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Abstract. We show that for each positive integer k there is a
sequence Fn : Rk → R of continuous functions which represents
via point-wise limits arbitrary functions G : Xk → R defined on
domains X ⊆ R of sizes not exceeding a standard cardinal charac-
teristic of the continuum.

1. Introduction

More that sixty years ago Sierpiński posed a general problem1 asking
for which index-sets X and for which families G of real functions defined
on X can we find a single sequence fn of real functions defined on X
with the property that every g ∈ G is a point-wise limit of a subsequence
of fn . In [2] Rothberger showed that this is the case when both the
family G and the index-set X have cardinalities at most ℵ1. In Theorem
6.4 of [3], we have extended Rothberger’s results to families and index-
sets of size at most p (a characteristic of the continuum defined below)
that appears to be a result of optimal generality. The purpose of this
note is to reinterpret this idea and prove the following result as well as
its extensions to all other finite dimensions.

1.1 Theorem. There is a sequence

Fn : R2 → R
of continuous functions such that for every set X of reals of size at
most p and every function

G : X2 → R
there is a one-to-one map h : X → R such that for all (x, y) ∈ X2,

G(x, y) = limn→∞ Fn(h(x), h(y)).

Recall that p is the minimal cardinality of a family F of infinite sub-
sets of N such that

⋂
F0 is infinite for all finite F0 ⊆ F but there is no

infinite subset b of N such that b ⊆∗ a for all a ∈ F , where, as custom-
ary, b ⊆∗ a denotes the fact that b \ a is a finite set, the fact that the

1See, Fund. Math., vol. 27 (1936) p. 293, problème de M. Sierpiński.
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set a almost includes the set b. This is a well studied cardinal char-
acteristic which while not provably equal to the continuum it has this
maximal value under many standard assumptions such us, for example,
the Continuum Hypothesis. One of its most useful formulation of this
cardinal characteristic of the continuum is that it is exactly equal to
the Baire-category number for the class of compact separable spaces.
More precisely, p is the minimal cardinality of a family of dense open
subsets of some separable compact Hausdorff space with empty inter-
section (see [1]). We shall use below the dual form of this formulation
of p.

2. Two variables

Note that when proving Theorem 1.1, without loosing generality, we
can replace the reals with the Cantor set 2N. Thus, if we identify 2N

with the power-set of N in the natural way, the irrationals correspond
to the collection of infinite subsets of N. Let us first show that there is
a sequence Fn : 2N → 2 of continuous {0, 1}-valued functions universal
in this way for functions G : X2 → 2 defined on sets of irrationals of
size at most p. In this case it will also be convenient to identify 2N

with its cube 2N × 2N × 2N in some natural way so that a given x ∈ 2N

gets its three coordinates (x)0, (x)1 and (x)2. For a given integer n, we
define Fn : (2N)2 → 2 by setting

Fn(x, y) =

{
1 if max((x)1 ∩ {0, 1, ..., n}) ∈ (y)2,

0 otherwise.

Clearly, this defines a continuous function from (2N)2 into 2 = {0, 1}.
Let us show that the sequence Fn is universal for mappings G : X2 → 2
with domains X ⊆ 2N \ Q of cardinality at most p.2 Given such a
mapping G : X2 → 2, we apply Theorem 6.4 of [3] and find a sequence
(xa, ya) (a ∈ X) of pairs of infinite and co-infinite subsets of N such
that

(a) G(a, b) = 1 implies xa ⊆∗ yb, and
(b) G(a, b) = 0 implies xa ⊆∗ N \ yb.

Then it is readily seen that h : X → 2N × 2N × 2N defined by h(a) =
(a, xa, ya) is the required map satisfying the conclusion

G(a, b) = limn→∞ Fn(h(a), h(b))

for all (a, b) ∈ X2.

2In this context, by 2N\Q, we denote the set of all x ∈ 2N that are not eventually
constant.
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Now we treat the general case of finding a sequence Fn : R2 → R
of continuous functions that codes an arbitrary mapping G : X2 → R
defined on a set of reals of size at most p.Again we work with the Cantor
set 2N instead of the set of reals. However we shall now identify 2N with
its infinite power (2N)N and so every x ∈ 2N decomposes naturally as
a sequence (x)n of its coordinates. We shall again need to identify 2N

with the power-set of N and in order to simplify the notation and avoid
the confusion, for an infinite subset x of N and an integer n, we let

x[n] = max(x ∩ {0, 1, ..., n}),
where we set max(∅) = 0. This way we make the distinction with the
notation x(n) which is the value of the characteristic function at n, i.e.,
x(n) = 1 iff n ∈ x. For an integer n define Fn : (2N)2 → 2N by setting

Fn(x, y)(k) =

{
1 if k ≤ n and (x)2k+1[n] ∈ (y)2k+2,

0 otherwise.

Note that this indeed defines a continuous function from (2N)2 into
2N. We need to show that the sequence Fn of continuous functions is
universal for all mappings G : X2 → R defined on sets X of reals of
cardinality p. Clearly, we may assume that X is a subset of 2N \Q and
that the range of G is 2N rather than R. To this end we apply the above
argument to each of the coordinate functions Gk : X2 → 2 defined by
Gk(x, y) = G(x, y)(k) getting the sequences (xk

a, y
k
a) (a ∈ X) (k ∈ N)

of pairs of infinite and co-infinite subsets of N such that for all k ∈ N
and (a, b) ∈ X2,

(c) Gk(a, b) = 1 implies xk
a ⊆∗ yk

b , and
(d) Gk(a, b) = 0 implies xk

a ⊆∗ N \ yk
b .

Finally, let h : X → (2N)N be defined by

h(a) = (a, x0
a, y

0
a, x

1
a, y

1
a, ...., x

k
a, y

k
a , ....).

We again leave to the reader the simple checking that

G(a, b) = limn→∞ Fn(h(a), h(b))

for all (a, b) ∈ X2.

2.1 Remark. Note that in general we can’t say much about the nature
of the mapping h since the setX might have more that continuum many
maps of the form G : X2 → R.

3. Higher dimensions

In this section we show how a higher dimensional version of the
coding designed above gives us the following more general result.
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3.1 Theorem. For ever positive integer k there is a sequence

Fn : Rk → R
of continuous functions such that for every set X of reals of size at
most p and every function

G : Xk → R
there is a one-to-one map h : R→ R such that for all (x1, ..., xk) ∈ Xk,

G(x1, ..., xk) = limn→∞ Fn(h(x1), ..., h(xk)).

We again concentrate first on the case of representing {0, 1}-valued
functions G : Xk → 2 and we work with the Cantor space 2N instead
of R. We shall use the following variation of the coding of [3] which is
proved along similar lines.

3.2 Lemma. For every set X of size at most p every positive integer
k and every G : Xk → 2 there exist a sequence ya (a ∈ X) of infinite
subsets of N and a sequence (x1

a, ..., x
k
a) (a ∈ X) of k-tuples of infinite

subsets of N such that G(a1, ..., ak) = 1 if and only if

(1) (∃1 ≤ i ≤ k)(∀∞n)|(
⋂k

j=1 x
j
aj

) ∩ {0, ..., n}| ≥ |yai
∩ {0, ..., n}|.

Proof. For the convenience of reader we sketch the proof. In fact, we
shall prove the symmetric version of the result, i.e., we shall first show
how to code mappings of the form G : [X]k → 2 defined on the family
[X]k of all k-element subsets of X rather than on the power Xk. We fix a
well-ordering <w of X such that for all b ∈ X, the set X(b) = {a ∈ X :
a <w b} has cardinality < p. We shall first select a sequence xa (a ∈ X)
of infinite subsets of N such that for every s ∈ [X]k the set xs :=

⋂
a∈s xa

is infinite if and only if G(s) = 1. When this is done, for each b ∈ X,
we choose an infinite subset yb of N whose enumeration function grows
much faster than the enumeration function of any infinite set of the
form

⋂
a∈t xa for t a finite subset of X(b) ∪ {b}. In particular, we will

have that for s ∈ [X]k,

G(s) = 1 iff (∀∞n) |xs ∩ {0, ..., n}| ≥ min{|ya ∩ {0, ..., n}| : a ∈ s}.
The sequence xa (a ∈ X) is selected by recursion on the well-ordering
<w . The extra inductive hypothesis at a given stage b ∈ X is that
xp \

⋃
a∈q xa is infinite for every pair p and q of disjoint finite subsets of

X(b) such that |p| < k. This extra inductive hypothesis guarantees (via
the natural σ-centered poset P of finite approximations) the existence
of an infinite subset xb that is almost disjoint from every element of
the family

{xs : s ∈ [X(b)]k−1, G(s ∪ {b}) = 0}
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and that will, if sufficiently generic, also have infinite intersection with
every element of the family

{xs : s ∈ [X(b)]k−1, G(s ∪ {b}) = 1}.
Moreover, if sufficiently generic, the set xb will also have infinite inter-
section with every member of the family

{xp \
⋃
a∈q

xa : p ∈ [X(b)]<k−1, q ∈ [X]<ω, p ∩ q = ∅}

and will not almost include any element of the family

{xp \
⋃
a∈q

xa : p ∈ [X(b)]<k, q ∈ [X]<ω, p ∩ q = ∅}.

Since ‘sufficiently generic’ requires meeting only < p dense open sets
of the σ-centered poset P , Bell’s formulation of the number p (see [1]),
gives us a choice of xb that will preserve all our inductive hypotheses.

To deduce the general case from the symmetric one, consider an
arbitrary G : Xk → 2. Let X̄ = X × {1, ..., k} and choose a mapping
Ḡ : [X̄]k → 2 such that for all (a1, ..., ak) ∈ Xk,

Ḡ({(a1, 1), ..., (ak, k)}) = G(a1, ..., ak).

Obtain sequences x̄a (a ∈ X̄) and ȳa (a ∈ X̄) of infinite subsets of N
such that for all s ∈ [X̄]k, we have that Ḡ(s) = 1 if and only if

(∃a ∈ s)(∀∞n) |x̄s ∩ {0, ..., n}| ≥ |ȳa ∩ {0, ..., n}|.
Then if for a ∈ X and 1 ≤ i ≤ k, we set xi

a = x̄(a,i), and if we set ya to
be any infinite subset of N whose enumeration function is faster than
the enumeration functions of each of the sets ȳ(a,i) (1 ≤ i ≤ k), we will
obtain sequences satisfying the conclusion of the lemma.

�

In order to define the corresponding sequence Fn : (2N)k → 2 of
continuous functions we identify 2N with (2N)k+1 in the natural way
so that for a given x ∈ 2N and i ≤ k we have well defined coordinate
(x)i. Thus, for a given integer n, we define Fn : (2N)k → 2 by setting
Fn(x1, ..., xk) = 1 if and only if there is some j ∈ {1, 2, ..., k} such that

the intersection
⋂k

i=1(xi)i has at least as many points below n as the set
(xj)0. Clearly, each Fn is a continuous function on (2N)k. Let us show
that this sequence captures an arbitrary G : Xk → 2 where X is a set
of reals of size at most p. We apply the coding of Lemma 3.2 and get a
sequence ya (a ∈ X) of infinite subsets of N and a sequence (x1

a, ..., x
k
a)

(a ∈ X) of k-tuples of infinite subsets of N such that G(a1, ...., ak) = 1
if and only if the inequality (1) is satisfied for all but finitely many n.
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We may assume a 7→ ya is a one-to-one mapping on X. Recalling our
identification of 2N and (2N)k+1 we define h : X → 2N as follows

(h(a))0 = ya and (h(a))i = xi
a for i = 1, ..., k.

It follows from the equation (1) and our definition of Fn that

G(a1, ..., ak) = limn→∞ Fn(h(a1), ..., h(ak))

for all (a1, ..., ak) ∈ Xk. To treat the general case we work again on
the Cantor space and identify 2N with its infinite power (2N)N so that
every x ∈ 2N decomposes naturally as a sequence (x)n of its coordinates.
Note that given an arbitrary G : Xk → 2N defined on a set of reals X
of size at most p, we can apply the coding of Lemma 3.2 to each of
the coordinate functions Gm(a1, ..., ak) = G(a1, ..., ak)(m) and obtain a
sequence ya (a ∈ X) of infinite subsets of N and a sequence (x`

a, ..., x
`
a)

(a ∈ X) (` ∈ N+) such that for all (a1, ..., ak) ∈ Xk and all m ∈ N, we
have that Gm(a1, ...., ak) = 1 if and only if

(2) |(
⋂k

i=1 x
km+i
ai

) ∩ {0, ..., n}| ≥ min{|yai
∩ {0, ..., n}| : 1 ≤ i ≤ k}

for all but finitely many n. Again we assume that a 7→ ya is a one-to-one
mapping on X.

Having in mind the identification of 2N and (2N)N, for each integer n
we define Fn : (2N)k → 2N by letting Fn(x1, ..., xk)(m) = 1 if and only

if there is some j ∈ {1, 2, ..., k} such that the intersection
⋂k

i=1(xi)km+i

has at least as many points below n as the set (xj)0. Clearly, each Fn

is a continuous function on (2N)k. To see that the sequence Fn is as
required let G : Xk → 2N be an arbitrary function defined on a set of
reals X of size at most p. Apply the above coding procedure and obtain
ya (a ∈ X) and (x`

a, ..., x
`
a) (a ∈ X) (` ∈ N+) satisfying the inequality

(2) for all m and all but finitely many n. Define h : X → 2N as follows

(h(a))0 = ya and (h(a))` = x`
a for ` ∈ N+.

Then it readily follows that

G(a1, ..., ak) = limn→∞ Fn(h(a1), ..., h(ak))

for all (a1, ..., ak) ∈ Xk.
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