
WALKS ON COUNTABLE ORDINALS AND
SELECTIVE ULTRAFILTERS

STEVO TODORCEVIC

Abstract. In our previous work we have introduced filters on the
set of countable ordinals as invariants to standard characteristics
of walks in this domain. In this note we examine their projections
to the set of natural numbers.

0. Introduction

Recall that an ordinal β in the Von Neumann sense is identified with
the set {α : α < β} of smaller ordinals. Thus,

0 = ∅, 1 = {0}, 2 = {0, 1}, ..., ω = {0, 1, 2, ...}.

This abstraction of the notion of a natural number (which is nothing
else than a finite ordinal) has found many uses in mathematics. We
shall address here a particularly useful line of research that tries to
relate an arbitrary countable ordinal α with the set ω of natural num-
bers in some uniform and coherent way. Recall that the Cantor normal
form for an ordinal α is the expression

α = n1ω
α1 + n2ω

α2 + · · ·+ nkω
αk ,

where α1 > α2 > · · · > αk ≥ 0 are ordinals and where n1, n2, ..., nk are
natural numbers. The form is an abstraction of the standard notion of
decimal representation of rational numbers and is made for the purpose
to reduce questions about ordinals to questions about natural numbers
and vice versa. This normal form is particularly useful for ordinals in
the class

ε0 = {α : α < ωα}
since in this case the ordinals α1 > α2 > · · · > αk appearing in
the Cantor normal form of α are all smaller than α which greatly
facilitate recursive definitions and constructions. For example, this
is directly responsible for the fact that the normal form is giving us,
for each limit ordinal α < ε0, a canonical choice for a fundamental
sequence Cα = {cα(n) : n < ω} for α, an increasing sequence of smaller
ordinals converging to α. Here we need to extend this choice to all
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other countable ordinals α. Thus, for the rest of this note, we fix for
each countable ordinal α, a sequence

Cα = {cα(n) : n < ω} ⊆ α

such that cα+1(n) = α for all n and such that cα(n) < cα(n + 1)
for all n and α = limn→∞cα(n) when α is limit. To any such choice
of fundamental sequences Cα we associate the notion of a walk from
a given countable ordinal β to a lower ordinal α, a finite decreasing
sequence

β = β0 y β1 y · · ·y βk = α

of countable ordinals such that for all i < k,

βi+1 = cβi
(ni) where ni = min{n : cβi

(n) ≥ α}.

The integer k, denoted usually by ρ2(α, β), is the length of the walk
and can be formally defined by the recursive formula

ρ2(α, β) = ρ2(α, cβ(n(α, β))) + 1

with the boundary value ρ2(α, α) = 0, where

n(α, β) = min{n : cβ(n) ≥ α},

i.e where β y cβ(n(α, β)) is the first step of the walk from β to α. The
finite sequence ρ0(α, β) = 〈n0, n1, ..., nk−1〉 of integers is the full code of
the walk and the corresponding function

ρ0 : [ω1]2 → ω<ω

is an object from which one can draw many canonical structures (see
[1], [2], [4], [6]). Its formal recursive definition is

ρ0(α, β) = 〈n(α, β)〉_ρ0(α, cβ(n(α, β)))

with the boundary value ρ0(α, α) = ∅. The number

ρ1(α, β) = max{n0, n1, ..., nk−1}

is the maximal weight of the walk and the corresponding function

ρ1 : [ω1]2 → ω

is another such canonical object. It is recursively given by the formula

ρ1(α, β) = max

{
n(α, β),

ρ1(α, cβ(n(α, β)))

with the boundary value ρ1(α, α) = 0. As indicated above there are
other characteristics of the walk but we mention only two more because
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of their relevance to the discussion below. The first of these is the
characteristic

ρ3 : [ω1]2 → {0, 1}
determined by setting

ρ3(α, β) = 1 if and only if nk−1 = max{n0, n1, ..., nk−1},
i.e. whenever the last step βk−1 y βk = α realizes the maximal weight.
Its recursive definition is given by the formula

ρ3(α, β) =

{
ρ3(α, cβ(n(α, β))) if n(α, β) ≤ ρ1(α, cβ(n(α, β))),

0 if n(α, β) > ρ1(α, cβ(n(α, β))),

with the boundary values ρ3(α, α) = 0 and ρ3(α, β) = 1 whenever
α ∈ Cβ. The last one that we include in our discussion here is the
characteristic ρ : [ω1]2 → ω defined by the recursive formula

ρ(α, β) = max


n(α, β),

ρ(α, cβ(n(α, β))),

ρ(cβ(n), α) n < n(α, β)

Each of these characteristics a = ρ, ρ0, ρ1, ρ2, ρ3 is giving us the corre-
sponding distance function, a function ∆a : [ω1]2 → ω1 ∪ {∞} defined
by

∆a(α, β) = min{ξ < α : a(ξ, α) 6= a(ξ, β)}1

which has a strong Lipschitz properties quite useful in applications.
For example, in [5] we showed that the strong Lipschitz properties are
responsible for the fact that the family

{∆a[X] : X ⊆ ω1 and X is uncountable}
generates a uniform filter Ua on ω1, where for X ⊆ ω1, we set

∆a[X] = {∆a(α, β) : α, β ∈ X,α < β and ∆a(α, β) 6=∞}.
This turns out to be a quite important invariant that captures many
properties of a. Using the Baire category assumption m > ω1, we have
shown in [5] that in each of the five cases a = ρ, ρ0, ρ1, ρ2, ρ3 (and
more), the filter Ua is in fact maximal, i.e. an ultrafilter on the set
ω1 of countable ordinals. The purpose of this note is to examine the
corresponding Rudin-Keisler projections of these ultrafilters on the set
ω of natural numbers, i.e. ultrafilters of the form

f [Ua] = {X ⊆ ω : f−1(X) ∈ Ua},
1Here we let min∅ =∞. It will also be conventient to put that ∆a(α, α) =∞.
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for some f : ω1 → ω. Of course we shall be interested in such functions
fa : ω1 → ω for which the corresponding ultrafilter

Va = fa[Ua]

is not principal and we will show that, modulo a permutation of the
index-set ω, the non-principal ultrafilter Va = fa[Ua] does not depend
on the choice of the mapping fa : ω1 → ω. Since ω1 cannot carry a
countably complete non-principal ultrafilter such an fa : ω1 → ω exists
for every of the five characteristics a = ρ, ρ0, ρ1, ρ2, ρ3 of the walk on
ω1 discussed above. In some cases however there is a natural choice
for such a map fa. For example, in case of the characteristic a = ρ3

the following map dΛ : ω1 → ω transfers the ultrafilter Ua to a non
principal ultrafilter Va = dΛ[Ua] on ω,

dΛ(α) = |α− λ(α)| where λ(α) = max{λ : λ ≤ α, λ limit}.2

This however requires the following assumptions on the choice of fun-
damental sequences Cα :

(1) cα(n) = λ+ n+ 1 whenever α = λ+ ω for some λ ∈ Λ ∪ {0},
(2) cα(n) = λn + n + 1 for some increasing sequence λn of limit

ordinals converging to α whenever α is a limit of limit ordinals.

One of the results that we prove in this note is that under the same
Baire category assumption m > ω1, the projections Va = dΛ[Ua] is a
selective ultrafilter on ω. Recall that an ultrafilter V on ω is selective if
for every map h : ω → ω, either h is constant on some set X in V or h is
one-to-one on some set X in V . This is an important class of ultrafilters
with uses in other areas of mathematics such as, for example, Ramsey
theory (see [7]). The Baire category assumption m > ω1 seems first of
its kind that guarantees their existence.

1. Coherent and Lipschitz Mappings

By a coherent mapping in this note we mean a mapping a : [ω1]2 → ω
such that:

(1) {ξ < α : a(ξ, α) 6= a(ξ, β)} is a finite set for all α < β < ω1,
(2) for every uncountable X ⊆ ω1 there is uncountable X0 ⊆ X

such that ∆a(α, β) 6=∞ for all α, β ∈ X0, α < β.

It follows in particular that the corresponding (partial) distance func-
tion ∆a : [ω1]2 → ω1 has a highly Lipschitz behavior in the following
precise sense.

2Thus, dΛ(α) is simply the distance from the ordinal α to the set Λ of countable
limit ordinals.
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1.1 Lemma ([5]). For every coherent mapping a : [ω1]2 → ω, every
positive integer n, and every uncountable family F of pairwise disjoint
n-element subsets of ω1 there is an uncountable F0 ⊆ F such that for
all s, t ∈ F0, s 6= t and all i, j < n, ∆a(s(i), t(i)) = ∆a(s(j), t(j)) 6=∞.3

1.2 Corollary ([5]). If a : [ω1]2 → ω is a coherent mapping then for
every pair X and Y of uncountable subsets of ω1 there is an uncountable
subset Z of X such that ∆a[Z] ⊆ ∆a[X] ∩∆a[Y ].

It turns out that these Lipschitz properties characterize coherent map-
pings in the following precise sense.

1.3 Lemma ([5]). The following are equivalent assuming m > ω1 :

(1) a : [ω1]2 → ω is a coherent mapping.
(2) For every uncountable family F of pairwise disjoint 2-element

subsets of ω1 there is an uncountable F0 ⊆ F such that for all
s, t ∈ F0, s 6= t, ∆a(s(0), t(0)) = ∆a(s(1), t(1)) 6=∞.

We call maps a : [ω1]2 → ω satisfying the condition (2) of Lemma 1.3
Lipschitz maps.

1.4 Lemma ([6]). The maps ρ, ρ1 and ρ3 are coherent.

1.5 Lemma. The maps ρ0 and ρ2 are Lipschitz.

Proof. Let F be a given uncountable family of pairwise disjoint un-
ordered pairs of countable ordinals. We shall use another characteris-
tic of walks on ω1, the full lower trace F : [ω1]2 → [ω1]<ω given by the
recursive formula

F (α, β) = F (α, cβ(n(α, β))) ∪
⋃
n<n(α,β) F (cβ(n), α)

with the boundary value F (α, α) = {α}. We shall need only the fol-
lowing property of the full lower trace, where α ≤ β ≤ γ are three
countable ordinals (see [6], Lemma 2.1.9):

(a) ρ0(α, β) = ρ0(min(F (β, γ) \ α), β)_ρ0(α,min(F (β, γ) \ α)),
(b) ρ0(α, γ) = ρ0(min(F (β, γ) \ α), γ)_ρ0(α,min(F (β, γ) \ α)).

In other words, the walk from β to α and the walk from γ to α both pass
through the point ξ = min(F (β, γ) \ α) and after that they coincide
with the walk from ξ to α.

Back to our uncountable family F of pairwise disjoint unordered
pairs. For t ∈ F , let F (t) = F (t(0), t(1)). Applying the ∆-system
lemma and going to an uncountable subfamily, we may assume that
there is a finite set F ⊆ ω1 such that

F (s) ∩ F (t) = F for all s, t ∈ F , s 6= t.

3For an n-element set t ⊆ ω1, we let t(i) (i < n) be its increasing enumeration
according to the natural order of ω1.
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Let ξ̄ = max(F )+1, and for t ∈ F , let ξ(t) = F (t)\ ξ̄. Refining F even
further we may assume that for some fixed integers k(0) and k(1) and
all t ∈ F ,

k(i) = ρ2(ξ(t), t(i)) for all i < 2.

Relying on the fact that the trees T (ρ0) and T (ρ2) associated to the
mappings ρ0 and ρ2, respectively, can’t contain an uncountable subset
with no uncountable antichain (see [6], Chapter 2), we can find un-
countable F0 ⊆ F such that the following two conditions hold for both
a = ρ0 and a = ρ2 :

(c) a(ξ, s(i)) = a(ξ, t(i)) for all s, t ∈ F0, ξ < ξ̄ and i < 2,
(d) for all s, t ∈ F0 and i < 2 there is ξ < min{ξ(s), ξ(t)} such that

a(ξ, s(i)) 6= a(ξ, t(i)).

From this and the two properties of the full lower trace listed above, it
follows that for all s, t ∈ F0, s 6= t and a = ρ0, ρ2,

∆a(s(0), t(0)) = min{ξ : a(ξ, ξ(s)) 6= a(ξ, ξ(t))} = ∆a(s(1), t(1)).

This finishes the proof. �

It follows that the characteristics ρ, ρ0, ρ1, ρ2 and ρ3 of the walks on ω1

discussed above are all either coherent or Lipschitz or both. Since we
have Lemma 1.3, we shall not make the distinction between the notions
of coherent and Lipschitz below and just use the term coherent all the
time. Following [5] to any coherent mapping a : [ω1]2 → ω we attach
the following family of subsets of ω1,

Ua = {Y ⊆ ω1 : (∃X ⊆ ω1) [X is uncountable and ∆a[X] ⊆ Y ]}.
1.6 Lemma ([5]). The family Ua is a uniform filter on ω1, for every
coherent mapping a : [ω1]2 → ω.

Proof. This is an immediate consequence of Corollary 1.2. �

Recall that m is the minimal cardinality of a family of nowhere dense
sets that could cover a compact space satisfying the countable chain
condition.

1.7 Lemma ([5]). If m > ω1 then for every coherent a : [ω1]2 → ω the
family Ua is a uniform ultrafilter on ω1.

1.8 Lemma. Let a : [ω1]2 → ω be a coherent mapping, let f : ω1 → ω,
and assume m > ω1. Then f [Ua] is a selective ultrafilter on ω.

Proof. We may assume that V = f [Ua] is non-principal since clearly
principal ultrafilters are selective. To check the selectivity of V , let
h : ω → ω be a given mapping which is not constant on any set
belonging to V . We need to find M ∈ V such that h � M is one-to-one.
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This will be done by constructing an uncountable X ⊆ ω1 such that h
is one-to-one on the set

Mf [X] = {f(∆a(α, β)) : α, β ∈ X,α < β, and ∆a(α, β) 6=∞}.
Clearly, any such a set Mf [X] belongs to the ultrafilter V . To this end,
let P be the collection of all finite subsets p of ω1 such that h is one to
one on the set

Mf [p] = {f(∆a(α, β)) : α, β ∈ p, α < β, and ∆a(α, β) 6=∞}.
We consider P as a partially ordered set ordered by inclusion. Note
that if P satisfies the countable chain condition our Baire category
assumption m > ω1 would give us an uncountable F ⊆ P such that
p ∪ q ∈ P for all p, q ∈ F . Taking X =

⋃
F gives us an uncountable

subset of ω1 such that h is one-to-one on the corresponding set Mf [X]
which, as we know, belongs to the ultrafilter V . To check the countable
chain condition of P let X be an uncountable subset of P . Refining
X we may assume that X consists of n-element sets for some fixed
positive integer n. By Lemma 1.1 and by the ∆-system lemma, we find
uncountable X0 ⊆ X and an integer n0 < n such that for all p, q ∈ X0

such that p 6= q, we have that,

(3) p(i) = q(i) for i < n0 and p(i) 6= q(i) for n0 ≤ i < n,
(4) ∆a(p(i), q(i)) = ∆a(p(j), q(j)) for n0 ≤ i, j < n.

For p, q ∈ X0, p 6= q, let ∆a(p, q) denote the constant value of the
sequence ∆a(p(i), q(i)) (n0 ≤ i < n). Using the second property of the
coherent mapping a and another ∆-system argument we arrive at an
uncountable set X1 ⊆ X0 such that for all p, q ∈ X1, p 6= q,

∆a[p ∪ q] = ∆a[p] ∪∆a[q] ∪ {∆a(p, q)}.
Find an integer k and uncountable X2 ⊆ X1 such that for all p, q ∈ X2,

f [∆a(p)] = f [∆a(p)] ⊆ {0, 1, ..., k}.
Now, find an integer ` such that h(i) ≤ ` for all i ≤ k. Let Z =
f−1({0, 1, ..., `}). Then by our assumption about f the set Z does not
belong to Ua. By Corollary 1.2, there is an uncountable X3 ⊆ X2 such
that

Z ∩ {∆a(p, q) : p, q ∈ X3, p 6= q} = ∅.
It follows that for arbitrary p, q ∈ X3, p 6= q the function h is one-to-one
on the set,

f [∆a(p ∪ q)] = f [∆a[p]] ∪ f [∆a[q]] ∪ {f(∆a(p, q))}.
So, in particular p∪ q ∈ P for all p, q ∈ X3. This finishes the proof. �

1.9 Lemma. Λ + k 6∈ Uρ3 for all k < ω.
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Proof. For a countable ordinal α, set

supp(ρ3)α = {ξ < α : ρ3(ξ, α) 6= 0}.

Then by [6]; Lemma 2.4.9, for all k < ω and α < ω1, the set

Sk(α) = (Λ + k) ∩ supp(ρ3)α

is finite. Fix an integer k. We need to find an uncountable set X ⊆ ω1

such that ∆ρ3 [X] ∩ (Λ + k) = ∅. Toward this end, we apply the ∆-
system lemma to the family Sk(α) (α < ω1) of finite sets and obtain
an uncountable X ⊆ ω1 and a finite set S such that

Sk(α) ∩ Sk(β) = S for all α, β ∈ X,α 6= β.

We also assume that if ξ̄ = max(S) + 1, then

ρ3(ξ, α) = ρ3(ξ, β) for all α, β ∈ X and ξ < ξ̄.

It follows that if for some uncountable Y ⊆ X, we have that Sk(α) = S
for all α ∈ Y, then ∆ρ3 [Y ] is a member of the filter Uρ3 disjoint from
Λ+k, as required. So we may assume that Sk(α)\S 6= ∅ for all α ∈ X.
So for α ∈ X, we can define

ξ(α) = min(Sk(α) \ S).

Then ξ(α) 6= ξ(β) for α, β ∈ X,α 6= β. So as before, using the fact
that ρ3 is a coherent map, we can go to an uncountable subset X0 of
X such that for all α, β ∈ X0, α 6= β,

ξ̄ < ∆ρ3(α, β) < min{ξ(α), ξ(β)},

So, in particular ∆ρ3(α, β) 6∈ (Λ+k) for all α, β ∈ X0, α 6= β. It follows
that ∆ρ3 [X0] is a member of Uρ3 disjoint from Λ + k. This finishes the
proof. �

Recall, that dΛ : ω1 → ω is the distance function to the set Λ of
countable limit ordinals. Then we have the following consequences of
Lemma 1.9.

1.10 Corollary. The filter Vρ3 = dΛ[Uρ3 ] is non-principal.

Recall that for any of the other four characteristics a = ρ, ρ0, ρ1, ρ2

we can also find a mapping fa : ω1 → ω such that the corresponding
projection Va = fa[Ua] is a non-principal filter on ω. Applying Lemmas
1.7, 1.8 and 1.9 we get the following fact.

1.11 Corollary. If m > ω1, the filters Vρ, Vρ0 , Vρ1 , Vρ2 , and Vρ3 are
all non-principal selective ultrafilters.



WALKS ON COUNTABLE ORDINALS AND SELECTIVE ULTRAFILTERS 9

1.12 Remark. It is interesting to compare this with [3] which contains
a description of a rapid filter4 on ω rather than a selective ultrafilter.
While the notion of a rapid filter is considerably weaker than the notion
of a selective ultrafilter, [3] uses a weaker Baire category assumption
than m > ω1 (the assumption that the real line cannot be covered by a
family Nα (α < ω1) of measure zero sets) to prove the rapidity of the
filter. Assuming that that there are uncountably many real numbers
that are relatively constructible (in the sense of Gödel) from a single
real, both the rapid filter of [3] and our selective ultrafilter Vρ3 have
descriptions that belong to the third level of the projective hierarchy.

2. Metric Equivalence of Coherent Mappings

Two coherent mappings a : [ω1]2 → ω and b : [ω1]2 → ω are metri-
cally equivalent if there is an uncountable X ⊆ ω1 such that

(i) ∆a(α, β) 6=∞ and ∆b(α, β) 6=∞ for all α, β ∈ X with α < β,
(ii) for every quadruple α, β, γ, δ ∈ X such that α < β and γ < δ,

∆a(α, β) > ∆a(γ, δ) if and only if ∆b(α, β) > ∆b(γ, δ).

Note that by Lemma 1.1, if two coherent mappings a and b are met-
rically equivalent then for every uncountable Y ⊆ ω1 there is an un-
countable X ⊆ Y witnessing the equivalence.

2.1 Remark. It turns out that under a slightly stronger Baire category
assumption than m > ω1 (denoted below as mm > ω1), every pair of
coherent mappings a : [ω1]2 → ω and b : [ω1]2 → ω are metrically
equivalent (see [6]; Lemma 4.3.4). Our interest here in this notion is
based on the following fact which relates the metric equivalence with
the Rudin-Keisler equivalence of the corresponding filters Ua (see [6];
pp.117-118).

2.2 Lemma. If two coherent mappings a : [ω1]2 → ω and b : [ω1]2 → ω
are metrically equivalent then the corresponding uniform filters Ua and
Ub are Rudin-Keisler equivalent, i.e. there is a bijection f : ω1 → ω1

such that f [Ua] = Ub.

Proof. Fix an uncountable set X ⊆ ω1 witnessing the metric equiv-
alence of a and b. It suffices to find a bijection f : ∆a[X] → ∆b[X]
which maps a set in Ua to a set in Ub. Consider ξ ∈ ∆a[X]. Choose
α, β ∈ X,α 6= β such that ξ = ∆a(α, β). Let f(ξ) = ∆b(α, β). Note
that this is a well-defined map, i.e that f(ξ) does not depend on the

4Recall that a rapid filter on ω is a filter F with the property that for every
strictly increasing sequence (nk) of natural numbers there is X in F such that
|X ∩ {0, 1, ..., nk}| ≤ k for all k. Clearly every selective ultrafilter is rapid.
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choice of α, β ∈ X,α 6= β such that ξ = ∆a(α, β). Since in this defini-
tion a and b play symmetric roles, we also have a well-defined inverse
mapping g : ∆b[X]→ ∆a[X]. So in particular f is one-to-one (and, in
fact, strictly increasing). Choose a generator ∆a[Y ] of Ua. We need to
show that the image f [∆a[Y ]] belongs to Ub. By Corollary 1.2, shrink-
ing Y, we may assume that it is a subset of X. However, if this is true,
then according to the definition of f, we have that

f [∆a[Y ]] = ∆b[Y ]

which is clearly a member of Ub. This finishes the proof. �

The purpose of this section is to examine the Rudin-Keisler pro-
jections to ω of the uniform filters associated to metrically equivalent
coherent mappings.

2.3 Lemma. Suppose a : [ω1]2 → ω and b : [ω1]2 → ω are two
metrically equivalent mappings and that mappings f : ω1 → ω and
g : ω1 → ω map Ua and Ub to two non-principal filters f [Ua] and g[Ub]
on ω. Then if m > ω1, the selective ultrafilters f [Ua] and g[Ub] are
equivalent.

Proof. Fix uncountable X ⊆ ω1 witnessing the metric equivalence of a
and b. Let P be the collection of all pairs p = (Xp, hp), where

(a) Xp is a finite subset of X,
(b) hp is a finite one-to-one map,
(c) Dom(hp) = {f(∆a(α, β)) : α, β ∈ Xp},
(d) Rang(hp) = {g(∆b(α, β)) : α, β ∈ Xp},
(e) hp(f(∆a(α, β))) = g(∆b(α, β)) for α, β ∈ Xp, α < β.

We order P by coordinatewise inclusions. Note that if we show that
P satisfies the countable chain condition then the Baire category as-
sumption m > ω1 applied to P gives us an uncountable set X0 ⊆ X
and a one-to-one map

h : {f(∆a(α, β)) : α, β ∈ X0} → {g(∆b(α, β)) : α, β ∈ X0}
such that h(f(∆a(α, β))) = g(∆b(α, β)) for all α, β ∈ X0, α < β. To
see that h is a witness for the Rudin-Keisler equivalence between the
selective ultrafilters f [Ua] and g[Ub], note that a typical generator of the
ultrafilter f [Ua] is a set of the form f [∆a[Y ]], where Y is an uncountable
subset of X0. Our mapping h maps this set to the set g[∆b[Y ]] which
is a typical generator of the selective ultrafilter f [Ub]. So, it remains
to show that P satisfies the countable chain condition. Let X be an
uncountable subset of P . Refining X we may assume that for some
fixed set R,

Xp ∩Xq = R for all p, q ∈ X , p 6= q.
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Refining X if necessary we may assume that for some fixed positive
integers n and k and some fixed mapping h we have that

(f) |Yp| = n and hp = h for all p ∈ X ,
(g) Dom(h),Rang(h) ⊆ {0, 1, ..., k}.

Let U = f−1{0, 1, ..., k} and V = g−1{0, 1, ..., k} and for p ∈ X , let
Yp = Xp \ R. Note that by our assumption, U 6∈ Ua and V 6∈ Ub.
Applying Lemma 1.1, we find uncountable X0 ⊆ X such that for all
p, q ∈ X0, p 6= q and all i, j < n,

∆a(Yp(i), Yq(i)) = ∆a(Yp(j), Yq(j)),

∆b(Yp(i), Yq(i)) = ∆b(Yp(j), Yq(j)).

For p, q ∈ X0, p 6= q, let ∆a(Yp, Yq) denote the constant value of the
sequence ∆a(Yp(i), Yq(i)) (i < n) and let ∆b(Yp, Yq) denote the con-
stant value of ∆b(Yp(i), Yq(i)) (i < n). By Corollary 1.2, we can find
uncountable X1 ⊆ X0 such that

Y ∩ {∆a(Yp, Yq) : p, q ∈ X1, p 6= q} = ∅,

Z ∩ {∆b(Yp, Yq) : p, q ∈ X1, p 6= q} = ∅.
Now we find an uncountable X2 ⊆ X1 such that for all p, q ∈ X2, p 6= q,

∆a[Xp ∪Xq] = ∆a[Xp] ∪∆a[Xq] ∪ {∆a(Yp, Yq)},

∆b[Xp ∪Xq] = ∆b[Xp] ∪∆b[Xq] ∪ {∆b(Yp, Yq)}.
Fix p, q ∈ X2, p 6= q. Let r = (Xr, hr), where Xr = Xp ∪Xr and where
the mapping hr is determined as follows. Let

Dom(hr) = f [∆a[Xp ∪Xq]] = f [∆a[Xp]] ∪ {f(∆a(Yp, Yq))},

Rang(hr) = g[∆b[Xp ∪Xq]] = g[∆b[Xp]] ∪ {g(∆b(Yp, Yq))}.
Let hr � f [∆a[Xp]] = hp(= hq), and let

hr(f(∆a(Yp, Yq))) = g(∆b(Yp, Yq)).

Note that such a defined map hr is one-to one and that it extends hp
and hq. So, this gives us the desired element r of P which extends
both p and q finishing the proof that P satisfies the countable chain
condition and the proof of the Lemma. �

2.4 Corollary. If mm > ω1, there is only one, up to a permutation of
ω, non-principal ultrafilter of the form f [Ua], where a : [ω1]2 → ω is a
coherent mapping and where f : ω1 → ω.
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2.5 Remark. It follows in particular that, modulo the Baire category
assumption, the five selective ultrafilters Va for a = ρ, ρ0, ρ1, ρ2, ρ3 are
pairwise equivalent. In other words, there is a canonical non-principal
selective ultrafilter on ω that one can attach as invariant to the notion
of walk along a given sequence Cα (α < ω1) of fundamental converging
sequences which, up to a permutation of ω, does not depend on the
choice of the sequence Cα (α < ω1) at all.
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