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Abstract. Understanding the possible conditional structure in a given weakly-null se-

quence (xi) in some normed space X lies in the heart of several classical problems of

this area of mathematics. We will expose the set-theoretic and Ramsey-theoretic meth-

ods relevant to both the lack and the existence of this conditional structure. We will

concentrate on more recent results and will point out problems for further study.
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1. The unconditional basic sequence problem

Recall that a sequence (xi) in some normed space X is unconditional if there is a
constant C ≥ 1 such that ∥∥∥∑

i∈I
aixi

∥∥∥ ≤ C∥∥∥∑
j∈J

ajxj

∥∥∥
for any pair I ⊆ J of (finite) subsets of the index-set of (xi) and for every sequence
(aj : j ∈ J) of scalars. The unconditional basic sequence problem asking whether
an arbitrary infinite-dimensional1 normed space contains an infinite unconditional
basic2 sequence has played a prominent role both before and after its eventual
solution by Gowers and Maurey [18].

Theorem 1.1 ([18]). There is a separable reflexive infinite-dimensional space X
with no infinite unconditional basic sequence.

In [1], Argyros, Lopez-Abad and Todorcevic were able to extend this to the
level of non-separable spaces as well.

∗The author is grateful to the Fields Institute for hospitality during the writing of this paper.
1Unless otherwise stated, from now on, all normed spaces are implicitly assumed to be infinite-

dimensional although we shall keep stressing this from time to time.
2The ’basic’ here refers to the notion of Schauder basic sequence defined at the beginning of

the next Section.
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Theorem 1.2 ([1]). There is also a non-separable reflexive space X with no infinite
unconditional basic sequence.

The Ramsey-theoretic nature of the unconditional basic sequence problem was
apparent quite early but the following result of Gowers [16] that immediately fol-
lowed [18] required a new infinite-dimensional Ramsey theorem commonly known
today as Gowers Dichotomy (see also [17]).

Theorem 1.3 ([16]). An infinite-dimensional Banach space contains either an in-
finite unconditional basic sequence or a hereditarily indecomposable Banach space.3

Concerning this result we note that the space of Theorem 1.1 is actually hereditarily
indecomposable while the space of Theorem 1.2 being reflexive and non-separable
must have many decompositions as sum of two closed infinite-dimensional sub-
spaces. In this article, we shall discuss the following two general versions of the
problem.

Problem 1.4. (1) When does an infinite-dimensional normed space contains an
infinite unconditional basic sequence?

(2) When does an infinite normalized weakly null sequence in some normed space
contains an infinite unconditional subsequence?

In view of the solution of the unconditional basic sequence problem these problems
may appear a bit wage but here is one example that shows that even a partial
result in this direction sheds some light to another classical problem in this area,
the separable quotient problem.

Theorem 1.5 ([20], [24]). If the dual X∗ of some Banach space X contains an in-
finite unconditional basic sequence then X admits a quotient with an unconditional
basis.

2. Finite and partial unconditionality

Recall that a sequence (xi)∞i=0 in some normed space is a Schauder basic sequence
if it is normalized and if there is a constant C ≥ 1 such that ‖

∑
i<m aixi‖ ≤

C‖
∑
j<n ajxj‖ for all m < n and all choices (aj : j < n) of scalars. The classical

procedure of Mazur for selecting a Schauder basic sequence inside an arbitrary
Banach space when applied to subsequences of a given weakly null sequence gives
us the following result of Bessaga and Pelczynski [5].

3Recall that an infinite-dimensional Banach space X is indecomposable if it cannot be written

as sum Y
⊕
Z of two closed infinite-dimensional subspaces Y and Z. We say that X is hereditarily

indecomposable if all closed infinite-dimensional subspaces of X are indecomposable.
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Theorem 2.1 ([5]). For every ε > 0, every normalized weakly null sequence (xn)
contains an infinite (1 + ε)-Schauder basic subsequence (xni

).

A further application of Ramsey theorem will give us the following multidimen-
sional version of a result of Odell [38].

Theorem 2.2 ([8], [38]). Let k a positive integer and ε > 0. Suppose that for
every i < k we are given a normalized weakly null sequence (xin)∞n=0 in some
Banach space X. Then, there exists an infinite set M of integers such that for
every {n0 < · · · < nk−1} ⊆M the k-sequence (xini

)i<k is (1 + ε)-unconditional.

As indicated before, in general, it’s not possible to improve this result and get
an infinite unconditional basic sequence starting from infinitely many weakly null
sequences. The following early result of Maurey and Rosenthal [31] identifies the
minimal counterexample.

Theorem 2.3 ([31]). (1) For every ε > 0 and every α < ωω, every normalized
weakly null sequence in C(α+ 1) has a (2 + ε)-unconditional subsequence.

(2) For every ε > 0 every normalized weakly null sequence in C(ωω + 1) has a
(4 + ε)-unconditional subsequence.

(3) There is a normalized weakly null sequence in C(ωω2
+ 1) with no uncondi-

tional subsequence.

There are several results in the literature that give sufficient conditions on a
given weakly null sequence in order to contain an infinite unconditional subse-
quence. Of these we mention the following result that uses the Nash-Williams
theory of fronts and barriers.

Theorem 2.4 ([3],[14], [45]). Suppose that (xn) is a normalized weakly-null se-
quence in `∞(Γ) with the property that

inf{|xn(γ)| : n ∈ N, γ ∈ Γ} > 0.

Then (xn) contains an infinite unconditional basic subsequence.

There is indeed a very natural relation between weakly null sequences (xn)∞n=0 and
compact and precompact families of finite subsets of N that are subject to the
Nash-Williams theory. To see this, assume, without loss of generality that (xn) is
a weakly null sequence in some space of the form `∞(Γ). For γ ∈ Γ, set

Fγ = {n ∈ N : xn(γ) 6= 0}.

Let F = {Fγ : γ ∈ Γ}. Then F is a precompact family of finite subsets of N, i.e.,
all the pointwise limits of this family are finite sets, or to put it combinatorially,
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every infinite subset M of N contains a finite initial segment s such that s is not
a proper initial segment of any element of the family F . Let B be the collection of
all finite subsets s of N that have no proper end-extensions in F and are minimal
with respect to this property, i.e., every proper initial segment of s has an end-
extension in F . First of all note that B is a thin family, i.e., forms an antichain
relative to the ordering v of end-extension. However, note that B is a front, i.e.,
every infinite subset M of N has an initial segment in B. These are the notions
introduced originally by Nash-Williams [36], where he proved that thin families
have the Ramsey property in the following sense.

Theorem 2.5 ([36]). Suppose H = H0 ∪ · · · ∪ Hl is a finite partition of a thin
family H of finite subsets of N. Then there is an infinite set M ⊆ N and i < l such
that H � M ⊆ Hi.4

Note that for a fixed positive integer k the family [N]k of all k-element subsets of
N is a thin family (and, in fact it is a front) and that in this case Nash-Williams’
theorem reduces to Ramsey’s theorem. However, Nash-Williams’ theorem is in fact
a far-reaching extension of Ramsey’s theorem that initiated the study of Ramsey
theory of infinite dimension, the Ramsey theory most relevant to the questions we
discuss here. So, going back to our family F associated to the weakly null sequence
(xn) and the front B and applying Nash-Williams’ theorem we find an infinite set
such that

F [M ] = B � M.5

From this we conclude that any study of further subsequences of (xn)n∈M must
involve the front B on M. A closer examination reveals that one has to study
mappings with domains B � M. The following important result of Pudlak and
Rödl [40] reveals the true complexity of any such study.

Theorem 2.6 ([40]). For every front B on N and every mapping f : B → N there
exist an infinite subset M of N and a mapping ϕ : B � M → B � M such that:

(1) ϕ is an internal mapping, i.e., ϕ(s) ⊆ s for all ∈ B � M ,

(2) ϕ(s) 6v ϕ(t) for all s, t ∈ B � M such that ϕ(s) 6= ϕ(t) and

(3) for s, t ∈ B � M, f(s) = f(t) iff ϕ(s) = ϕ(t).

This shows that the complexity weakly null subsequence (xn)n∈M is captured
by the complexity of internal mappings on fronts like B � M. It should also be

4Here, H � M = {s ∈ H : s ⊆M}.
5Here, F [M ] = {F ∩M : F ∈ F} and B � M is the topological closure of the restriction B � M.
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mentioned that the mapping ϕ satisfying the conclusion of Theorem 2.6 must be
a unique such a mapping with domain B � M. More precisely, suppose that

ϕ0 : B � M0 → B � M0 and ϕ1 : B � M1 → B � M1

are two mappings satisfying the conclusion of Theorem 2.6. If the intersection
M0 ∩M1 is infinite, then there is an infinite set N ⊆M0 ∩M1 such that

ϕ0 � (B � N) = ϕ1 � (B � N).

Another useful consequence of Theorem 2.5 is that for every front B there is
an infinite set M such that B � M is, in fact, a barrier on M , i.e., that every
infinite subset of M has an initial segment in B and that, moreover, B � M is
Sperner, i.e., that s 6⊆ t for all s 6= t in B � M. Thus, without loss of generality
we may work with barriers instead with fronts. One useful property of barriers
B is that for every infinite set M the topological closure B � M is simply equal
to the ⊆-downwards closure of B � M. Note that the finite rank fronts [N]k are
also barriers, but there are barriers B whose topological closures have arbitrary
countable Cantor-Bendixon ranks. One important example of a barrier of rank ω
is the Schreier barrier

S = {s ⊆ N : |s| = min(s) + 1}

that forms the initial stage of a well studied transfinite hierarchy Sξ (1 ≤ ξ < ω1)
of Schreier barriers of higher ranks. Part of their importance in this area is based
on the fact that their topological closures are spreading, i.e., the property that if
some s belongs to Sξ then so does every finite set t of the same cardinality as s
such that for every i < |t|, the ith element of t is bigger or equal than the ith
element of s. We refer the reader to [28] which attempts towards a systematic
study of combinatorial and topological properties of barriers as well as systematic
study of internal mappings on barriers that are relevant to problems about weakly
null sequences.

We finish this section by mentioning the well-known result of Elton [10] about
the unconditional structure found inside arbitrary weakly null sequences.

Theorem 2.7 ([10]). For every 0 < ε ≤ 1 there is a constant C(ε) ≥ 1 such that
every normalized weakly null sequence (xn) has an infinite subsequence (xni) such
that ‖

∑
i∈I aixni

‖ ≤ C(ε)‖
∑
j∈J ajxnj

‖ for every pair I ⊆ J of subsets of N and
every choice (aj : j ∈ J) of scalars such that ε ≤ |aj | ≤ 1 for all j ∈ J.

The following problem is in the literature known as the Elton unconditional
constant problem (see, for example, [6]).

Problem 2.8. Is sup0<ε≤1 C(ε) <∞?
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3. w∗-null sequences and the quotient problem

Recall that a sequence (fγ)γ∈Γ of bounded linear functionals on some normed space
X is w∗-null if for every x ∈ X and ε > 0, the set {γ ∈ Γ : |fγ(x)| ≥ ε} is finite.
That nontrivial such sequences always exist is a theorem due to Josefson [25] and
Nissenzweig [37].

Theorem 3.1 ([25], [37]). For every infinite-dimensional normed space X there
is a normalized w∗-null sequence (fn)∞n=0 in X∗.

Having such normalized sequence (fn)∞n=0 in X∗ one is tempted to apply the
Bessaga-Pelczynski technique to try to select a Schauder basic subsequence. This
is exactly what Johnson and Rosenthal [24] did when they realized that one should
also be looking for such Schauder basic subsequence (fni

) that has some sequence
(xi) in X as the corresponding sequence of biorthogonal functionals on the closed
norm span of (fni). This is how they proved the following well-known result.

Theorem 3.2 ([24]). Every separable infinite-dimensional space has an infinite-
dimensional quotient with a Schauder basis.

It is quite natural to ask if this result can be extended to arbitrary spaces and this
is what became known as the separable quotient problem. If one tries using the
Ramsey-theoretic or set-theoretic analysis of this problem one will observe that the
arguments in [24] are enough for getting separable quotients for spaces of density
< b. Recall that b is the minimal cardinality of a subset of NN unbounded in the
ordering of eventual dominance. Recall also the similar number p, the minimal
cardinality of a family F of infinite subsets of N such that

⋂
F0 is infinite for all

finite F0 ⊆ F but there is no infinite M ⊆ N such that M \N is finite for all N ∈ F .
Recall also that m is the minimal cardinality of a family of nowhere dense subsets
that cover some nonempty compact T2-space K which has no isolated points and
which satisfies the countable chain condition. It is easily seen that ω1 ≤ m ≤ p ≤ b.

Then we have the following extension of the result in [24].

Theorem 3.3 ([46]). Suppose that a Banach space X has density < m and that its
dual X∗ has an uncountable normalized w∗-null sequence. Then X has a quotient
with a Schauder basis of length ω1.

Remark 3.4. Given an w∗-null sequence {fγ : γ < ω1} ⊆ X∗, the proof finds an
uncountable subsequence {fγ : γ ∈ Γ} that forms a Schauder basis of its norm-
closed linear span span{fγ : γ ∈ Γ} and a quotient map

T : X → (span{fγ : γ ∈ Γ})∗
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onto the dual of this space which itself has a Schauder basis {f∗γ : γ ∈ Γ} formed
by the biorthogonal functionals of the Schauder basis {fγ : γ ∈ Γ}. This feature
of the proof is of independent interest and has already been used in appplications
some of which will be mentioned below.

To satisfy the hypothesis of Theorem 3.3 one needs to invoke a set-theoretic di-
chotomy, PID. To introduce this dichotomy, we need to recall some standard defi-
nitions.

Definition 3.5. Recall than an ideal on an index set S is simply a family I of
subsets of S closed under taking subsets and finite unions of its elements. We shall
consider only ideals of countable subsets of S and assume that all our ideals include
the ideal of all finite subsets of S.

Definition 3.6. We say that such an ideal I is a P-ideal if for every sequence
(an) in I there is b ∈ I such that an \ b is finite for all n.

Example. (a) The ideal [S]<ℵ0 of finite subsets of S is the trivial P-ideal.

(b) The ideal [S]≤ℵ0 of all countable subsets of S is a P-ideal and, in fact, a
maximal ideal in the category of ideals of countable sets.

(c) Ignoring the ideal of finite subsets of S there is another class of small P-ideals
I = F⊥, determined by a family F of cardinality < b of subsets of S in the
following manner: F⊥ = {x ∈ [S]≤ℵ0 : (∀Y ∈ F)|x ∩ Y | < ℵ0}.

The P-ideal dichotomy states that every ideal I on an arbitrary index-set S
either contains the ideal of all countable subsets of some uncountable subset T of
S or there is a countable decomposition (Sn) of S such that I ⊆ {Sn : n < ω}⊥.
More precisely we have the following definition.

Definition 3.7. The P-ideal dichotomy, PID, is the statement that for every P-
ideal I of countable subsets of some index set S, either

(1) there is uncountable T ⊆ S such that [T ]ℵ0 ⊆ I, or

(2) there is a decomposition S =
⋃
n<ω Sn such that I ⊆ {Sn : n < ω}⊥.

We refer the reader to [49] for more about this interesting dichotomy which, on
one hand, follows from the strong Baire category principles such as mm > ω1 but,
on the other hand, is consistent with the Continuum Hypothesis. But let us only
mention one of its applications to problems of our interest here.

Theorem 3.8 ([46]). Assume PID. Then every Banach space X of density < m

has a quotient with a Schauder basis which can be assumed to be of length ω1 if X
is not separable.
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Corollary 3.9 ([46]). Assume PID and m > ω1. Then every non-separable Banach
space has un uncountable biorthogonal system.

Recall that an Asplund space is a Banach space X with the property that separable
subspaces of X have separable duals. They were originally introduces as spaces
X with the property that every convex continuous function defined on a convex
open subset U of X is Fréchet differentiable on a dense Gδ-subset of U . Recall
also that a Banach space X has the Mazur intersection property if every closed
convex subset of X is the intersection of closed balls of X. Mazur [32] proved that
every Banach space with a Fréchet differentiable norm has the Mazur intersection
property, so it was quite natural to ask if Asplund spaces have this property as
well. The following two fact connects Theorem 3.8 to this problem.

Theorem 3.10 ([23]). Suppose that a Banach space X has a biorthogonal system
{(xi, fi) : i ∈ I} ⊆ X × X∗ such that X∗ = span{fi : i ∈ I}. then X admits an
equivalent norm with the Mazur intersection property.

Theorem 3.11 ([4]). Suppose X is an Asplund space of density ℵ1 with an un-
countable biorthogonal system. Then there is a normalized sequence {xξ : ξ < ω1}
of elements of X such that the operator f 7→ (f(xξ) : ξ < ω1) maps X∗ into a
nonseparable subset of c0(ω1).

Remark 3.12. Note that this result is giving us a particular instance of the
hypothesis of Theorem 3.3. So applying (the proof of) Theorem 3.3 (see Remark
3.4), we get an uncountable subsequence {xγ : γ ∈ Γ} forming a Shauder basis of
its norm-closed linear span span{xγ : γ ∈ Γ} and a quotient map

T : X∗ → (span{xγ : γ ∈ Γ})∗

onto the dual of this space which itself is spanned by the basis {x∗γ : γ ∈ Γ} formed
by the biorthogonal functionals of the basis {xγ : γ ∈ Γ}. So if in addition X (and
therefore X∗) has density ℵ1, we satisfy the hypothesis of Theorem 3.10.

Combining this with Theorems 3.3 (Remarks 3.4 and 3.12), 3.10 and 3.8, we get
the following.

Corollary 3.13 ([4]). Assume PID. Then every Asplund space of density < m

admits an equivalent norm with the Mazur intersection property.

Assumptions like m > ω1 are necessary in Corollary 3.9 in view of the following
fact6.

6Recall that PID is consistent with the equality b = ω1.
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Theorem 3.14 ([43]). If b = ω1 then there is a non separable Asplund space of
the form X = C(K) with no uncountable biorthogonal systems. 7

We finish this section with another application of Theorem 3.8.

Theorem 3.15 ([46]). Assume PID and m > ω1. Then every non-separable Ba-
nach space contains a closed convex subset supported8 by all of its points.

Remark 3.16. In [41], Rolewicz showed that a separable Banach space does not
contain such a convex subset. There are examples that show that some assumption
is needed in Theorem 3.15 (see [27] and [29]). However, given the assumption PID,
we feel that it would be of independent interest to determine the exact extra
assumptions that are needed for each of the three problems from the geometry of
Banach spaces. For example, at this stage it is unclear if PID itself is sufficient for
solving the problem of Rolewicz about support sets. On the other hand, it seems
plausible that, assuming PID, the set-theoretic assumption b > ω1 is equivalent
to the the existence of an uncountable biorthogonal system in every nonseparable
Asplund space and also equivalent to the statement that every Asplund space of
density not bigger than ℵ1 admits an equivalent norm with the Mazur intersection
property.

4. Weakly null sequences on Polish spaces

When the weakly null sequence lives in `∞(Γ) and Γ is a Polish space uncondi-
tionality results can be obtained using the Ramsey theory of trees based on the
Halpern-Läuchli theorem [21] (see [48]). We spend this section to give some expla-
nation of this.

Definition 4.1. Fix a rooted finitely branching tree U with no terminal nodes. A
subtree T of U will be called a strong subtree if the levels of T are subsets of the
levels of U and if for every t ∈ T every immediate successor of t in U is extended
by a unique immediate successor of t in T.

Theorem 4.2 ([21]). For every sequence U0, ..., Ud−1 of rooted finitelly branching
trees with no terminal nodes and for every finite colouring of the level product
U0 ⊗ · · · ⊗ Ud−1, we can find for each i < d a strong subtree Ti of Ui such that
the Ti’s share the same level set and such that the level product T0 ⊗ · · · ⊗ Td−1 is
monochromatic.

7In fact, X = C(K) is hereditarily Lindelöf relative to its weak topology so it admits no

equivalent norm with the Mazur intersection property.
8Recall that x in C supports C if there is f ∈ X∗ such that f(x) = min{f(y) : y ∈ C} <

sup{f(y) : y ∈ C}.
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This theorem serves as a pigeonhole principle behind the topological Ramsey space
S∞(U) of strong subtrees of U (see, [48]). The following result of Milliken [34] is
the analogue of the well-known result of Galvin and Prikry [13] about the space of
all infinite subsets of N, the space that was relevant in the previous section of this
paper.

Theorem 4.3 ([34]). For every finite Borel colouring of the space S∞(U) of all
strong subtrees of U there is a strong subtree T of U such that the set S∞(T ) of
strong subtrees of T is monochromatic.

In applications one usually colours some specific subsets F of U. This theorem is
relevant because the “shape” of F uniquely determines its strong subtree envelope,
so the colouring can be induced to S∞(U). For more information about this, the
reader is referred to the relevant Chapter of [48].

When the trees U0, U1, ..., Ud−1 are uniformly branching then the corresponding
version of the Halpern-Läuchli theorem is closely related to another well-known
pigeonhole principle, the Hales-Jewett theorem [20], and consequently also to the
Hindman theorem ([22] ) and the Gowers theorem ([15]) which also have Ramsey
spaces associated to them (see [48]). Here we mention one of these because of its
relevance to the problems we treat here.

Let FIN be the collection of all nonempty finite subsets of N. A block-sequence
in FIN is a sequence X = (xn) ⊆ FIN such that xm < xn whenever m < n. We say
that X = (xm) is a block-subsequence of Y = (yn) and write X ≤ Y whenever every
xm can be written as a union of some of the ym’s. Let FIN[∞] be the space of all
infinite block-sequences in FIN. The Hindman theorem is the pigeonhole principle
behind the important fact that FIN[∞] forms a topological Ramsey space. We just
mention here a consequence of this fact.

Theorem 4.4 ([33]). For every finite Borel colouring of FIN[∞] there is Y =
(yn) ∈ FIN[∞] such that the collection of all infinite block subsequences of Y is
monochromatic.

Here is a typical application of this result that shows its relationship to both the
space [N]∞ of all infinite subsets of N and the space of all perfect subtrees9 of the
complete binary tree 2<N.

Theorem 4.5. For every Borel colouring of the product 2N × [N]∞ with either
finitely many colours, or countably many colours that are invariant on finite changes
on the second coordinate, there is a perfect set P ⊆ 2N and an infinite set M ⊆ N
such that the product P × [M ]∞ is monochromatic.

9Recall that a subtree T of 2<N is perfect if every node of t has at least two incomparable

successors. This notion naturally corresponds to the notion of a perfect subset of 2N, a nonempty

compact subset without isolated points.
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Back to the analysis of weakly null sequences in `∞(Γ) when Γ is a Polish
space. The following classical result of Mycielski [35] is quite useful in reducing
the complexity of the problem to its Ramsey-theoretic core.

Theorem 4.6 ([35]). Suppose X is a Polish space and that Mn(n < ω) is a
sequence of subsets of some finite powers Xkn of X such that Mn is meager in
Xkn for all n < ω. Then there is a perfect set P ⊆ X such that [P ]kn ∩Mn = ∅
for all n.10

The following result of Argyros, Dodos and Kanellopoulos [2] is an inspiring ap-
plication of Mycielski’s theorem to Problem 1.4 (2) above.

Theorem 4.7 ([2]). Suppose X is a Polish space and that (fa)a∈2N is a bounded
sequence in `∞(X) such that (x, a) 7→ fa(x) is a Borel function from X × 2N into
R and that |{a ∈ 2N : fa(x) 6= 0}| ≤ ℵ0 for all x ∈ X. Then there is a perfect set
P ⊆ 2N such that the sequence (fa)a∈P is 1-unconditional.

The Ramsey theory of trees based on the Halpern-Läuchli theorem was brought
to this area of mathematics by the following result of the author.

Theorem 4.8 ([44]). Suppose K is a separable compact set of Baire class-1 func-
tions defined on some Polish space X. Let D be a countable dense subset of K, and
let f be a point of K that is not Gδ in K. Then there is a homeomorphic embedding

Φ : P→ K

such that Φ(∞) = f and Φ[2<N] ⊆ D.

Example. We recall that P here is Pol’s compactum [39], the space

P = 2<N ∪ 2N ∪ {∞},

where the points of the Cantor tree 2<N are isolated, the nodes of a branch of
this tree converge to the corresponding member of 2N and ∞ is the point that
compactifies the rest of the space. This is of course a standard space but what Pol
[39] shows is that P is homeomorphic to a compact subset of the collection of the
Baire-class-1 functions on the Cantor set 2N.

Combining Theorems 4.7 and 4.8, we get the following result.

Theorem 4.9 ([2]). Suppose X is a separable Banach space that contains no `1 but
whose dual X∗ is not separable. Then its double dual X∗∗ contains a normalized
1-unconditional sequence of the form (fa)a∈2N .

10Here [P ]kn denote the collection of all kn-tuples (xi : i < kn) of elements of P such that

xi 6= xj whenever i 6= j.
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Using this and Theorem 1.5, we get the following application to the separable
quotient problem.

Corollary 4.10 ([2]). Every infinite-dimensional dual Banach space has a sepa-
rable infinite-dimensional quotient.

5. Product-Ramsey property

We introduce two closely related and well-studied Ramsey-theoretic properties of
an index set Γ, or the corresponding cardinal |Γ|.

Definition 5.1. We say that Γ has the free-set property, and write FSP(Γ), if every
algebra A on Γ with no more than countably many operations has an infinite free
set, an infinite subset X of Γ such that no x ∈ X is in the sub algebra of A
generated by X \ {x}.

Our interest here in this property is based on the following result from [8].

Theorem 5.2. If a normalized weakly null sequence (xi)i∈I is indexed by a set
I that has the free-set property then it contains an infinite unconditional basic
subsequence.

Definition 5.3. We say that an index-set Γ is polarized, or it has the product-
Ramsey property, and write PRP(Γ), if for every colouring χ of the set Γ<ω of all
finite sequences of the index-set Γ into 2 colours there exists an infinite sequence
(Xi) of 2-element subsets of Γ or, equivalently, an infinite sequence (Xi) of infinite
subsets of Γ, such that χ is constant on

∏
i<nXi for all n.

It is easily seen (see [7]) that if the index set Γ has the product-Ramsey property
then it has the free-set property. The converse is not true since the index-sets Γ
satisfying PRP(Γ) must be of cardinality bigger than the continuum while it is
possible that Γ = R has the free-set property (see, for example, [30]). On the
other hand, the PRP(Γ) is an interesting and useful Ramsey-theoretic property
of an index-set which also has its Borel analogues (see [48]) as well as its density
analogue (see [50]). However, as indicated above, the index set Γ satisfying the
PRP has to be relatively large. This is also true about index-sets satisfying the
free-set property.

Theorem 5.4 ([12]). The free-set property fails for index-sets that have cardinal-
ities < ℵω.

It turns out that this lower bound on cardinalities of index-sets Γ satisfying FSP
and PRP is the best possible as the following result shows.
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Theorem 5.5 ([26], [7]). It is consistent11 with the axioms of set theory that every
index set Γ of cardinality at least ℵω satisfies the product Ramsey property and,
therefore, also the free-set property.

Corollary 5.6 ([8]). It is consistent with the axioms of set theory that every
normalized weakly null sequence of length at least ℵω has an infinite unconditional
subsequence.

We shall also need the 2-dimensional version of PRP(Γ).

Definition 5.7. We say that an index-set Γ is 2-polarized (or, it has the 2-
dimensional product-Ramsey property), and write in short as PRP2(Γ), if for every
colouring χ of the set ([Γ]2)<ω of all finite sequences of 2-element subsets of the
index-set Γ into 2 colours there exist an infinite sequence (Xi) of infinite subsets
of Γ) such that χ is constant on

∏
i<n[Xi]2 for all n.

We have the following analogue of Theorem 5.5 which, however, uses a stronger
consistency assumption.

Theorem 5.8 ([42], [9]). It is consistent with the axioms of set theory that an
(every) index set Γ of cardinality ℵω satisfies the two-dimensional product-Ramsey
property.

Our interest in this property is based on the following result of [8].

Theorem 5.9 ([8]). Suppose that (xγ)γ∈Γ is a normalized and separated sequence
in some Banach space X containing no `1. If the index-set Γ satisfies PRP2(Γ)
then there is an infinite sequence (βn, γn) of pairs of elements of Γ such that the
semi-normalized sequence (xβn

− xγn
) is unconditional.

Corollary 5.10 ([8]). If PRP2(κ) holds then for every ε > 0 every Banach space
of density at least κ contains an infinite (1 + ε)-unconditional basic sequence.

Corollary 5.11 ([8]). It is consistent with the axioms of set theory that every
Banach space of density at least ℵω has an infinite unconditional basic sequence as
well as an infinite-dimensional quotient with an unconditional basis.

Problem 5.12. Is the weaker assumption PRP(Γ) sufficient for the conclusion of
Theorem 5.9?

Problem 5.13. Can in some of these results the bound ℵω be replaced by ℵn for
n < ω?

We shall see below that this cannot be done in case of Corollary 5.6.
11In fact, equiconsistent with the existence of an index set I which supports a σ-additive

probability measure µ : P(I)→ [0, 1].
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6. Positional graphs and conditional weakly null sequences

Fix an ordinal Γ. For two finite subsets I and J of Gamma, let I < J denote the
fact that every ordinal in I is smaller than any ordinal in J. Let I v J denote the
fact that I is an initial segment of J.

Definition 6.1. For an integer n, we say that two subsets F and G of Γ are in
∆(n)-position if there is a decomposition F ∩G = I ∪ J such that

(1) I v F and I v G,

(2) I < J,

(3) |J | ≤ n.

For a family V ⊆ [Γ]<ω, we associate the corresponding positional graph

Gn(V) = (V, ∆(n)c),

where we put an edge between two finite F,G ∈ V if they are not in the ∆(n)-
position. Let Gn(Γ) = ([Γ]<ω, ∆(n)c).

We shall be particularly interested in answers to the following general question.

Problem 6.2. For which Γ and V ⊆ [Γ]<ω, the positional graph Gn(V) is count-
ably chromatic?12

Here is one partial answer to this question.

Theorem 6.3 ([47]). G0(ω1) is countably chromatic.

Unfortunately, this result cannot be extended to other ωk’s as it is easily seen that
Gn(ω2) is not countably chromatic for any integer n. In fact, it is easily seen that
for every inter n the graph Gn(ω2) contains an uncountable complete subgraph.
This gives us the reason for the following definition.

Definition 6.4. We say that a family V of finite subsets of Γ is dense if for every
infinite A ⊆ Γ there is infinite B ⊆ A such that [B]<ω ⊆ V.

This leads us to the following more specific version of Problem 6.2.

Problem 6.5. For which Γ there exist dense V ⊆ [Γ]<ω and an integer n such
that the corresponding positional graph Gn(V) is countably chromatic?

Finally, we mention the reason for our interest in positional graphs and these
questions about them.

12Recall that a graph G = (V,E) is countably chromatic if there is a χ : V → ω such that

χ(x) 6= χ(y) for every pair of vertices from V that form an edge in E.
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Theorem 6.6 ([30]). If for some integer n there is a dense family V ⊆ [Γ]<ω such
that Gn(V) is countably chromatic, then there is a normalized weakly null sequence
indexed by Γ without infinite unconditional basic subsequence.

The idea of constructing conditional norms using special functionals is already
present in the proof of Theorem 2.3(3) above. It has been used and modified in
many constructions that followed afterwards. Here, we seem to have the optimal
combinatorial hypothesis that makes this idea work. To see this fix an infinite

subset M of N such that min(M) ≥ n and such that
∑
k<l in M

√
k
l ≤ 1. Since

Gn(V) is countably chromatic, we can fix c : V→M such that:

(1) c(F ) = c(G) implies that F and G are in ∆(n)-position and

(2) c(F ) = c(G) implies that |F | = |G|.

Definition 6.7. We say that a finite block sequence (si)i<k of subsets of Γ is
c-special whenever

(a)
⋃
i<j si ∈ V for every j < k.

(b) |sj | = c(
⋃
i<j si) for every j < k.

Note that the assumption that V is a dense family of finite subsets of Γ ensures
that every infinite subset A of Γ contains an arbitrarily long special block sequence
of finite sets. The following set collects all the special functionals that we need for
defining our conditional norm.

F = {
∑
i<k

|si|−1/21si
: (si)i<k is a finite c-special block-sequence}.

Using this we can define the following norm on the vector space c00(Γ) of all finitely
supported real functions on Γ.

‖x‖F := max{‖x‖∞, sup
f∈F
〈x, f〉}.

Then for every subset t of Γ whose cardinality |t| belongs to M, we have that
‖1t‖F ≤ |t|1/2, so (eγ)γ∈Γ is a normalized weakly null sequence in (c00(Γ), ‖·‖F ).13

The definition of a positional graph is made in order to facilitate the proof of the
following crucial fact.

Lemma 6.8 ([30]). The weakly null sequence (eγ)γ∈Γ contains no infinite uncon-
ditional basic subsequence.

13Here, eγ is the vector with support {γ} such that eγ(γ) = 1.
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We note that the constructed normed space (c00(Γ), ‖·‖F ) as well as its completion
are both c0-saturated spaces. It is possible to modify the construction to get a
reflexive example. The following problem suggests itself.

Problem 6.9. Is there a similar combinatorial condition on uncountable Γ that
ensures the existence of a reflexive space of density Γ with no infinite unconditional
basic sequences?

Recall that Theorem 1.2 above gives such an example for Γ = ω1.

7. Constructing countably chromatic positional graphs

The construction crucially depends also on the following concept from [47].

Definition 7.1. A function % : [κ+]2 → κ is called an (injective version of) %-
function whenever:

(a) % is subbaditive, i.e. for every α < β < γ < κ+

(a.1) %(α, β) ≤ max{%(α, γ), %(β, γ)},

(a.2) %(α, γ) ≤ max{%(α, β), %(β, γ)}.

(b) %(α, β) 6= %(ᾱ, β) for every α 6= ᾱ < β.

(c) %(α, β) 6= %(β, γ) for every α < β < γ.

It is proved in [47] that such a map exists for every regular cardinal κ and so, in
particular, for κ = ωn for every non-negative integer n. So, from now on, for each
positive integer n we fix an injective % function %(n) : [ωn]2 → ωn−1.

Definition 7.2. For integers i ≤ n we define f (n)
i : [ωn]i+1 → ωn−i recursively as

follows. Let f (n)
0 := Id ωn and let

fi(α0, α1, . . . , αi) = %(n−(i−1))(fi−1(α0, . . . , αi−1), fi−1(α1, . . . , αi))

for α0 < · · · < αi in ωn and 0 < i ≤ n. Let fn = f
(n)
n : [ωn]n+1 → ω.

These functions are used in selecting a dense family Vn ⊆ [ωn]<ω that spans a
countably chromatic positional graph. The following two notions play an important
role in this. For two sets of ordinals A and W and a positive integer k a function
of the form f : [A]k →W is shift-increasing whenever

f(α0, α1, ..., αk−1) < f(α1, α2, ..., αk) for all α0 < α1 < · · · < αk in A.



Conditional structure of weakly-null sequences 17

Such a function f : [A]k →W is min-dependent whenever for every s, t ∈ [A]k,

f(s) = f(t) implies min s = min t.

In this context it is instructive to recall the Erdös-Rado canonical Ramsey theorem
([11]) stating that for every positive integer k and every mapping f : [ω]k → ω

there is an infinite set A ⊆ ω and I ⊆ {0, 1, ..., k−1} such that for α0 < · · · < αk−1

and β0 < · · · < βk−1 in A,

f(α0, ..., αk−1) = f(β0, ..., βk−1) iff {αi : i ∈ I} = {βi : i ∈ I}.

Thus, if 0 ∈ I the restriction of f on [A]k is min-depedent. Note however, that
for functions on [A]k for large sets of ordinals A, which is our case here, min-
dependence is actually quite rare. Interestingly, the ρ-functions give us such func-
tions that are densely often shift-preserving and min-dependent. More precisely,
we have the following fact.

Lemma 7.3 ([30]). (1) For every A ⊆ [ωn]ω there is B ∈ [A]ω such that for
every i ≤ n, the restriction f

(n)
i � [B]i+1 is shift-increasing .

(2) For every A ⊆ [ωn]ω there is B ∈ [A]ω such that for every i ≤ n, the
restriction f

(n)
i � [B]i+1 is min-dependant .

This fact leads us to the definition of the dense vertex-set Vn ⊆ [ωn]<ω that spans
our countably chromatic positional graph.

Definition 7.4. Let Vn be the set of all finite subsets v of ωn such that:

(a) fn � [v]n+1 is min-dependent,

(b) f
(n)
i � [v]i+1 is shift-increasing for every i < n.

It follows from Lemma 7.3 that Vn is dense in [ωn]<ω. Define

c : V→ HF

by letting c(v) be the transitive collapse of the structure (v, fn � [v]n+1), the
natural structure of the form ({0, 1, ..., |v| − 1}, f) isomorphic to it. The following
fact verifies that the positional graph G2n−1(Vn) is countably chromatic.

Lemma 7.5 ([30]). For u, v ∈ Vn, c(u) = c(v) implies that u and v are in the
∆(2n− 1)-position.

This gives us the following result about Problem 1.4 (2).

Theorem 7.6 ([30]). For every non-negative integer n there is a normalized weakly
null sequence (eγ)γ<ωn

without infinite unconditional basic subsequence.
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In view of this result and Theorems 1.1 and 1.2, the following question shows
naturally.

Problem 7.7. Is there, for every non-negative integer n, a reflexive space of den-
sity ωn without infinite unconditional basic sequence?
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