
Assignment 5
APM462 – Nonlinear Optimization – Summer 2016

Christopher J. Adkins

Solutions

Question 1 Let u∗(·) be an extremal(e.g. minimizer) of the functional F [u(·)] =
∫ b

a
L(x, u(x), u′(x))dx. Find

the Euler-Lagrange equation satisfied by u∗(·) where L(x, z, p) is given by the following functions:

(a) L(x, z, p) = xz + p2

(b) L(x, z, p) = p√
1+p2

(c) L(x, z, p) = z + xp2

(d) L(x, z, p) = xp− p2

Solution Recall the Euler-Lagrange equation is

∂L

∂u
− d

dx

∂L

∂u′
= 0

If you work out the derivatives you should obtain:

(a) E-L =⇒ x− 2u′′ = 0

(b) E-L =⇒ u′′ = 0

(c) E-L =⇒ 1− 2u′ − 2xu′′ = 0

(d) E-L =⇒ 1− 2u′′ = 0

Question 2 Let f : R→ R be a strictly convex function, and F be the functional defined by

F [u(·)] =
1

2

∫ 1

0

f(u′(x))dx,

acting on functions in the set

A = {C1 functions u : [0, 1]→ R such that u(0) = 2, u(1) = 1}

Find the minimizer of F in A.
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Solution Euler-Lagrange dictates (when u ∈ C2)

−f ′′(u′(x))u′′(x) = 0

and since f is strictly convex, we have f ′′ > 0, thus

u′′ = 0 =⇒ u(x) = c1x+ c2, c1, c2 ∈ R

and the boundary conditions on u give

u(x) = 2− x

Otherwise, we have from Euler-Lagrange (when u ∈ C1)

f ′(u′) = const

Thus either

f ′ = const or u′ = c1, c1 ∈ R

but if f ′ = const, then f isn’t strictly convex, which is a contradiction. Thus

u′ = c1 =⇒ u(x) = c1x+ c2, c1, c2 ∈ R

and the boundary values imply u(x) = 2− x.

Question 3 Find the first order necessary conditions satisfied by a solution u∗ ∈ C2 to a minimization problem

where one of the endpoints is fixed and the other is free:

minimize F [u(·)] =

∫ b

a

L(x, u(x), u′(x))dx

subject to: u ∈ A = {u : [a, b]→ R : u ∈ C1[a, b], u(a) = A}

Solution Take v ∈ {u : [a, b]→ R : u ∈ C1[a, b], v(a) = 0}, then

δF

δu
=

d

ds
F [u(x) + sv(x)]

∣∣∣
s=0

=

∫ b

a

[
∂L

∂u
v(x) +

∂L

∂u′
v′(x)

]
dx

=

∫ b

a

[
∂L

∂u
− d

dx

∂L

∂u′

]
v(x)dx+

∂L

∂u′
v(x)

∣∣∣b
a
, integration by parts

=

∫ b

a

[
∂L

∂u
− d

dx

∂L

∂u′

]
v(x)dx+

∂L

∂u′
(b)v(b), since v(a) = 0

We now see the extra term from the integration by parts when x = b is free, so we require

∂L

∂u′
(b) = 0

as an additional necessary condition to Euler-Lagrange.
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Question 4 For each of the following functionals,

(a) compute δF/δu “from first principles”, that is by considering d
dsF [u(·) + sv(·)] for function v(·) ∈ C1

which are zero t the endpoints.

(b) Also compute δF/δu by using the general formula we have for δF/δu, when F is a functional of the form

F [u(·)] =
∫ b

a
L(x, u(x), u′(x))dx.

(c) Solve the problem of minimizing F in the set

A = {C1 functions u : [0, 1]→ R such that u(0) = 1, u(1) = 3}

(d) Solve the problem of minimizing F in the set

A = {C1 functions u : [0, 1]→ R such that u(0) = 1}

1.

F1[u(·)] =

∫ 1

0

[
1

2
u′(x)2 + 2u(x)

]
dx

2.

F2[u(·)] =

∫ 1

0

[
1

2
u′(x)2 + u′(x) + 2u(x)

]
dx

3.

F3[u(·)] =

∫ 1

0

(u′(x)− 1)2

x2 + 1
dx

Solution

1. The first variation is (assuming v(0) = v(1) = 0)

δF1

δu
= lim

s→0

F1[u+ sv]− F1[u]

s
=

∫ 1

0

(u′(x)v′(x) + 2v(x))dx =

∫ 1

0

(2− u′′(x))v(x)dx

We see the minimum is found via

2− u′′(x) = 0 =⇒ u(x) = x2 + c1x+ c2

For c), we see u = x2 + x+ 1. For d), we find u = x2 − 2x+ 1.

2. a),b),c) are the same as the previous question since

F2[u(·)] = F1[u(·)] + u(1)− u(0)

For d), u takes the general form as in 1), and c2 = 1 still... but

∂L

∂u′
= u′ + 1 = 0 =⇒ c1 = −3

Thus u(x) = x2 − 3x+ 1.

3. The first variation is (assuming v(0) = v(1) = 0)

δF3

δu
= lim

s→0

F3[u+ sv]− F3[u]

s
= 2

∫ 1

0

(u′(x)− 1)

x2 + 1
v′(x)dx = −2

∫ 1

0

v(x)
d

dx

(
u′(x)− 1

x2 + 1

)
dx

We see the minimum is found via

d

dx

(
u′(x)− 1

x2 + 1

)
= 0 =⇒ u(x) =

c1
3
x3 + (c1 + 1)x+ c2

For c), we see u(x) = 1
4x

3 + 7
4x+ 1. For d), we find u(x) = x+ 1.
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