Assignment 5

APM462 - Nonlinear Optimization - Summer 2016

Christopher J. Adkins

Solutions

Question 1 Let $u_{*}(\cdot)$ be an extremal(e.g. minimizer) of the functional $F[u(\cdot)]=\int_{a}^{b} L\left(x, u(x), u^{\prime}(x)\right) d x$. Find the Euler-Lagrange equation satisfied by $u_{*}(\cdot)$ where $L(x, z, p)$ is given by the following functions:
(a) $L(x, z, p)=x z+p^{2}$
(b) $L(x, z, p)=\frac{p}{\sqrt{1+p^{2}}}$
(c) $L(x, z, p)=z+x p^{2}$
(d) $L(x, z, p)=x p-p^{2}$

Solution Recall the Euler-Lagrange equation is

$$
\frac{\partial L}{\partial u}-\frac{d}{d x} \frac{\partial L}{\partial u^{\prime}}=0
$$

If you work out the derivatives you should obtain:
(a) $\mathrm{E}-\mathrm{L} \Longrightarrow x-2 u^{\prime \prime}=0$
(b) $\mathrm{E}-\mathrm{L} \Longrightarrow u^{\prime \prime}=0$
(c) $\mathrm{E}-\mathrm{L} \Longrightarrow 1-2 u^{\prime}-2 x u^{\prime \prime}=0$
(d) $\mathrm{E}-\mathrm{L} \Longrightarrow 1-2 u^{\prime \prime}=0$

Question 2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly convex function, and F be the functional defined by

$$
F[u(\cdot)]=\frac{1}{2} \int_{0}^{1} f\left(u^{\prime}(x)\right) d x
$$

acting on functions in the set

$$
\mathcal{A}=\left\{C^{1} \text { functions } u:[0,1] \rightarrow \mathbb{R} \text { such that } u(0)=2, u(1)=1\right\}
$$

Find the minimizer of F in \mathcal{A}.

Solution Euler-Lagrange dictates (when $u \in C^{2}$)

$$
-f^{\prime \prime}\left(u^{\prime}(x)\right) u^{\prime \prime}(x)=0
$$

and since f is strictly convex, we have $f^{\prime \prime}>0$, thus

$$
u^{\prime \prime}=0 \Longrightarrow u(x)=c_{1} x+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

and the boundary conditions on u give

$$
u(x)=2-x
$$

Otherwise, we have from Euler-Lagrange (when $u \in C^{1}$)

$$
f^{\prime}\left(u^{\prime}\right)=\text { const }
$$

Thus either

$$
f^{\prime}=\text { const } \quad \text { or } \quad u^{\prime}=c_{1}, \quad c_{1} \in \mathbb{R}
$$

but if $f^{\prime}=$ const, then f isn't strictly convex, which is a contradiction. Thus

$$
u^{\prime}=c_{1} \Longrightarrow u(x)=c_{1} x+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

and the boundary values imply $u(x)=2-x$.

Question 3 Find the first order necessary conditions satisfied by a solution $u_{*} \in C^{2}$ to a minimization problem where one of the endpoints is fixed and the other is free:

$$
\operatorname{minimize} F[u(\cdot)]=\int_{a}^{b} L\left(x, u(x), u^{\prime}(x)\right) d x
$$

$$
\text { subject to: } u \in \mathcal{A}=\left\{u:[a, b] \rightarrow \mathbb{R}: u \in C^{1}[a, b], u(a)=A\right\}
$$

Solution Take $v \in\left\{u:[a, b] \rightarrow \mathbb{R}: u \in C^{1}[a, b], v(a)=0\right\}$, then

$$
\begin{aligned}
\frac{\delta F}{\delta u}=\left.\frac{d}{d s} F[u(x)+s v(x)]\right|_{s=0} & =\int_{a}^{b}\left[\frac{\partial L}{\partial u} v(x)+\frac{\partial L}{\partial u^{\prime}} v^{\prime}(x)\right] d x \\
& =\int_{a}^{b}\left[\frac{\partial L}{\partial u}-\frac{d}{d x} \frac{\partial L}{\partial u^{\prime}}\right] v(x) d x+\left.\frac{\partial L}{\partial u^{\prime}} v(x)\right|_{a} ^{b}, \quad \text { integration by parts } \\
& =\int_{a}^{b}\left[\frac{\partial L}{\partial u}-\frac{d}{d x} \frac{\partial L}{\partial u^{\prime}}\right] v(x) d x+\frac{\partial L}{\partial u^{\prime}}(b) v(b), \quad \text { since } v(a)=0
\end{aligned}
$$

We now see the extra term from the integration by parts when $x=b$ is free, so we require

$$
\frac{\partial L}{\partial u^{\prime}}(b)=0
$$

as an additional necessary condition to Euler-Lagrange.

Question 4 For each of the following functionals,
(a) compute $\delta F / \delta u$ "from first principles", that is by considering $\frac{d}{d s} F[u(\cdot)+s v(\cdot)]$ for function $v(\cdot) \in C^{1}$ which are zero t the endpoints.
(b) Also compute $\delta F / \delta u$ by using the general formula we have for $\delta F / \delta u$, when F is a functional of the form $F[u(\cdot)]=\int_{a}^{b} L\left(x, u(x), u^{\prime}(x)\right) d x$.
(c) Solve the problem of minimizing F in the set

$$
\mathcal{A}=\left\{C^{1} \text { functions } u:[0,1] \rightarrow \mathbb{R} \text { such that } u(0)=1, u(1)=3\right\}
$$

(d) Solve the problem of minimizing F in the set

$$
\mathcal{A}=\left\{C^{1} \text { functions } u:[0,1] \rightarrow \mathbb{R} \text { such that } u(0)=1\right\}
$$

1.

$$
F_{1}[u(\cdot)]=\int_{0}^{1}\left[\frac{1}{2} u^{\prime}(x)^{2}+2 u(x)\right] d x
$$

2.

$$
F_{2}[u(\cdot)]=\int_{0}^{1}\left[\frac{1}{2} u^{\prime}(x)^{2}+u^{\prime}(x)+2 u(x)\right] d x
$$

3.

$$
F_{3}[u(\cdot)]=\int_{0}^{1} \frac{\left(u^{\prime}(x)-1\right)^{2}}{x^{2}+1} d x
$$

Solution

1. The first variation is (assuming $v(0)=v(1)=0$)

$$
\frac{\delta F_{1}}{\delta u}=\lim _{s \rightarrow 0} \frac{F_{1}[u+s v]-F_{1}[u]}{s}=\int_{0}^{1}\left(u^{\prime}(x) v^{\prime}(x)+2 v(x)\right) d x=\int_{0}^{1}\left(2-u^{\prime \prime}(x)\right) v(x) d x
$$

We see the minimum is found via

$$
2-u^{\prime \prime}(x)=0 \Longrightarrow u(x)=x^{2}+c_{1} x+c_{2}
$$

For c), we see $u=x^{2}+x+1$. For d), we find $u=x^{2}-2 x+1$.
2. a), b), c) are the same as the previous question since

$$
F_{2}[u(\cdot)]=F_{1}[u(\cdot)]+u(1)-u(0)
$$

For d), u takes the general form as in 1), and $c_{2}=1$ still... but

$$
\frac{\partial L}{\partial u^{\prime}}=u^{\prime}+1=0 \Longrightarrow c_{1}=-3
$$

Thus $u(x)=x^{2}-3 x+1$.
3. The first variation is (assuming $v(0)=v(1)=0$)

$$
\frac{\delta F_{3}}{\delta u}=\lim _{s \rightarrow 0} \frac{F_{3}[u+s v]-F_{3}[u]}{s}=2 \int_{0}^{1} \frac{\left(u^{\prime}(x)-1\right)}{x^{2}+1} v^{\prime}(x) d x=-2 \int_{0}^{1} v(x) \frac{d}{d x}\left(\frac{u^{\prime}(x)-1}{x^{2}+1}\right) d x
$$

We see the minimum is found via

$$
\frac{d}{d x}\left(\frac{u^{\prime}(x)-1}{x^{2}+1}\right)=0 \Longrightarrow u(x)=\frac{c_{1}}{3} x^{3}+\left(c_{1}+1\right) x+c_{2}
$$

For c), we see $u(x)=\frac{1}{4} x^{3}+\frac{7}{4} x+1$. For d), we find $u(x)=x+1$.

