x1)

2 + · · ·+ (yn � xn)
2. Let g : Rn ! R be a convex

C

1 function.

a) Prove that the function f is strictly convex.

b) Suppose x

⇤ solves the problem

minimize: f(x)

subject to: g(x)  0.

Prove that x⇤ is unique.

c) Prove that y � x

⇤ is parallel to rg(x⇤), where x

⇤ is the solution from part b).

Solution. a) r2
f(x) = 2I > 0. Here I is the identity n⇥ n matrix.

b) Note that since g is convex, its zero sublevel set Z := {x | g(x)  0} is a convex
set. Let f(x⇤) = d. Suppose x

⇤ is not unique, that is suppose there exists two distinct
points x1 and x2 in Z such that f(x1) = f(x2) = d. Since Z is convex, ↵1x1 +↵2x2 2 Z

for all non-negative ↵1 and ↵2 satisfying ↵1 + ↵2 = 1. Since f is strictly convex, d 
f(↵1x1 + ↵2x2) < ↵1f(x1) + ↵2f(x2) = ↵1d+ ↵2d = d, a contradiction.
c) By 1st order neccessary condition 0 = rf(x⇤) + µrg(x⇤) = 2(x⇤ � y) + µrg(x⇤).
Hence y � x

⇤ = µ
2rg(x⇤).


