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I. Coherent Sequences

Stevo Todorcevic

A transfinite sequence Cξ ⊆ ξ (ξ < θ) of sets may have a number of ‘coher-
ence properties’ and the purpose of this chapter is to study some of them,
as well as some of their uses. Here, ‘coherence’ usually means that the Cξ’s
are chosen in some canonical way, beyond the natural requirement that Cξ

be closed and unbounded in ξ for all ξ. For example, choosing a canonical
‘fundamental sequence’ of sets Cξ ⊆ ξ for ξ < ε0 relying on the specific
properties of the Cantor normal form for ordinals below the first ordinal
satisfying the equation x = xx is a basis for a number of important results
in proof theory. In set theory, one is interested in longer sequences as well
and usually has a different perspective in applications, so one is naturally
led to use some other tools beside the Cantor normal form. It turns out that
the sets Cξ can not only be used as ‘ladders’ for climbing up in recursive
constructions but also as tools for ‘walking’ from an ordinal to a smaller
one. This notion of a ‘walk’ and the corresponding ‘distance functions’ con-
stitute the main body of study in this chapter. We show that the resulting
‘metric theory of ordinals’ not only provides a unified approach to a num-
ber of classical problems in set theory but also has its own intrinsic interest.
For example, from this theory one learns that the triangle inequality of an
ultrametric

e(α, γ) ≤ max{e(α, β), e(β, γ)}

has three versions, depending on the natural ordering between the ordi-
nals α, β and γ, that are of a quite different character and are occurring
in quite different places and constructions in set theory. For example, the
most frequent occurrence is the case α < β < γ when the triangle inequal-
ity becomes something that one can call ‘transitivity’ of e. Considerably
more subtle is the case α < γ < β of this inequality. It is this case of
the inequality that captures most of the coherence properties found in this
chapter. Another thing one learns from this theory is the special role of the
first uncountable ordinal in this theory. Any natural coherence requirement
on the sets Cξ (ξ < θ) that one finds in this theory is satisfiable in the case
θ = ω1. The first uncountable cardinal is the only cardinal on which the
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4 I. Coherent Sequences

theory can be carried out without relying on additional axioms of set theory.
The first uncountable cardinal is the place where the theory has its deepest
applications as well as its most important open problems. This special role
can perhaps be explained by the fact that many set-theoretical problems,
especially those coming from other fields of mathematics, are usually con-
cerned only about the duality between the countable and the uncountable
rather than some intricate relationship between two or more uncountable
cardinalities. This is of course not to say that an intricate relationship be-
tween two or more uncountable cardinalities may not be a profitable detour
in the course of solving such a problem. In fact, this is one of the reasons
for our attempt to develop the metric theory of ordinals without restricting
ourselves only to the realm of countable ordinals.

The chapter is organized as a discussion of five basic distance functions
on ordinals, ρ, ρ0, ρ1, ρ2 and ρ3, and the reader may choose to follow the
analysis of any of these functions in various contexts. The distance functions
will naturally lead us to many other derived objects, most prominent of
which is the ‘square-bracket operation’ that gives us a way to transfer the
quantifier ‘for every unbounded set’ to the quantifier ‘for every closed and
unbounded set’. This reduction of quantifiers has proven to be quite useful
in constructions of various mathematical structures, some of which have
been mentioned or reproduced here.

I wish to thank Bernhard König, Piotr Koszmider, Justin Moore and
Christine Härtl for help in the preparation of the manuscript.

1. The Space of Countable Ordinals

This is by far the most interesting space considered in this chapter. There
are many mathematical problems whose combinatorial essence can be refor-
mulated as a problem about ω1, the smallest uncountable structure. What
we mean by ‘structure’ is ω1 together with a system Cα (α < ω1) of funda-
mental sequences, i.e. a system with the following two properties:

(a) Cα+1 = {α},

(b) Cα is an unbounded subset of α of order-type ω, whenever α is a
countable limit ordinal > 0.

Despite its simplicity, this structure can be used to derive virtually all
other known structures that have been defined so far on ω1. There is a nat-
ural recursive way of picking up the fundamental sequences Cα, a recursion
that refers to the Cantor normal form which works well for, say, ordinals
< ε0.1 For longer fundamental sequences one typically relies on some other

1One is tempted to believe that the recursion can be stretched all the way up to ω1

and this is probably the way P.S. Alexandroff found his famous Pressing Down Lemma
(see [1] and [2, appendix]).



1. The Space of Countable Ordinals 5

principles of recursive definition and one typically works with fundamen-
tal sequences with as few extra properties as possible. We shall see that
the following assumption is what is frequently needed and will therefore be
implicitly assumed whenever necessary:

(c) If α is a limit ordinal, then Cα does not contain limit ordinals.

1.1 Definition. A step from a countable ordinal β towards a smaller ordinal
α is the minimal point of Cβ that is ≥ α. The cardinality of the set Cβ ∩α,
or better to say the order-type of this set, is the weight of the step.

1.2 Definition. A walk (or a minimal walk ) from a countable ordinal β to
a smaller ordinal α is the sequence β = β0 > β1 > . . . > βn = α such that
for each i < n, the ordinal βi+1 is the step from βi towards α.

Analysis of this notion leads to several two-place functions on ω1 that
give a rich structure with many applications. So let us describe some of
these functions.

1.3 Definition. The full code of the walk is the function ρ0 : [ω1]2 −→ ω<ω

defined recursively by

ρ0(α, β) = 〈|Cβ ∩ α|〉aρ0(α, min(Cβ \ α)),

where ρ0(α, α) = 0,2 and the symbol a refers to the sequence obtained by
concatenating the one term sequence 〈|Cβ ∩ α|〉 with the already known
finite sequence ρ0(α, min(Cβ \α) of integers. Clearly, knowing ρ0(α, β) and
the ordinal β one can reconstruct the upper trace

Tr(α, β) = {β0, . . . , βn},

remembering that β = β0 > β1 > . . . > βn = α, of the walk from β to α.
The lower trace is defined to be

L(α, β) = {λ0, λ1, . . . , λn−1},

where λi = max(
⋃i

j=0 Cβj
∩ α) for i < n and so λ0 ≤ λ1 ≤ . . . ≤ λn−1.

1.4 Definition. The full lower trace of the minimal walk is the function
F : [ω1]2 −→ [ω1]<ω defined recursively by

F(α, β) = F(α, min(Cβ \ α)) ∪
⋃

ξ∈Cβ∩αF(ξ, α),

where F(γ, γ) = {γ} for all γ.

2Technically speaking, ρ0 operates on [ω1]2 so ρ0(α, α) = 0 makes no sense. What
we mean is that whenever the formal recursive definition of ρ0(α, β) involves the term
ρ0(α, α) we take it to be equal to 0. This will be applied frequently in this chapter, not
always in explicit form.



6 I. Coherent Sequences

Clearly, F(α, β) ⊇ L(α, β) but F(α, β) is considerably larger than L(α, β)
as it includes also the traces of walks between any two ordinals ≤ α that
have ever been referred to during the walk from β to α. The following two
properties of the full lower trace are straightforward to check (see [76]).

1.5 Lemma. For all α ≤ β ≤ γ,

(a) F(α, γ) ⊆ F(α, β) ∪ F(β, γ),

(b) F(α, β) ⊆ F(α, γ) ∪ F(β, γ). a

1.6 Lemma. For all α ≤ β ≤ γ,

(a) ρ0(α, β) = ρ0(min(F(β, γ) \ α), β)aρ0(α, min(F(β, γ) \ α)),

(b) ρ0(α, γ) = ρ0(min(F(β, γ) \ α), γ)aρ0(α, min(F(β, γ) \ α)). a

1.7 Definition. The ordering <c on ω1 is defined as follows:

α <c β iff ρ0(ξ, α) <r ρ0(ξ, β),

where ξ = ∆(α, β) = min{η ≤ min{α, β} : ρ0(η, α) 6= ρ0(η, β)}. Here <r

refers to the right lexicographical ordering on ω<ω defined by letting s <r t
iff s is an end-extension of t or s(i) < t(i) for i = min{j : s(j) 6= t(j)}.

1.8 Lemma. The Cartesian square of the total ordering <c of ω1 is the
union of countably many chains.

Proof. It suffices to decompose the set of all pairs (α, β) where α < β.
To each such pair we associate a hereditarily finite set p(α, β) which codes
the finite structure obtained from F(α, β) ∪ {β} by adding relations that
describe the way ρ0 acts on it. To show that this parametrization works,
suppose we are given two pairs (α, β) and (γ, δ) such that

p(α, β) = p(γ, δ) = p, and α <c γ.

We must show that β ≤c δ. Let

ξαβ = min(F(α, β) \ ∆(α, γ)), and

ξγδ = min(F(γ, δ) \ ∆(α, γ)).

Note that F(α, β)∩∆(α, γ) = F(γ, δ)∩∆(α, γ) so ξαβ and ξγδ correspond to
each other in the isomorphism of the (α, β) and (γ, δ) structures. It follows
that:

ρ0(ξαβ , α) = ρ0(ξγδ, γ)(= tα,γ),

ρ0(ξαβ , β) = ρ0(ξγδ, δ)(= tβ,δ).
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Applying Lemma 1.6 we get:

ρ0(∆(α, γ), α) = tαγ
aρ0(∆(α, γ), ξαβ),

ρ0(∆(α, γ), γ) = tαγ
aρ0(∆(α, γ), ξγδ).

It follows that ρ0(∆(α, γ), ξαβ) 6= ρ0(∆(α, γ), ξγδ). Applying Lemma 1.6 for
β and δ and the ordinal ∆(α, γ) we get:

ρ0(∆(α, γ), β) = tβδ
aρ0(∆(α, γ), ξαβ), (I.1)

ρ0(∆(α, γ), δ) = tβδ
aρ0(∆(α, γ), ξγδ). (I.2)

It follows that ρ0(∆(α, γ), β) 6= ρ0(∆(α, γ), δ). This shows ∆(α, γ) ≥
∆(β, δ). A symmetrical argument shows the other inequality ∆(β, δ) ≥
∆(α, γ). It follows that

∆(α, γ) = ∆(β, δ)(= ξ̄).

Our assumption is that ρ0(ξ̄, α) <r ρ0(ξ̄, γ) and since these two sequences
have tαγ as common initial part, this reduces to

ρ0(ξ̄, ξαβ) <r ρ0(ξ̄, ξγδ). (I.3)

On the other hand tβδ is a common initial part of ρ0(ξ̄, β) and ρ0(ξ̄, δ), so
their lexicographical relationship depends on their tails which by (I.1) and
(I.2) are equal to ρ0(ξ̄, ξαβ) and ρ0(ξ̄, ξγδ) respectively. Referring to (I.3)
we conclude that indeed ρ0(ξ̄, β) <r ρ0(ξ̄, δ), i.e. β <c δ. a

1.9 Notation. Well-ordered sets of rationals. The set ω<ω ordered by the
right lexicographical ordering <r is a particular copy of the rationals of the
interval (0, 1] which we are going to denote by Qr or simply by Q. The next
lemma shows that for a fixed α, ρ0(ξ, α) is a strictly increasing function of
ξ from α into Qr. Let (ρ0)α denote this function which we identify with its
range, i.e. view as a member of the tree σQr of all well-ordered subsets of
Qr, ordered by end-extension.

1.10 Lemma. ρ0(α, γ) <r ρ0(β, γ) whenever α < β < γ. a

At this point we recall several standard concepts for trees of height ω1,
concepts that generally figure in what follows: A tree of height ω1 is an
Aronszajn tree if all of its levels and chains are countable. A tree of height
ω1 is a special Aronszajn tree if it is an Aronszajn tree that admits a decom-
position into countably many antichains or, equivalently, admits a strictly
increasing map into the rationals. Finally, a tree of height ω1 is a Souslin
tree if all of its chains and antichains countable.

The sequence (ρ0)α (α < ω1) of members of σQr naturally determines
the subtree

T (ρ0) = {(ρ0)β�α : α ≤ β < ω1}.
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Note that for a fixed α, the restriction (ρ0)β�α is determined by the way
(ρ0)β acts on the finite set F(α, β). This is the content of Lemma 1.6.
Hence all levels of T (ρ0) are countable, and therefore T (ρ0) is a particular
example of an Aronszajn tree. We shall now see that T (ρ0) is in fact a
special Aronszajn tree. The proof of this will depend on the following
straightforward fact.

1.11 Lemma. {ξ < β : ρ0(ξ, β) = ρ0(ξ, γ)} is a closed subset of β whenever
β < γ. a

It follows that T (ρ0) does not branch at limit levels. From this we can
conclude that T (ρ0) is a special subtree of σQ since this is easily seen to be
so for any subtree of σQ which is finitely branching at limit nodes.

1.12 Definition. Identifying the power set of Q with the particular copy
2Q of the Cantor set, define for every countable ordinal α,

Gα = {x ∈ 2Q : x end-extends no (ρ0)β�α for β ≥ α}.

1.13 Lemma. Gα (α < ω1) is an increasing sequence of proper Gδ-subsets
of the Cantor set whose union is equal to the Cantor set. a

1.14 Lemma. The set X = {(ρ0)β : β < ω1} considered as a subset of the
Cantor set 2Q has universal measure zero.

Proof. Let µ be a given non-atomic Borel measure on 2Q. For t ∈ T (ρ0),
set

Pt = {x ∈ 2Q : x end-extends t}.

Note that each Pt is a perfect subset of 2Q and therefore is µ-measurable.
Let

S = {t ∈ T (ρ0) : µ(Pt) > 0}.

Then S is a downward closed subtree of σQ with no uncountable antichains.
By an old result of Kurepa (see [59]), no Souslin tree admits a strictly
increasing map into the reals (as for example σQ does). It follows that S
must be countable and so we are done. a

1.15 Definition. The maximal weight of the walk is the two-place function
ρ1 : [ω1]2 −→ ω defined recursively by

ρ1(α, β) = max{|Cβ ∩ α|, ρ1(α, min(Cβ \ α))},

where we stipulate that ρ1(α, α) = 0 for all α < ω1.3 Thus ρ1(α, β) is
simply the maximal integer appearing in the sequence ρ0(α, β).

3This is another use of the convention ρ1(α, α) = 0 that is necessary for the recursive
definition to work.
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1.16 Lemma. For all α < β < ω1 and n < ω,

(a) {ξ ≤ α : ρ1(ξ, α) ≤ n} is finite,

(b) {ξ ≤ α : ρ1(ξ, α) 6= ρ1(ξ, β)} is finite.

Proof. The proof is by induction. To prove (a) it suffices to show that for
every n < ω and every A ⊆ α of order-type ω there is a ξ ∈ A such that
ρ1(ξ, α) > n. Let η = sup(A). If η = α one chooses arbitrary ξ ∈ A with
the property that |Cα ∩ ξ| > n, so let us consider the case η < α. Let
α1 = min(Cα \ η). By the inductive hypothesis there is a ξ ∈ A such that:

ξ > max(Cα ∩ η) and ρ1(ξ, α1) > n.

Note that ρ0(ξ, α) = 〈|Cα ∩ η|〉aρ0(ξ, α1), and therefore

ρ1(ξ, α) ≥ ρ1(ξ, α1) > n.

To prove (b) we show by induction that for every A ⊆ α of order-type ω
there exists a ξ ∈ A such that ρ1(ξ, α) = ρ1(ξ, β). Let η = sup(A) and let
β1 = min(Cβ \ η). Let n = |Cβ ∩ η| and let

B = {ξ ∈ A : ξ > max(Cβ ∩ η) and ρ1(ξ, β1) > n}.

Then B is infinite, so by the induction hypothesis we can find ξ ∈ B such
that ρ1(ξ, α) = ρ1(ξ, β1). Then

ρ1(ξ, β) = max{n, ρ1(ξ, β1)} = ρ1(ξ, β1),

so we are done. a

1.17 Remark. Define (ρ1)α from ρ1 just as (ρ0)α was defined from ρ0

above. It follows that the sequence

(ρ1)α : α −→ ω (α < ω1)

of finite-to-one functions is coherent in the sense that (ρ1)α =∗ (ρ1)β�α
whenever α ≤ β. (Here =∗ denotes the fact that the functions agree on all
but finitely many arguments.) The corresponding tree

T (ρ1) = {t : α −→ ω : α < ω1 and t =∗ (ρ1)α}

is a homogeneous, special Aronszajn tree with many other interesting prop-
erties, some of which we are going to describe here. For example, we have
the following fact whose proof is quite analogous to that of Lemma 1.8.

1.18 Lemma. The Cartesian square of T (ρ1) ordered lexicographically is
the union of countably many chains. a
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1.19 Definition. Consider the following extension of T (ρ1):

T̃ (ρ1) = {t : α −→ ω : α < ω1 and t�ξ ∈ T (ρ1) for all ξ < α}.

If we order T̃ (ρ1) by the right lexicographical ordering <r we get a complete
linearly ordered set. It is not continuous, as it contains jumps of the form

[ta〈m〉, ta〈m + 1〉a~0],

where t ∈ T (ρ1) and m < ω. Removing the right-hand points from all the

jumps we get a linearly ordered continuum which we denote by Ã(ρ1).

1.20 Lemma. Ã(ρ1) is a homogeneous nonreversible ordered continuum
that can be represented as the union of an increasing ω1-sequence of Cantor
sets. a

1.21 Definition. The set T̃ (ρ1) has another natural structure, a topology
generated by the family of sets of the form

Ṽt = {u ∈ T̃ (ρ1) : t ⊆ u},

for t a node of T (ρ1) of successor length as a clopen subbase. Let T 0(ρ1)

denote the set of all nodes of T (ρ1) of successor length. Then T̃ (ρ1) can be
regarded as the set of all downward closed chains of the tree T 0(ρ1) and the

topology on T̃ (ρ1) is simply the topology one obtains from identifying the

power set of T 0(ρ1) with the cube {0, 1}T 0(ρ1) with its Tychonoff topology.4

T̃ (ρ1) being a closed subset of the cube is compact. In fact T̃ (ρ1) has some
very strong topological properties such as the property that closed subsets
of T̃ (ρ1) are its retracts. A compactum is a metrizable compact space, and
a compactum X is Eberlein if its function space C(X) can be generated by
a subset which is compact in the weak topology.

1.22 Lemma. T̃ (ρ1) is a homogeneous Eberlein compactum.

Proof. The proof that T̃ (ρ1) is homogeneous is quite similar to the corre-

sponding part of the proof of the Lemma 1.20. To see that T̃ (ρ1) is an

Eberlein compactum, i.e. that the function space C(T̃ (ρ1)) is weak com-
pactly generated, let {Xn} be a countable antichain decomposition of T (ρ1)
and consider the set K = {2−nχeVt

: n < ω, t ∈ Xn}∪{χ∅}. Note that K is a

weakly compact subset of C(T̃ (ρ1)) which separates the points of T̃ (ρ1). a

The coherent sequence (ρ1)α : α −→ ω (α < ω1) of finite-to-one maps
can easily be turned into a coherent sequence of maps that are actually one-
to-one. For example, one way to achieve this is via the following formula:

ρ̄1(α, β) = 2ρ1(α,β) · (2 · |{ξ ≤ α : ρ1(ξ, β) = ρ1(α, β)}| + 1).

4This is done by identifying a subset V of T 0(ρ1) with its characteristic function
χV : T 0(ρ1) −→ 2.
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Define (ρ̄1)α from ρ̄1 just as (ρ1)α was defined from ρ1; then the (ρ̄1)α’s
are one-to-one. From ρ1 one has a natural sequence rα (α < ω1) of elements
of ωω defined as follows:

rα(n) = |{ξ ≤ α : ρ1(ξ, α) ≤ n}|.

Note that rβ eventually dominates rα whenever α + ω < β.

1.23 Definition. The sequences eα = (ρ̄1)α (α < ω1) and rα (α < ω1) can
be used in describing a functor G 7−→ G∗, which to every graph G on ω1

associates another graph G∗ on ω1 as follows:

{α, β} ∈ G∗ iff {e−1
α (l), e−1

β (l)} ∈ G

for all l < ∆(rα, rβ) for which these preimages are both defined and different.

The proof of the following lemma can be found in [76].

1.24 Lemma. Suppose that every uncountable family F of pairwise disjoint
finite subsets of ω1 contains two sets A and B such that A⊗B ⊆ G.5 Then
the same is true about G∗ provided the uncountable family F consists of
finite cliques6 of G∗. a

1.25 Lemma. If there is an uncountable Γ ⊆ ω1 such that [Γ]2 ⊆ G∗ then
ω1 can be decomposed into countably many sets Σ such that [Σ]2 ⊆ G.

Proof. Fix an uncountable Γ ⊆ ω1 such that [Γ]2 ⊆ G∗. For a finite binary
sequence s of length equal to some l + 1, set

Γs = {ξ < ω1 : e(ξ, α) = l for some α in Γ with s ⊆ rα}.

Then the sets Γs cover ω1 and [Γs]2 ⊆ G for all s. a

1.26 Remark. Let G be the comparability graph of some Souslin tree T .
Then for every uncountable family F of pairwise disjoint cliques of G (finite
chains of T ) there exist A 6= B in F such that A∪B is a clique of G (a chain
of T ). However, it is not hard to see that G∗ fails to have this property
(i.e. the conclusion of Lemma 1.24). This shows that some assumption on
the graph G in Lemma 1.24 is necessary. There are indeed many graphs
that satisfy the hypothesis of Lemma 1.24. Many examples appear when
one is trying to apply Martin’s Axiom to some Ramsey-theoretic problems.
Note that the conclusion of Lemma 1.24 is simply saying that the poset
of all finite cliques of G∗ is ccc while its hypothesis is a bit stronger than
the fact that the poset of all finite cliques of G is ccc in all of its finite
powers. Applying 1.25 to the case when G is the incomparability graph of
some Aronszajn tree, we see that the statement saying that all Aronszajn
trees are special is a purely Ramsey-theoretic statement in the same way
Souslin’s Hypothesis, that there are no Souslin trees, is.

5Here, A ⊗ B = {{α, β} : α ∈ A, β ∈ B, α 6= β}.
6A clique of G∗ is a subset C of ω1 with the property that [C]2 ⊆ G∗.
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2. Subadditive Functions

In this section we describe a metric feature of the space ω1 of countable
ordinals. One first encounters this feature by analyzing properties of the
following function.

2.1 Definition. The rho-function ρ : [ω1]2 −→ ω is defined recursion fol-
lows:

ρ(α, β) = max{|Cβ ∩ α|, ρ(α, min(Cβ \ α)), ρ(ξ, α) : ξ ∈ Cβ ∩ α},

where we stipulate that ρ(α, α) = 0 for all α < ω1.

2.2 Lemma. For all α < β < γ < ω1 and n < ω,

(a) {ξ ≤ α : ρ(ξ, α) ≤ n} is finite,

(b) ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

(c) ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.

Proof. Note that ρ(α, β) ≥ ρ1(α, β), so (a) follows from the corresponding
property of ρ1. The proof of (b) and (c) is simultaneous by induction on α,
β and γ:

To prove (b), consider n = max{ρ(α, β), ρ(β, γ)}, and let

ξα = min(Cγ \ α) and ξβ = min(Cγ \ β).

We have to show that ρ(α, γ) ≤ n.

Case 1b: ξα = ξβ . Then by the inductive hypothesis,

ρ(α, ξα) ≤ max{ρ(α, β), ρ(β, ξβ)}.

From the definition of ρ(β, γ) ≤ n we get that ρ(β, ξβ) ≤ ρ(β, γ), so replac-
ing ρ(β, ξβ) by ρ(β, γ) in the above inequality we get ρ(α, ξα) ≤ n. Consider
a ξ ∈ Cγ ∩ α = Cγ ∩ β. By the inductive hypothesis

ρ(ξ, α) ≤ max{ρ(ξ, β), ρ(α, β)}.

From the definition of ρ(β, γ) we see that ρ(ξ, β) ≤ ρ(β, γ), so replacing
ρ(ξ, β) with ρ(β, γ) in the last inequality we get that ρ(ξ, α) ≤ n. Since
|Cγ ∩ α| = |Cγ ∩ β| ≤ ρ(β, γ) ≤ n, referring to the definition of ρ(α, γ) we
conclude that ρ(α, γ) ≤ n.

Case 2b: ξα < ξβ . Then ξα ∈ Cγ ∩ β, so

ρ(ξα, β) ≤ ρ(β, γ) ≤ n.
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By the inductive hypothesis

ρ(α, ξα) ≤ max{ρ(α, β), ρ(ξα, β)} ≤ n.

Similarly, for every ξ ∈ Cγ ∩ α ⊆ Cγ ∩ β,

ρ(ξ, α) ≤ max{ρ(ξ, β), ρ(α, β)} ≤ n.

Finally |Cγ ∩ α| ≤ |Cγ ∩ β| ≤ ρ(β, γ) ≤ n. Combining these inequalities we
get the desired conclusion ρ(α, γ) ≤ n.

To prove (c), consider now n = max{ρ(α, γ), ρ(β, γ)}. We have to show
that ρ(α, β) ≤ n. Let ξα and ξβ be as above and let us consider the same
two cases as above.

Case 1c: ξα = ξβ = ξ̄. Then by the inductive hypothesis

ρ(α, β) ≤ max{ρ(α, ξ̄), ρ(β, ξ̄)}.

This gives the desired bound ρ(α, β) ≤ n, since ρ(α, ξα) ≤ ρ(α, γ) ≤ n and
ρ(β, ξβ) ≤ ρ(β, γ) ≤ n.

Case 2c: ξα < ξβ . Applying the inductive hypothesis again we get

ρ(α, β) ≤ max{ρ(α, ξα), ρ(ξα, β)} ≤ n.

This completes the proof. a

The following simple consequence shows that the function ρ has a con-
siderably finer coherence property than ρ1.

2.3 Lemma. If α < β < γ and ρ(α, β) > ρ(β, γ), then ρ(α, γ) = ρ(α, β). a

2.4 Definition. Define ρ̄ : [ω1]2 −→ ω as follows

ρ̄(α, β) = 2ρ(α,β) · (2 · |{ξ ≤ α : ρ(ξ, α) ≤ ρ(α, β)}| + 1).

Using the properties of ρ one easily checks the following facts about its
stretching ρ̄.

2.5 Lemma. For all α < β < γ < ω1,

(a) ρ̄(α, γ) 6= ρ̄(β, γ),

(b) ρ̄(α, γ) ≤ max{ρ̄(α, β), ρ̄(β, γ)},

(c) ρ̄(α, β) ≤ max{ρ̄(α, γ), ρ̄(β, γ)}. a

The following property of ρ̄ is also sometimes useful (see [76]).

2.6 Lemma. Suppose ηα 6= ηβ < min{α, β} and ρ̄(ηα, α) = ρ̄(ηβ , β) = n.
Then ρ̄(ηα, β), ρ̄(ηβ , α) > n. a
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2.7 Definition. For p ∈ ω<ω define a binary relation <p on ω1 by letting
α <p β iff α < β, ρ̄(α, β) ∈ |p|, and

p(ρ̄(ξ, α)) = p(ρ̄(ξ, β))

for any ξ < α such that ρ̄(ξ, α) < |p|.

2.8 Lemma.

(a) <p is a tree ordering on ω1 of height ≤ |p| + 1,

(b) p ⊆ q implies <p ⊆<q.

Proof. This follows immediately from Lemma 2.5. a

2.9 Definition. For x ∈ ωω, set

<x=
⋃
{<x�n: n < ω}.

The proof of the following lemma can also be found in [76].

2.10 Lemma. For every p ∈ ω<ω there is a partition of ω1 into finitely
many pieces such that if α < β belong to the same piece then there is a
q ⊇ p in ω<ω such that α <q β. a

2.11 Theorem. For every infinite subset Γ ⊆ ω1, the set

GΓ = {x ∈ ωω : α <x β for some α, β ∈ Γ}

is a dense open subset of the Baire space.

Proof. This is an immediate consequence of Lemma 2.10. a

2.12 Definition. For α < β < ω1, let α <ρ̄ β denote the fact that ρ̄(ξ, α) =
ρ̄(ξ, β) for all ξ < α. Then <ρ̄ is a tree ordering on ω1 obtained by identifying
α with the member ρ̄(·, α) of the tree T (ρ̄). Note that <ρ̄ ⊆<x for all x ∈ ωω

and that there exists an x ∈ ωω such that <x = <ρ̄ (e.g., one such x is the
identity map id : ω −→ ω).

The following result is an analogue of Lemma 2.10 for the incomparability
relation, though its proof is considerably simpler.

2.13 Lemma. If Γ is an infinite <ρ̄-antichain, the set

HΓ = {x ∈ ωω : α ≮x β for some α < β in Γ}

is a dense open subset of the Baire space. a
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2.14 Definition. For a family F of infinite <ρ̄-antichains, we say that a
real x ∈ ωω is F-Cohen if x ∈ GΓ ∩ HΓ for all Γ ∈ F . We say that x is
F-Souslin if no member of F is a <x-chain or a <x-antichain. We say that
a real x ∈ ωω is Souslin if the tree ordering <x on ω1 has no uncountable
chains nor antichains, i.e. when x is F-Souslin for F equal to the family of
all uncountable subsets of ω1.

Note that since every uncountable subset of ω1 contains an uncount-
able <ρ̄-antichain, if a family F refines the family of all uncountable <ρ̄-
antichains, then every F-Souslin real is Souslin. The following fact summa-
rizes Theorems 2.11 and 2.13 and connects the two kinds of reals.

2.15 Theorem. If F is a family of infinite <ρ̄-antichains, then every F-
Cohen real is F-Souslin. a

2.16 Corollary. If the density of the family of all uncountable subsets of
ω1 is smaller than the number of nowhere dense sets needed to cover the
real line, then there is a Souslin tree. a

2.17 Remark. Recall that the density of a family F of infinite subsets of
some set S is the minimal size of a family F0 of infinite subsets of S with
the property that every member of F is refined by a member of F0. A
special case of Corollary 2.16, when the density of the family of all un-
countable subsets of ω1 is equal to ℵ1, was first observed by T. Miyamoto
(unpublished).

2.18 Corollary. Every Cohen real is Souslin.

Proof. Every uncountable subset of ω1 in the Cohen extension contains an
uncountable subset from the ground model. So it suffices to consider the
family F of all infinite <ρ̄-antichains from the ground model. a

If ω1 is a successor cardinal in the constructible subuniverse, then ρ̄ can
be chosen to be coanalytic and so the transformation x 7−→<x will transfer
combinatorial notions of Souslin, Aronszajn or special Aronszajn trees into
the corresponding classes of reals that lie in the third level of the projective
hierarchy. This transformation has been explored on several places in the
literature (see, e.g. [3], [25]).

2.19 Remark. We have just seen how the combination of the subadditivity
properties (2.5(b),(c)) of the coherent sequence ρ̄α : α −→ ω (α < ω1)
of one-to-one mappings can be used in controlling the finite disagreement
between them. It turns out that in many contexts the coherence and the
subadditivities are essentially equivalent restrictions on a given sequence
eα : α −→ ω (α < ω1). For example, the following construction shows that
this is so for any sequence of finite-to-one mappings eα : α −→ ω (α < ω1).
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2.20 Definition. Given a coherent sequence eα : α −→ ω (α < ω1) of
finite-to-one mappings, define τe : [ω1]2 −→ ω as follows

τe(α, β) = max{max{e(ξ, α), e(ξ, β)} : ξ ≤ α and e(ξ, α) 6= e(ξ, β)}.

2.21 Lemma. For every α < β < γ < ω1,

(a) τe(α, β) ≥ e(α, β),

(b) τe(α, γ) ≤ max{τe(α, β), τe(β, γ)},

(c) τe(α, β) ≤ max{τe(α, γ), τe(β, γ)}.

Proof. Since (a) is true if e(α, β) = 0, let us assume e(α, β) > 0. By our
convention, e(α, α) = 0 and so e(α, α) 6= e(α, β) = 0. It follows that
τe(α, β) ≥ max{max{e(α, α), e(α, β)} = e(α, β). This shows (a).

To show (b), let n = max{τe(α, β), τe(β, γ)}. Suppose τe(α, γ) > n. Then
we can choose ξ ≤ α such that e(ξ, α) > n or e(ξ, γ) > n. If e(ξ, α) > n
then e(ξ, β) = e(ξ, α) > n and so e(ξ, β) 6= e(ξ, γ). It follows that τe(β, γ) ≥
e(ξ, β) > n, a contradiction. If e(ξ, γ) > n then e(ξ, β) = e(ξ, γ) > n.
In particular, e(ξ, α) 6= e(ξ, β). It follows that τe(β, γ) ≥ e(ξ, β) > n, a
contradiction.

The proof of (c) is similar. a

2.22 Definition. A mapping a : [ω1]2 −→ ω is transitive if

a(α, γ) ≤ max{a(α, β), a(β, γ)}

for all α < β < γ < ω1.

Transitive maps occur quite frequently in set-theoretic constructions. For
example, given a sequence Aα (α < ω1) of subsets of ω that increases
relative to the ordering ⊆∗ of inclusion modulo a finite set, the mapping
a : [ω1]2 −→ ω defined by

a(α, β) = min{n : Aα \ n ⊆ Aβ}

is a transitive map. The transitivity condition by itself is not nearly as useful
as its combination with the other subadditivity property (2.5(c)). Fortu-
nately, there is a general procedure that produces a subadditive dominant
to every transitive map.

2.23 Definition. For a transitive a : [ω1]2 −→ ω define ρa : [ω1]2 −→ ω
recursively as follows:

ρa(α, β) = max{|Cβ ∩ α|, a(min(Cβ \ α), β),

ρa(α, min(Cβ \ α)), ρa(ξ, α) : ξ ∈ Cβ ∩ α}.
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2.24 Lemma. For all α < β < γ < ω1 and n < ω,

(a) {ξ ≤ α : ρa(ξ, α) ≤ n} is finite,

(b) ρa(α, γ) ≤ max{ρa(α, β), ρa(β, γ)},

(c) ρa(α, β) ≤ max{ρa(α, γ), ρa(β, γ)},

(d) ρa(α, β) ≥ a(α, β).

Proof. The proof of (a),(b),(c) is quite similar to the corresponding part
of the proof of Lemma 2.2. This comes of course from the fact that the
definition of ρ and ρa are closely related. The occurrence of the factor
a(min(Cβ \ α), β) complicates a bit the proof that ρa is subadditive, and
the fact that a is transitive is quite helpful in getting rid of the additional
difficulty. The details are left to the interested reader. Given α < β, for
every step βn → βn+1 of the minimal walk β = β0 > β1 > . . . > βk = α,
we have ρa(α, β) ≥ ρa(βn, βn+1) ≥ a(βn, βn+1) by the very definition of
ρa. Applying the transitivity of a to this path of inequalities we get the
conclusion (d). a

2.25 Lemma. ρa(α, β) ≥ ρa(α+1, β) whenever 0 < α < β and α is a limit
ordinal.

Proof. Recall the assumption (c) about the fixed C-sequence Cξ (ξ < ω1)
on which all our definitions are based: if ξ is a limit ordinal > 0, then no
point of Cξ is a limit ordinal. It follows that if 0 < α < β and α is a
limit ordinal, then the minimal walk β → α must pass through α + 1 and
therefore ρa(α, β) ≥ ρa(α + 1, β). a

Let us now give an application of ρa to a classical phenomenon of occur-
rence of gaps in the quotient algebra P(ω)/fin.

2.26 Definition. A Hausdorff gap in P(ω)/fin is a pair of sequences
Aα (α < ω1) and Bα (α < ω1) such that

(a) Aα ⊆∗ Aβ ⊆∗ Bβ ⊆∗ Bα whenever α < β, but

(b) there is no C such that Aα ⊆∗ C ⊆∗ Bα for all α.

The following straightforward reformulation shows that a Hausdorff gap
is just another instance of a nontrivial coherent sequence

fα : Aα −→ 2 (α < ω1),

where the domain Aα of fα is not the ordinal α itself but a subset of ω and
that the corresponding sequence of domains Aα (α < ω1) is a realization of
ω1 inside P(ω)/fin in the sense that Aα ⊂∗ Aβ whenever α < β.
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2.27 Lemma. A pair of ω1-sequences Aα (α < ω1) and Bα (α < ω1) form
a Hausdorff gap iff the pair of ω1-sequences Āα = Aα ∪ (ω \ Bα) (α < ω1)
and B̄α = ω \ Bα (α < ω1) has the following three properties:

(a) Āα ⊆∗ Āβ whenever α < β,

(b) B̄α =∗ B̄β ∩ Āα whenever α < β,

(c) there is no B such that B̄α =∗ B ∩ Āα for all α. a

From now on we fix a strictly ⊆∗-increasing chain Aα (α < ω1) of infinite
subsets of ω and let a : [ω1]2 −→ ω be defined by

a(α, β) = min{n : Aα \ n ⊆ Aβ}.

Let ρa : [ω1]2 −→ ω be the corresponding subadditive dominant of a defined
above. For α < ω1, set

Dα = Aα+1 \ Aα.

2.28 Lemma. The sets Dα\ρa(α, γ) and Dβ\ρa(β, γ) are disjoint whenever
0 < α < β < γ and α and β are limit ordinals.

Proof. This follows immediately from Lemmas 2.24 and 2.25. a

We are in a position to define a partial mapping m : [ω1]2 −→ ω by

m(α, β) = min(Dα \ ρa(α, β)),

whenever α < β and α is a limit ordinal.

2.29 Lemma. The mapping m is coherent, i.e., m(α, β) = m(α, γ) for all
but finitely many limit ordinals α < min{β, γ}.

Proof. This is by the coherence of ρa and the fact that ρa(α, β) = ρa(α, γ)
already implies m(α, β) = m(α, γ). a

2.30 Lemma. m(α, γ) 6= m(β, γ) whenever α 6= β < γ and α, β are limit
ordinals.

Proof. This follows from Lemma 2.28. a

For β < ω1, set

Bβ = {m(α, β) : α < β and α limit}.

2.31 Lemma. Bβ =∗ Bγ ∩ Aβ whenever β < γ.

Proof. By the coherence of m. a

Note the following immediate consequence of Lemma 2.28 and the defi-
nition of m.
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2.32 Lemma. m(α, β) = max(Bβ ∩ Dα) whenever α < β and α is a limit
ordinal. a

2.33 Lemma. There is no B ⊆ ω such that B ∩ Aβ =∗ Bβ for all β.

Proof. Suppose that such a B exists and for a limit ordinal α let us define
g(α) = max(B ∩Dα). Then by Lemma 2.32, g(α) = m(α, β) for all β < ω1

and all but finitely many limit ordinals α < β. By Lemma 2.30, it follows
that g is a finite-to-one map, a contradiction. a

2.34 Theorem. For every strictly ⊂∗-increasing chain Aα (α < ω1) of
subsets of ω, there is a sequence Bα (α < ω1) of subsets of ω such that:

(a) Bα =∗ Bβ ∩ Aα whenever α < β,

(b) there is no B such that Bα =∗ B ∩ Aα for all α. a

3. Steps and Coherence

3.1 Definition. The number of steps of the minimal walk is the function
ρ2 : [ω1]2 −→ ω defined recursively by

ρ2(α, β) = ρ2(α, min(Cβ \ α)) + 1,

with the convention that ρ2(γ, γ) = 0 for all γ.

This is an interesting mapping which is particularly useful on higher car-
dinalities and especially in situations where the more informative mappings
ρ0, ρ1 and ρ lack their usual coherence properties. Here is a typical prop-
erty of this mapping which will be explained in a much more general term
in later sections of this chapter.

3.2 Lemma. supξ<α|ρ2(ξ, α) − ρ2(ξ, β)| < ∞ for all α < β < ω1. a

In this section we use ρ2 only to succinctly express the following mapping.

3.3 Definition. The last step function of the minimal walk is the map
ρ3 : [ω1]2 −→ 2 defined by letting

ρ3(α, β) = 1 iff ρ0(α, β)(ρ2(α, β) − 1) = ρ1(α, β).

In other words, we let ρ3(α, β) = 1 just in case the last step of the walk
β → α comes with the maximal weight.

3.4 Lemma. {ξ < α : ρ3(ξ, α) 6= ρ3(ξ, β)} is finite for all α < β < ω1.

Proof. It suffices to show that for every infinite Γ ⊆ α there exists a ξ ∈ Γ
such that ρ3(ξ, α) = ρ3(ξ, β). Shrinking Γ we may assume that for some
fixed ᾱ ∈ F (α, β) and all ξ ∈ Γ:
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(1) ᾱ = min(F (α, β) \ ξ),

(2) ρ1(ξ, α) = ρ1(ξ, β),

(3) ρ1(ξ, α), ρ1(ξ, β) > max{ρ1(ᾱ, α), ρ1(ᾱ, β)}.

It follows (see 1.6) that for every ξ ∈ Γ:

ρ0(ξ, α) = ρ0(ᾱ, α)aρ0(ξ, ᾱ),

ρ0(ξ, β) = ρ0(ᾱ, β)aρ0(ξ, ᾱ).

So for any ξ ∈ Γ, ρ3(ξ, α) = 1 iff the last term of ρ0(ξ, ᾱ) is its maximal
term iff ρ3(ξ, β) = 1. a

The sequence (ρ3)α : α −→ 2 (α < ω1)7 is therefore coherent in the
sense that (ρ3)α =∗ (ρ3)β�α whenever α < β. We need to show that the
sequence is not trivial, i.e. that it cannot be uniformized by a single total
map from ω1 into 2. In other words, we need to show that ρ3 still contains
enough information about the C-sequence Cα (α < ω1) from which it is
defined. For this it will be convenient to assume that Cα (α < ω1) satisfies
the following natural condition:

(d) If α is a limit ordinal > 0 and if ξ occupies the nth place in the
increasing enumeration of Cα (that starts with min(Cα) on its 0th
place), then ξ = λ + n + 1 for some limit ordinal λ (possibly 0).

3.5 Definition. Let Λ denote the set of all countable limit ordinals and for
an integer n ∈ ω, let Λ + n = {λ + n : λ ∈ Λ}.

The assumption (d) about the C-sequence is behind the following prop-
erty of ρ3.

3.6 Lemma. ρ3(λ + n, β) = 1 for all but finitely many n with λ + n < β.a

3.7 Lemma. For all β < ω1, n < ω, the set {λ ∈ Λ : λ + n < β and
ρ3(λ + n, β) = 1} is finite.

Proof. Given an infinite subset Γ of (Λ + n)∩β we need to find a λ + n ∈ Γ
such that ρ3(λ + n, β) = 0. Shrinking Γ if necessary assume that ρ1(λ +
n, β) > n + 2 for all λ + n ∈ Γ. So if ρ3(λ + n, β) = 1 for some λ + n ∈ Γ
then the last step of β → λ + n would have to be of weight> n + 2 which is
impossible by our assumption (d) about Cα (α < ω1). a

The meaning of these properties of ρ3 perhaps is easier to comprehend
if we reformulate them in a way that resembles the original formulation of
the existence of Hausdorff gaps.

7Recall the way one always defines the fiber-functions from a two-variable function
applied to the context of ρ3: (ρ3)α(ξ) = ρ3(ξ, α).
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3.8 Lemma. Let Bα = {ξ < α : ρ3(ξ, α) = 1} for α < ω1. Then:

(1) Bα =∗ Bβ ∩ α for α < β,

(2) (Λ + n) ∩ Bβ is finite for all n < ω and β < ω1,

(3) {λ + n : n < ω} ⊆∗ Bβ whenever λ + ω ≤ β. a

In particular, there is no uncountable Γ ⊆ ω1 such that Γ ∩ β ⊆∗ Bβ for
all β < ω1. On the other hand, the P-ideal8 I generated by Bβ (β < ω1) is
large as it contains all intervals of the form [λ, λ+ω). The following general
dichotomy about P-ideals shows that here indeed we have quite a canonical
example of a P-ideal on ω1.

3.9 Definition.

The P-ideal dichotomy. For every P-ideal I of countable subsets of
some set S either:

(1) there is an uncountable X ⊆ S such that [X ]ω ⊆ I, or

(2) S can be decomposed into countably many sets orthogonal to I.

3.10 Remark. It is known that the P-ideal dichotomy is a consequence of
the Proper Forcing Axiom and moreover that it does not contradict the Con-
tinuum Hypothesis (see [74]). This is an interesting dichotomy which will be
used in this article for testing various notions of coherence as we encounter
them. For example, let us consider the following notion of coherence, al-
ready encountered above at several places, and see how it is influenced by
the P-ideal dichotomy.

3.11 Definition. A mapping a : [ω1]2 −→ ω is coherent if for every α <
β < ω1 there exist only finitely many ξ < α such that a(ξ, α) 6= a(ξ, β),
or in other words, aα =∗ aβ�α.9 We say that a is nontrivial if there is no
h : ω1 −→ ω such that h�α =∗ aα for all α < ω1.

Note that the existence of a coherent and nontrivial a : [ω1]2 −→ 2
(such as, for example, the function ρ3 defined above) is something that
corresponds to the notion of a Hausdorff gap (cf. the previous lemma) in
this context. Notice moreover, that this notion is also closely related to the
notion of an Aronszajn tree since

T (a) = {t : α −→ ω : α < ω1 and t =∗ aα}

8Recall that an ideal I of subsets of some set S is a P-ideal if for every sequence
An (n < ω) of elements of I there is B in I such that An \ B is finite for all n < ω. A
set X is orthogonal to I if X ∩ A is finite for all A in I.

9A mapping a : [ω1]2 −→ ω is naturally identified with a sequence aα (α < ω1), where
aα : α −→ ω is defined by aα(ξ) = a(ξ, α).
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is such an Aronszajn tree whenever a : [ω1]2 −→ ω is coherent and non-
trivial.10 In fact, we shall call an arbitrary Aronszajn tree T coherent if T
is isomorphic to T (a) for some coherent and nontrivial a : [ω1]2 −→ ω. In
case the range of the map a is actually smaller than ω, e.g. equal to some
integer k, then it is natural to let T (a) be the collection of all t : α −→ k
such that α < ω1 and t =∗ aα. This way, we have coherent binary, ternary,
etc. Aronszajn trees rather than only ω-ary coherent Aronszajn trees.

3.12 Definition. The support of a map a : [ω1]2 −→ ω is the sequence
supp(aα) = {ξ < α : a(ξ, α) 6= 0} (α < ω1) of subsets of ω1. A set Γ
is orthogonal to a if supp(aα) ∩ Γ is finite for all α < ω1. We say that
a : [ω1]2 −→ ω is nowhere dense if there is no uncountable Γ ⊆ ω1 such that
Γ ∩ α ⊆∗ supp(aα) for all α < ω1.

Note that ρ3 is an example of a nowhere dense coherent map for the
simple reason that ω1 can be covered by countably many sets Λ+n (n < ω)
that are orthogonal to ρ3. The following immediate fact shows that ρ3 is
indeed a prototype of a nowhere dense and coherent map a : [ω1]2 −→ ω.

3.13 Proposition. Under the P-ideal dichotomy, for every nowhere dense
and coherent map a : [ω1]2 −→ ω the domain ω1 can be decomposed into
countably many sets orthogonal to a. a

3.14 Notation. To every a : [ω1]2 −→ ω associate the corresponding
∆-function ∆a : [ω1]2 −→ ω as follows:

∆a(α, β) = min{ξ < α : a(ξ, α) 6= a(ξ, β)}

with the convention that ∆a(α, β) = α whenever a(ξ, α) = a(ξ, β) for all
ξ < α. Given this notation, it is natural to let

∆a(Γ) = {∆a(α, β) : α, β ∈ Γ, α < β}

for an arbitrary set Γ ⊆ ω1.
The following simple fact reveals a crucial property of coherent trees.

3.15 Lemma. Suppose that a : [ω1]2 −→ ω is nontrivial and coherent and
that every uncountable subset of T (a) contains an uncountable antichain.
Then for every pair Σ,Ω of uncountable subsets of ω1 there exists an un-
countable subset Γ of ω1 such that ∆a(Γ) ⊆ ∆a(Σ) ∩ ∆a(Ω). a

3.16 Notation. For a : [ω1]2 −→ ω, set

U(a) = {A ⊆ ω1 : A ⊇ ∆a(Γ) for some uncountable Γ ⊆ ω1}.

10Similarities between the notion of a Hausdorff gap and the notion of an Aronszajn
tree have been further explained recently in the two papers of Talayco ([57], [58]), where
it is shown that they naturally correspond to first cohomology groups over a pair of very
similar spaces.
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By Lemma 3.15, U(a) is a uniform filter on ω1 for every nontrivial coher-
ent a : [ω1]2 −→ ω for which T (a) contains no Souslin subtrees. It turns out
that under some very mild assumption, U(a) is in fact a uniform ultrafilter
on ω1. The proof of this can be found in [76].

3.17 Theorem. Under MAω1
, the filter U(a) is an ultrafilter for every

nontrivial and coherent a : [ω1]2 −→ ω. a

3.18 Remark. One may find Theorem 3.17 a bit surprising in view of the
fact that it gives us an ultrafilter U(a) on ω1 that is Σ1-definable over the
structure (Hω2

,∈). It is well-known that there is no ultrafilter on ω that is
Σ1-definable over the structure (Hω1

,∈).

It turns out that the transformation a 7−→ U(a) captures some of the
essential properties of the corresponding and more obvious transformation
a 7−→ T (a). To state this we need some standard definitions.

3.19 Definition. For two trees S and T , by S ≤ T we denote the fact
that there is a strictly increasing map f : S −→ T . Let S < T whenever
S ≤ T and T � S and let S ≡ T whenever S ≤ T and T ≤ S. In general,
the equivalence relation ≡ on trees is very far from the finer relation ∼=,
the isomorphism relation. However, the following fact shows that in the
realm of trees T (a), these two relations may coincide and moreover, that
the mapping T (a) 7−→ U(a) reduces ≡ and ∼= to the equality relation among
ultrafilters on ω1 (see [75]).

The following fact reveals in particular that the class of coherent trees
has the Schroeder-Bernstein property. Its proof can again be found in [76].

3.20 Theorem. Assuming MAω1
, for every pair of coherent and nontrivial

mappings a : [ω1]2 −→ ω and b : [ω1]2 −→ ω, the trees T (a) and T (b) are
isomorphic iff T (a) ≡ T (b) iff U(a) = U(b). a

3.21 Definition. The shift of a : [ω1]2 −→ ω is defined to be the mapping

a(1) : [ω1]2 −→ ω determined by the equation a(1)(α, β) = a(α + 1, β̂),

where β̂ = min{λ ∈ Λ : λ ≥ β}. The n-fold iteration of the shift operation
is defined recursively by the formula a(n+1) = (a(n))(1).

The following fact, whose proof can be found in [76], shows that Aron-
szajn trees are not well-quasi-ordered under the quasi-ordering ≤ (see also
[75]).

3.22 Theorem. If a is nontrivial, coherent, and orthogonal to Λ, then
T (a) > T (a(1)). a

3.23 Corollary. If a is nontrivial, coherent and orthogonal to Λ + n for all
n < ω, then T (a(n)) > T (a(m)) whenever n < m < ω.
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Proof. Note that if a is orthogonal to Λ + n for all n < ω, then so is every
of its finite shifts a(m). a

3.24 Corollary. T (ρ
(n)
3 ) > T (ρ

(m)
3 ) whenever n < m < ω. a

Somewhat unexpectedly, with very little extra assumptions we can say
much more about ≤ in the domain of coherent Aronszajn trees (for proofs
see [75] and [76]).

3.25 Theorem. Under MAω1
, the family of coherent Aronszajn trees is

totally ordered under ≤. a

3.26 Remark. While under MAω1
, the class of coherent Aronszajn trees is

totally ordered by ≤, Corollary 3.24 gives us that this chain of trees is not
well-ordered. This should be compared with an old result of Ohkuma [43]
that the class of all scattered trees is well-ordered by ≤ (see also [36]). It
turns out that the class of all Aronszajn trees is not totally ordered under
≤, i.e. there exist Aronszajn trees S and T such that S � T and T � S.
The reader is referred to [75] and [76] for more information on this and other
related results that we chose not to reproduce here.

4. The Trace and the Square-Bracket

Operation

Recall the notion of a minimal walk from a countable ordinal β to a smaller
ordinal α along the fixed C-sequence Cξ (ξ < ω1) : β = β0 > β1 > . . . >
βn = α where βi+1 = min(Cβi

\ α). Recall also the notion of a trace

Tr(α, β) = {β0, β1, . . . , βn},

the finite set of places visited in the minimal walk from β to α. The following
simple fact about the trace lies at the heart of all known definitions of
square-bracket operations not only on ω1 but also at higher cardinalities.

4.1 Lemma. For every uncountable subset Γ of ω1 the union of Tr(α, β)
for α < β in Γ contains a closed and unbounded subset of ω1.

Proof. It suffices to show that the union of traces contains every countable
limit ordinal δ such that sup(Γ∩ δ) = δ. Pick an arbitrary β ∈ Γ \ δ and let

β = β0 > β1 > · · · > βk = δ

be the minimal walk from β to δ. Let γ < δ be an upper bound of all sets
of the form Cβi

∩ δ for i < k. By the choice of δ there is an α ∈ Γ∩ δ above
γ. Then the minimal walk from β to α starts as β0 > β1 > · · · > βk, so in
particular δ belongs to Tr(α, β). a
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We shall now see that it is possible to pick a single place [αβ] in Tr(α, β)
so that Lemma 4.1 remains valid with [αβ] in place of Tr(α, β). Recall that
by Lemma 1.11,

∆(α, β) = min{ξ ≤ α : ρ0(ξ, α) 6= ρ0(ξ, β)}

is a successor ordinal. We shall be interested in its predecessor,

4.2 Definition. σ(α, β) = ∆(α, β) − 1.

Thus, if ξ = σ(α, β), then ρ0(ξ, α) = ρ0(ξ, β) and so there is a natural iso-
morphism between Tr(ξ, α) and Tr(ξ, β). We shall define [αβ] by comparing
the three sets Tr(α, β), Tr(ξ, α) and Tr(ξ, β).

4.3 Definition. The square-bracket operation on ω1 is defined as follows:

[αβ] = min(Tr(α, β) ∩ Tr(σ(α, β), β)) = min(Tr(σ(α, β), β) \ α).

Next, recall the function ρ0 : [ω1]2 → ω<ω defined from the C-sequence
Cξ (ξ < ω1) and the corresponding tree T (ρ0). For γ < ω1 let (ρ0)γ be the
fiber-mapping : γ → ω<ω defined by (ρ0)γ(α) = ρ0(α, γ).

4.4 Lemma. For every uncountable subset Γ of ω1 the set of all ordinals of
the form [αβ] for some α < β in Γ contains a closed and unbounded subset
of ω1.

Proof. For t ∈ T (ρ0) let Γt = {γ ∈ Γ : (ρ0)γ end-extends t}. Let S be
the collection of all t ∈ T (ρ0) for which Γt is uncountable. Clearly, S is a
downward closed uncountable subtree of T . The lemma is established once
we prove that every countable limit ordinal δ > 0 with the following two
properties can be represented as [αβ] for some α < β in Γ:

(1) sup(Γt ∩ δ) = δ for every t ∈ S of length < δ,

(2) every t ∈ S of length < δ has two incomparable successors in S both
of length < δ.

Fix such a δ and choose β ∈ Γ \ δ such that (ρ0)β�δ ∈ S and consider the
minimal walk from β to δ:

β = β0 > β1 > · · · > βk = δ.

Let γ < δ be an upper bound of all sets of the form Cβi
∩ δ for i < k.

Since the restriction t = (ρ0)β�γ belongs to S, by (2) we can find one of its
end-extensions s in S which is incomparable with (ρ0)β . It follows that for
α ∈ Γs, the ordinal σ(α, β) has the fixed value

ξ = min{ξ < |s| : s(ξ) 6= ρ0(ξ, β)} − 1.
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Note that ξ ≥ γ, so the walk β → δ is a common initial part of walks
β → ξ and β → α for every α ∈ Γs ∩ δ. Hence if we choose α ∈ Γs ∩ δ
above min(Cδ \ ξ) (which we can by (1)), we get that the walks β → ξ and
β → α never meet after δ. In other words for any such α, the ordinal δ
is the minimum of Tr(α, β) ∩ Tr(ξ, β), or equivalently δ is the minimum of
Tr(ξ, β) \ α. a

It should be clear that the above argument can easily be adjusted to
give us the following slightly more general fact about the square-bracket
operation.

4.5 Lemma. For every uncountable family A of pairwise disjoint finite
subsets of ω1, all of the same size n, the set of all ordinals of the form
[a(1)b(1)] = [a(2)b(2)] = · · · = [a(n)b(n)] for some a 6= b in A contains a
closed and unbounded subset of ω1.

11 a

It turns out that the square-bracket operation can be used in construc-
tions of various mathematical objects of complex behavior where all known
previous constructions needed the Continuum Hypothesis or stronger enu-
meration principles. The usefulness of [··] in these constructions is based
on the fact that [··] reduces the quantification over uncountable subsets of
ω1 to the quantification over closed unbounded subsets of ω1. For example
composing [··] with a unary operation ∗ : ω1 −→ ω1 which takes each of the
values stationary many times one gets the following fact about the mapping
c(α, β) = [αβ]∗.

4.6 Theorem. There is a mapping c : [ω1]2 −→ ω1 which takes all the
values from ω1 on any square [Γ]2 of some uncountable subset Γ of ω1. a

Note that the basic C-sequence Cα (α < ω1) which we have fixed at the
beginning of this chapter can be used to actually define a unary operation
∗ : ω1 −→ ω1 which takes each of the ordinals from ω1 stationarily many
times. So the projection [αβ]∗ can actually be defined in our basic structure

(ω1, ω, ~C). We are now at the point to see that our basic structure is actually
rigid.

4.7 Lemma. The algebraic structure (ω1, [··], ∗) has no nontrivial automor-
phisms.

Proof. Let h be a given automorphism of (ω1, [··], ∗). If the set Γ of fixed
points of h is uncountable, h must be the identity map. To see this, consider
a ξ < ω1. By the property of the map c(α, β) = [αβ]∗ stated in Theorem 4.6

11For a finite set x of ordinals of size n we use the notation x(1), x(2), . . . , x(n) or
x(0), x(1), . . . , x(n− 1), depending on the context, for the enumeration of x according to
the natural ordering on the ordinals.
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there exists a γ < δ in Γ such that [γδ]∗ = ξ. Applying h to this equation
we get

h(ξ) = h([γδ]∗) = (h([γδ]))∗ = [h(γ)h(δ)]∗ = [γδ]∗ = ξ.

It follows that ∆ = {δ < ω1 : h(δ) 6= δ} is in particular uncountable.
Shrinking ∆ and replacing h by h−1, if necessary, we may safely assume
that h(δ) > δ for all δ ∈ ∆. Consider a ξ < ω1 and let Sξ be the set of all
α < ω1 such that α∗ = ξ. By our choice of ∗ the set Sξ is stationary. By
Lemma 4.5 applied to the family A = {{δ, h(δ)} : δ ∈ ∆} we can find γ < δ
in ∆ such that [γδ] = [h(γ)h(δ)] belongs to Sξ, or in other words,

[γδ]∗ = [h(γ)h(δ)]∗ = ξ.

Since [h(γ)h(δ)]∗ = h([γδ]∗) we conclude that h(ξ) = ξ. Since ξ was an
arbitrary countable ordinal, this shows that h is the identity map. a

We give now an application of this rigidity result to a problem in model
theory about the quantifier Qx = ‘there exist uncountably many x’ and
its higher dimensional analogues Qnx1 · · ·xn = ‘there exist an uncountable
n-cube many x1, · · · , xn’. By a result of Ebbinghaus and Flum [16] (see also
[44]) every model of every sentence of L(Q) has nontrivial automorphisms.
However we shall now see that this is no longer true about the quantifier
Q2.

4.8 Example. A sentence of L(Q2) with only rigid models. The sentence φ
will talk about one unary relation N , one binary relation < and two binary
functional symbols C and E. It is the conjunction of the following seven
sentences

(φ1) Qx x = x,

(φ2) ¬Qx N(x),

(φ3) < is a total ordering,

(φ4) E is a symmetric binary operation,

(φ5) ∀x < y N(E(x, y)),

(φ6) ∀x < y < z E(x, z) 6= E(y, z),

(φ7) ∀x∀n{N(n) → ¬Q2uv[∃u′ < u∃v′ < v(u′ 6= v′ ∧ E(u′, u) = E(v′, v) =
n) ∧ ∀u′ < u ∀v′ < v(E(u′, u) = E(v′, v) = n → (C(u′, v′) 6= x ∨
C(u, v) 6= x))]}.
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The model of φ that we have in mind is the model (ω1, ω, <, c, e) where
c(α, β) = [αβ]∗ and e : [ω1]2 −→ ω is any mapping such that e(α, γ) 6=
e(β, γ) whenever α < β < γ (e.g. we can take e = ρ̄1 or e = ρ̄). The
sentence φ7 is simply saying that for every ξ < ω1 and every uncountable
family A of pairwise disjoint unordered pairs of countable ordinals there
exist a 6= b in A such that

c(min a, min b) = c(max a, max b) = ξ.

This is a consequence of Lemma 4.5 and the fact that Sξ = {α : α∗ = ξ}
is a stationary subset of ω1. These are the properties of [··] and ∗ which
we have used in the proof of Lemma 4.7 in order to prove that (ω1, [··], ∗)
is a rigid structure. So a quite analogous proof will show that any model
(M, N, <, C, E) of φ must be rigid. a

The crucial property of [··] stated in Lemma 4.5 can also be used to
provide a negative answer to the basis problem for uncountable graphs by
constructing a large family of pairwise orthogonal uncountable graphs.

4.9 Definition. For a subset Γ of ω1, let GΓ be the graph whose vertex-set
is ω1 and whose edge-set is equal to {{α, β} : [αβ] ∈ Γ}.

4.10 Lemma. If the symmetric difference between Γ and ∆ is a stationary
subset of ω1, then the corresponding graphs GΓ and G∆ are orthogonal to
each other, i.e. they do not contain uncountable isomorphic subgraphs. a

We have seen above that comparing [··] with a map π : ω1 −→ I where
I is some set of mathematical objects/requirements in such a way that
each object/requirement is given a stationary preimage, gives us a way to
meet each of these objects/requirements in the square of any uncountable
subset of ω1. This observation is the basis of all known applications of the
square-bracket operation. A careful choice of I and π : ω1 −→ I gives us a
projection of the square-bracket operation that can be quite useful. So let
us illustrate this on yet another example.

4.11 Definition. Let H be the collection of all maps h : 2n −→ ω1 where
n is a positive integer denoted by n(h). Choose a mapping π : ω1 −→ H
which takes each value from H stationarily many times. Choose also a one-
to-one sequence rα (α < ω1) of elements of the Cantor set 2ω. Note that

both these objects can actually be defined in our basic structure (ω1, ω, ~C).
Consider the following projection of the square-bracket operation:

[[αβ]] = π([αβ])(rα�n(π([αβ]))).

It is easily checked that the property of [··] stated in Lemma 4.5 corre-
sponds to the following property of the projection [[αβ]]:
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4.12 Lemma. For every uncountable family A of pairwise disjoint finite
subsets of ω1, all of the same size n, and for every n-sequence ξ1, . . . , ξn

of countable ordinals there exist a and b in A such that [[a(i)b(i)]] = ξi for
i = 1, . . . , n. a

This projection of [··] leads to an interesting example of a Banach space
with ‘few’ operators, which we will now describe.

4.13 Theorem. There is a nonseparable reflexive Banach space E with the
property that every bounded linear operator T : E −→ E can be expressed
as T = λI + S where λ is a scalar, I the identity operator of E, and S an
operator with separable range.

Proof. Let I = 3 × [ω1]<ω and let us identify the index-set I with ω1,
i.e. pretend that [[··]] takes its values in I rather than ω1. Let [[··]]0 and [[··]]1
be the two projections of [[··]].

G = {G ∈ [ω1]<ω : [[αβ]]0 = 0 for all {α, β} ∈ [G]2},

H = {H ∈ [ω1]<ω : [[αβ]]0 = 1 for all {α, β} ∈ [H ]2}.

Let K be the collection of all finite sets {{αi, βi} : i < k} of pairs of
countable ordinals such that for all i < j < k:

(i) max{αi, βi} < min{αj , βj},

(ii) [[αiαj ]]0 = [[βiβj ]]0 = 2,

(iii) [[αiαj ]]1 = [[βiβj ]]1 = {αl : l < i} ∪ {βl : l < i}.

The following properties of G,H and K should be clear:

(1) G and H contain all the singletons, are closed under subsets and they
are 1-orthogonal to each other in the sense that G ∩ H contains no
doubleton.

(2) G and H are both 2-orthogonal to the family of the unions of members
of K.

(3) If K and L are two distinct members of K, then there are no more
than 5 ordinals α such that {α, β} ∈ K and {α, γ} ∈ L for some
β 6= γ.

(4) For every sequence {αξ, βξ} (ξ < ω1) of pairwise disjoint pairs of
countable ordinals there exist arbitrarily large finite sets Γ, ∆ ⊆ ω1

such that {αξ : ξ ∈ Γ} ∈ G, {βξ : ξ ∈ Γ} ∈ H and {{αξ, βξ} : ξ ∈
∆} ∈ K.
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For a function x from ω1 into R, set

‖x‖H,2 = sup{(
∑

α∈Hx(α)2)
1
2 : H ∈ H},

‖x‖K,2 = sup{(
∑

{α,β}∈K(x(α) − x(β))2)
1
2s : K ∈ K}.

Let ‖ · ‖ = max{‖ · ‖∞, ‖ · ‖H,2, ‖ · ‖K,2} and define Ē2 = {x : ‖x‖ < ∞}. Let
1α be the characteristic function of {α}. Finally, let E2 be the closure of
the linear span of {1α : α ∈ ω1} inside (Ē2, ‖ · ‖). The following facts about
the norm ‖ · ‖ are easy to establish using the properties of the families G,H
and K listed above.

(i) If x is supported by some G ∈ G, then ‖x‖ ≤ 2 · ‖x‖∞.

(ii) If x is supported by
⋃

K for some K in K, then ‖x‖ ≤ 10 · ‖x‖∞.

The role of the seminorm ‖ · ‖H,2 is to ensure that every bounded operator
T : E2 −→ E2 can be expressed as D + S, where D is a diagonal operator
relative to the basis12 1α (α < ω1) and where S has separable range.

Note that ‖x‖ ≤ 2‖x‖2 for all x ∈ `2(ω1). It follows that `2(ω1) ⊆ E2

and the inclusion is a bounded linear operator. Note also that `2(ω1) is a
dense subset of E2. Therefore E2 is a weak compactly generated space. For
example, W = {x ∈ `2(ω1) : ‖x‖2 ≤ 1} is a weakly compact subset of E2

and its linear span is dense in E2. To get a reflexive example out of E2 one
uses an interpolation method of Davis, Figiel, Johnson and Pelczynski [9] as
follows. Let pn be the Minkowski functional of the set 2nW +2−nBall(E2).13

Let
E = {x ∈ E2 : ‖x‖E = (

∑∞
n=0pn(x)2)

1
2 < ∞}.

By [9, Lemma 1], E is a reflexive Banach space and `2(ω1) ⊆ E ⊆ E2 are
continuous inclusions. Note that pn(x) < r iff x = y+z for some y ∈ E2 and
z ∈ `2(ω1) such that ‖y‖ < 2−nr and ‖z‖2 < 2nr. Then the reflexive version
of the space also has the property that every bounded operator T : E −→ E
has the form λI + S. a

4.14 Remark. The above example is reproduced from Wark [80] who based
his example on a previous construction due to Shelah and Steprans [54]. The
reader is referred to these sources and to [76] for more information.

We only mention yet another interesting application of the square-bracket
operation, given recently by Erdős, Jackson and Mauldin [18]:

4.15 Theorem. For every positive integer n there exist collections H and
X of hyperplanes and points of Rn, respectively, and a coloring P : H −→ ω
such that:

12Indeed it can be shown that 1α (α < ω1) is a ‘transfinite basis’ of E2 in the sense
of [55]. So every vector x of E2 has a unique representation as Σα<ω1

x(α)1α and the
projection operators Pβ : E2 → E2�β (β < ω1) are uniformly bounded.

13I.e. pn(x) = inf{λ > 0 : x ∈ λB}, where B denotes this set.
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(1) any n hyperplanes of distinct colors meet in at most one point,

(2) there is no coloring Q : X −→ ω such that for every H ∈ H there
exists at most n − 1 points x in X ∩ H such that Q(x) = P (H). a

Let us now introduce yet another projection of the square-bracket oper-
ation which has some universality properties.

4.16 Definition. Let H now be the collection of all maps h : 2n×2n −→ ω1

where n = n(h) < ω and let π be a mapping from ω1 onto H that takes
each of the values stationarily many times. Define a new operation on ω1

by
|αβ| = π([αβ])(rα�n(π([αβ])), rβ�n(π([αβ]))).

4.17 Lemma. For every positive integer n, every uncountable subset Γ of
ω1 and every symmetric n × n-matrix M of countable ordinals there is a
one-to-one φ : n −→ Γ such that |φ(i)φ(j)| = M(i, j) for i, j < n. a

5. A Square-Bracket Operation on a Tree

In this section we try to show that the basic idea of the square-bracket
operation on ω1 can perhaps be more easily grasped by working on an
arbitrary special Aronszajn tree rather than T (ρ0). So let T = 〈T, <T 〉 be
a fixed special Aronszajn tree and let a : T −→ ω be a fixed map witnessing
this, i.e. a mapping with the property that a−1({n}) is an antichain of T
for all n < ω. We shall assume that for every s, t ∈ T the greatest lower
bound s ∧ t exists in T . For t ∈ T and n < ω, set

Fn(t) = {s ≤T t : s = t or a(s) ≤ n}.

Finally, for s, t ∈ T with ht(s) ≤ ht(t), let

[st]T = min{v ∈ Fa(s∧t)(t) : ht(v) ≥ ht(s)}.

(If ht(s) ≥ |ht(t) we let [st]T = [ts]T .)
The following fact corresponds to Lemma 4.4 when T = T (ρ0).

5.1 Lemma. If X is an uncountable subset of T , the set of nodes of T of
the form [st]T for some s, t ∈ X intersects a closed and unbounded set of
levels of T . a

We do not give a proof of this fact as it is almost identical to the proof of
Lemma 4.4 which deals with the special case T = T (ρ0). But one can go fur-
ther and show that [··]T shares all the other properties of the square-bracket
operation [··] described in the previous section. Some of these properties,
however, are easier to visualize and prove in the general context. For exam-
ple, consider the following fact which in the case T = T (ρ0) is the essence
of Lemma 4.
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5.2 Lemma. Suppose A ⊆ T is an uncountable antichain and that for each
t ∈ A be given a finite set Ft of its successors. Then for every stationary
set Γ ⊆ ω1 there exists an arbitrarily large finite set B ⊆ A such that the
height of [xy]T belongs to Γ whenever x ∈ Fs and y ∈ Ft for some s 6= t in
B. a

Let us now examine in more detail the collection of graphs GΓ(Γ ⊆ ω1)
of 4.9 but in the present more general context.

5.3 Definition. For Γ ⊆ ω1, let KΓ = {{s, t} ∈ [T ]2 : ht([st]T ) ∈ Γ}.

Working as in 4.10 one shows that (T, KΓ) and (T, K∆) have no isomor-
phic uncountable subgraph whenever the symmetric difference between Γ
and ∆ is a stationary subset of ω1, i.e. whenever they represent different
members of the quotient algebra P(ω1)/NS. In particular, KΓ contains no
square [X ]2 of an uncountable set X ⊆ T whenever Γ contains no closed
and unbounded subset of ω1. The following fact is a sort of converse to this.
Its proof can be found in [76].

5.4 Lemma. If Γ contains a closed and unbounded subset of ω1 then there
is a proper forcing notion introducing an uncountable set X ⊆ T such that
[X ]2 ⊆ KΓ. a

5.5 Corollary. The graph KΓ contains the square of some uncountable sub-
set of T in some ω1-preserving forcing extension if and only if Γ is a sta-
tionary subset of ω1.

Proof. If Γ is disjoint from a closed and unbounded subset then in any ω1-
preserving forcing extension its complement ∆ = ω1 \Γ will be a stationary
subset of ω1. So by the basic property 5.1 of the square-bracket operation
no such a forcing extension will contain an uncountable set X ⊆ T such
that [X ]2 ⊆ KΓ. On the other hand, if Γ is a stationary subset of ω1, going
first to some standard ω1-preserving forcing extension in which Γ contains
a closed and unbounded subset of ω1 and then applying Lemma 5.4, we get
an ω1-preserving forcing extension having an uncountable set X ⊆ T such
that [X ]2 ⊆ KΓ. a

5.6 Remark. Corollary 5.5 gives us a further indication of the extreme
complexity of the class of graphs on the vertex-set ω1. It also bears some
relevance to the recent work of Woodin [84] who, working in his Pmax-forcing
extension, was able to associate a stationary subset of ω1 to any partition
of [ω1]2 into two pieces. So one may view Corollary 5.5 as some sort of
converse to this since in the Pmax-extension one is able to get a sufficiently
generic filter to the forcing notion P = PΓ of Lemma 5.4 that would give us
an uncountable X ⊆ T such that [X ]2 ⊆ KΓ. In other words, under a bit of
PFA or Woodin’s axiom (*), a set Γ ⊆ ω1 contains a closed and unbounded
subset of ω1 if and only if KΓ contains [X ]2 for some uncountable X ⊆ T .
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6. Special Trees and Mahlo Cardinals

One of the most basic questions frequently asked about set-theoretical trees
is the question whether they contain any cofinal branch, a branch that in-
tersects each level of the tree. The fundamental importance of this question
has already been realized in the work of Kurepa [35] and then later in the
works of Erdős and Tarski in their respective attempts to develop the theory
of partition calculus and large cardinals (see [20]). A tree T of height equal
to some regular cardinal θ may not have a cofinal branch for a very special
reason as the following definition indicates.

6.1 Definition. For a tree T = 〈T, <T 〉, a function f : T → T is regressive
if f(t) <T t for every t ∈ T that is not a minimal node of T. A tree T of
height θ is special if there is a regressive map f : T −→ T with the property
that the f -preimage of every point of T can be written as the union of < θ
antichains of T .

This definition in case θ = ω1 reduces indeed to the old definition of
special tree, a tree that can be decomposed into countably many antichains.
More generally we have the following:

6.2 Lemma. If θ is a successor cardinal then a tree T of height θ is special
if and only if T is the union of < θ antichains. a

The new definition, however, seems to be the right notion of speciality
as it makes sense even if θ is a limit cardinal.

6.3 Definition. A tree T of height θ is Aronszajn if T has no cofinal
branches and if every level of T has size < θ.

Recall the well-known characterization of weakly compact cardinals due
to Tarski and his collaborators: a strongly inaccessible cardinal θ is weakly
compact if and only if there are no Aronszajn trees of height θ. We supple-
ment this with the following:

6.4 Theorem. The following are equivalent for a strongly inaccessible car-
dinal θ:

(1) θ is Mahlo.

(2) there are no special Aronszajn trees of height θ.

Proof. Suppose θ is a Mahlo cardinal and let T be a given tree of height
θ all of whose levels have size < θ. To show that T is not special let
f : T −→ T be a given regressive mapping. By our assumption of θ there
is an elementary submodel M of some large enough structure Hκ such that
T, f ∈ M and λ = M ∩ θ is a regular cardinal < θ. Note that T �λ is a
subset of M and since this tree of height λ is clearly not special, there is an
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t ∈ T �λ such that the preimage f−1({t}) is not the union of < λ antichains.
Using the elementarity of M we conclude that f−1({t}) is actually not the
union of < θ antichains.

The proof that (2) implies (1) uses the method of minimal walks in a
rather crucial way. So suppose to the contrary that our cardinal contains a
closed and unbounded subset C consisting of singular strong limit cardinals.
Using C, we choose a C-sequence Cα (α < θ) such that: Cα+1 = {α},
Cα = (ᾱ, α) for α limit such that ᾱ = sup(C ∩α) < α but if α = sup(C ∩α)
then take Cα such that:

(a) tp(Cα) = cf(α) < min(Cα),

(b) ξ = sup(Cα ∩ ξ) implies ξ ∈ C,

(c) ξ ∈ Cα and ξ > sup(Cα ∩ ξ) imply that ξ = η + 1 for some η ∈ C.

Given the C-sequence Cα (α < θ) we have the notion of minimal walk along
the sequence and various distance functions defined above. In this proof we
are particularly interested in the function ρ0 from [θ]2 into the set Qθ of all
finite sequences of ordinals from θ:

ρ0(α, β) = 〈tp(Cβ ∩ α)〉aρ0(α, min(Cβ \ α))

where we stipulate that ρ0(γ, γ) = 0 for all γ < θ. We would like to show
that the tree

T (ρ0) = {(ρ0)β�α : α ≤ β < θ}

is a special Aronszajn tree of height θ. Note that the size of the αth level
(T (ρ0))α of T (ρ0) is controlled in the following way:

|(T (ρ0))α| ≤ |{Cβ ∩ α : α ≤ β < θ}| + |α + ω|. (I.4)

So under the present assumption that θ is a strongly inaccessible cardinal,
all levels of T (ρ0) do indeed have size < θ. It remains to define the regressive
map

f : T (ρ0) −→ T (ρ0)

that will witness speciality of T (ρ0). Note that it really suffices defining f
on all levels whose index belong to our club C of singular cardinals. So let
t = (ρ0)β�α be a given node of T such that α ∈ C and α ≤ β < θ. Note
that by our choice of the C-sequence every term of the finite sequence of
ordinals ρ0(α, β) is strictly smaller than α. So, if we let f(t) = t�pρ0(α, β)q,
where p·q is a standard coding of finite sequences of ordinals by ordinals,
we get a regressive map. To show that f is one-to-one on chains of T (ρ0),
which would be more than sufficient, suppose ti = (ρ0)βi

�αi (i < 2) are two
nodes such that t0 $ t1. Our choice of the C-sequence allows us to deduce
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the following general fact about the corresponding ρ0-function as in the case
θ = ω1 dealt with above in Lemma 1.11.

If α ≤ β ≤ γ, α is a limit ordinal, and if ρ0(ξ, β) = ρ0(ξ, γ)
for all ξ < α, then ρ0(α, β) = ρ0(α, γ).

Applying this to the triple of ordinals α0, β0 and β1 we conclude that
ρ0(α0, β0) = ρ0(α0, β1). Now observe another fact about the ρ0-function
whose proof is identical to that of θ = ω1 dealt with above in Lemma 1.10.

If α ≤ β ≤ γ then ρ0(α, γ) <r ρ0(β, γ).

Applying this to the triple α0 < α1 ≤ β1 we in particular have that
ρ0(α0, β1) 6= ρ0(α1, β1). Combining this with the above equality gives us
that ρ0(α0, β0) 6= ρ0(α1, β1) and therefore that f(t0) 6= f(t1). a

A similar argument gives us the following characterization of Mahlo car-
dinals due to Hajnal, Kanamori and Shelah [23] which improves a bit an
earlier characterization of this sort due to Schmerl [50]. Its proof can also
be found in [76].

6.5 Theorem. A cardinal θ is a Mahlo cardinal if and only if every regres-
sive map f defined on a cube [C]3 of a closed and unbounded subset of θ has
an infinite min-homogeneous set X ⊆ C.14

Starting from the case n = 1 one can now easily deduce the following
characterization also due to Hajnal, Kanamori and Shelah [23].

6.6 Theorem. The following are equivalent for an uncountable cardinal θ
and a positive integer n:

(1) θ is n-Mahlo.

(2) Every regressive map defined on [C]n+2 for some closed and unbounded
subset C of θ has an infinite min-homogeneous subset. a

The proof of Theorem 6.4 gives us the following well-known fact, first
established by Silver (see [40]) when θ is a successor of a regular cardinal,
which we are going to reprove now.

6.7 Theorem. If θ is a regular uncountable cardinal which is not Mahlo
in the constructible universe, then there is a constructible special Aronszajn
tree of height θ.

Proof. Working in L we choose a closed and unbounded subset C of θ
consisting of singular ordinals and a C-sequence Cα (α < θ) such that
Cα+1 = {α}, Cα = (ᾱ, α) when ᾱ = sup(C ∩ α) < α, while if α is a limit
point of C we take Cα to have the following properties:

14Recall, that X is min-homogeneous for f if f(α, β, γ) = f(α′, β′, γ′) for every pair
α < β < γ and < α′ < β′ < γ′ of triples of elements of X such that α = α′.
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(i) ξ = sup(Cα ∩ ξ) implies ξ ∈ C,

(ii) ξ > sup(Cα ∩ ξ) implies ξ = η + 1 for some η ∈ C.

We choose the C-sequence to also have the following crucial property:

(iii) |{Cα ∩ ξ : ξ ≤ α < θ}| ≤ |ξ| + ℵ0 for all ξ < θ.

It is clear then that the tree T (ρ0), where ρ0 is the ρ0-function of Cα (α < θ),
is a constructible special Aronszajn tree of height θ. a

We are also in a position to deduce the following well-known fact.

6.8 Theorem. The following are equivalent for a successor cardinal θ:

(a) There is a special Aronszajn tree of height θ.

(b) There is a C-sequence Cα (α < θ) such that tp(Cα) ≤ θ− for all α
and such that {Cα ∩ ξ : α < θ} has size ≤ θ− for all ξ < θ.

Proof. If Cα (α < θ) is a C-sequence satisfying (b) and if ρ0 is the associated
ρ0-function then T (ρ0) is a special Aronszajn tree of height θ. Suppose <T

is a special Aronszajn tree ordering on θ such that [θ− ·α, θ− · (α + 1)) is its
αth level. Let C be the club of ordinals < θ divisible by θ−. Let f : θ −→ θ−

be such that the f -preimage of every ordinal < θ− is an antichain of the
tree (θ, <T ). We choose a C-sequence Cα (α < θ) such that Cα+1 = {α},
Cα = (ᾱ, α) for α limit with the property that ᾱ = sup(C ∩α) < α, but if α
is a limit point of C we take Cα more carefully as follows: Cα = {αξ : ξ < η}
where

αλ = sup{αξ : ξ < λ} for λ limit < η,

α0 = the <T -predecessor of α with minimal f -image,

αξ+1 = the <T -predecessor of α with minimal f -image subject

to the requirement that f(αξ+1) > f(αζ+1) for all ζ < ξ,

η = the limit ordinal ≤ θ− where the process stops, i.e.

sup{f(αξ+1) : ξ < η} = θ−.

Note that if α and β are two limit points of C and if γ <T α, β then
Cα ∩ γ = Cβ ∩ γ. From this one concludes that the C-sequence is locally
small, i.e. that {Cα ∩ γ : γ ≤ α < θ} has size ≤ θ− for all γ < θ. a

6.9 Corollary. If θ<θ = θ then there exists a special Aronszajn tree of
height θ+. a

6.10 Corollary. In the constructible universe, special Aronszajn trees of
any regular uncountable non-Mahlo height exist. a
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6.11 Remark. In a large portion of the literature on this subject the notion
of a special Aronszajn tree of height equal to some successor cardinal θ+

is somewhat weaker, equivalent to the fact that the tree can be embedded
inside the tree {f : α −→ θ : α < θ & f is 1− 1}. One would get our notion
of speciality by restricting the tree on successor ordinals losing thus the
frequently useful property of a tree that different nodes of the same limit
height have different sets of predecessors. The result 6.9 in this weaker form
is due to Specker [56], while the result 6.10 is essentially due to Jensen [27].

7. The Weight Function on Successor

Cardinals

In this section we assume that θ = κ+ and we fix a C-sequence Cα (α < κ+)
such that

tp(Cα) ≤ κ for all α < κ+.

Let ρ1 : [κ+]2 −→ κ be defined recursively by

ρ1(α, β) = max{tp(Cβ ∩ α), ρ1(α, min(Cβ \ α))},

where we stipulate that ρ1(γ, γ) = 0 for all γ < κ+.

7.1 Lemma. |{ξ ≤ α : ρ1(ξ, α) ≤ ν}| ≤ |ν| + ℵ0 for all α < κ+ and ν < κ.

Proof. Let ν+ be the first infinite cardinal above the ordinal ν. The proof
of the conclusion is by induction on α. So let Γ ⊆ α be a given set of order-
type ν+. We need to find ξ ∈ Γ such that ρ1(ξ, α) > ν. This will clearly
be true if there is an ξ ∈ Γ such that tp(Cα ∩ ξ) > ν. So, we may assume
that tp(Cα ∩ ξ) ≤ ν for all ξ ∈ Γ. Then there must be an ordinal α1 ∈ Cα

such that Γ1 = {ξ ∈ Γ : α1 = min(Cα \ ξ)} has size ν+. By the inductive
hypothesis there is an ξ ∈ Γ1 such that, ρ1(ξ, α1) > ν ≥ tp(Cα ∩ ξ). It
follows that

ρ1(ξ, α) = max{tp(Cα ∩ ξ), ρ1(ξ, α1)} = ρ1(ξ, α1) > ν.

This finishes the proof. a

7.2 Lemma. If κ is regular, then {ξ ≤ α : ρ1(ξ, α) 6= ρ1(ξ, β)} has size < κ
for all α < β < κ+.

Proof. The proof is by induction on α and β. Let Γ ⊆ α be a given set
of order-type κ. We need to find ξ ∈ Γ such that ρ1(ξ, α) = ρ1(ξ, β). Let
γ = sup(Γ), γ0 = max(Cβ ∩ γ), and β0 = min(Cβ \ γ). Note that by our
assumption on κ and the C-sequence, these two ordinals are well-defined
and

γ0 < γ ≤ β0 < β.
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By Lemma 7.1 and the inductive hypothesis there is an ξ in Γ∩ (γ0, γ) such
that

ρ1(ξ, α) = ρ1(ξ, β0) > tp(Cβ ∩ γ).

It follows that Cβ ∩ γ = Cβ ∩ ξ and β0 = min(Cβ \ ξ), and so

ρ1(ξ, β) = max{tp(Cβ ∩ ξ), ρ1(ξ, β0)} = ρ1(ξ, β0) = ρ1(ξ, α).

a

7.3 Remark. The assumption about the regularity of κ in Lemma 7.2 is
essential. For example, it can be seen (see [5, p.72]) that the conclusion of
this lemma fails if κ is a singular limit of supercompact cardinals.

7.4 Definition. For κ regular, define ρ̄1 : [κ+]2 −→ κ by

ρ̄1(α, β) = 2ρ1(α,β) · (2 · tp{ξ ≤ α : ρ1(ξ, β) = ρ1(α, β)} + 1).

7.5 Lemma. If κ is a regular cardinal then

(a) ρ̄1(α, γ) 6= ρ̄1(β, γ) whenever α < β < γ < κ+,

(b) |{ξ ≤ α : ρ̄1(ξ, α) 6= ρ̄1(ξ, β)}| < κ whenever α < β < κ+. a

7.6 Remark. Note that Lemma 7.5 gives an alternative proof of Corollary
6.9 since under the assumption κ<κ = κ the tree T (ρ̄1) will have levels of
size at most κ. It should be noted that the coherent sequence (ρ̄)α (α < κ+)
of one-to-one mappings is an object of independent interest which can be
particularly useful in stepping-up combinatorial properties of κ to κ+. It
is also an object that has interpretations in such areas as the theory of
Čech-Stone compactifications of discrete spaces (see, e.g. [81], [8], [47], [34],
[14]). We have already noted that if κ is singular then we may no longer
have the coherence property of Lemma 7.2. To get this property, one needs
to make some additional assumption on the C-sequence Cα (α < κ+), an
assumption about the coherence of the C-sequence. This will be subject
of some of the following chapters where we will concentrate on the finer
function ρ rather than ρ1.

8. The Number of Steps

The purpose of this section is to isolate a condition on C-sequences Cα (α <
θ) on regular uncountable cardinals θ as weak as possible subject to a re-
quirement that the corresponding function

ρ2(α, β) = ρ2(α, min(Cβ \ α)) + 1

is in some sense nontrivial, and in particular, far from being constant. With-
out doubt the C-sequence Cα = α (α < θ) is the most trivial choice and
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the corresponding ρ0-function gives no information about the cardinal θ.
The following notion of the triviality of a C-sequence on θ seems to be only
marginally different.

8.1 Definition. A C-sequence Cα (α < θ) on a regular uncountable cardi-
nal θ is trivial if there is a closed and unbounded set C ⊆ θ such that for
every α < θ there is a β ≥ α with C ∩ α ⊆ Cβ .

The proof of the following fact can be found in [76].

8.2 Theorem. The following are equivalent for any C-sequence Cα (α < θ)
on a regular uncountable cardinal θ and the corresponding function ρ2:

(i) Cα (α < θ) is nontrivial.

(ii) For every family A of θ pairwise disjoint finite subsets of θ and every
integer n there is a subfamily B of A of size θ such that ρ2(α, β) > n
for all α ∈ a, β ∈ b and a 6= b in B. a

8.3 Corollary. Suppose that Cα (α < θ) is a nontrivial C-sequence and let
T (ρ0) be the corresponding tree (see Section 6 above). Then every subset of
T (ρ0) of size θ contains an antichain of size θ.

Proof. Consider a subset K of [θ]2 of size θ which gives us a subset of T (ρ0)
of size θ as follows: {(ρ0)β�(α + 1): {α, β} ∈ K}. Here, we are assuming
without loss of generality that the set consists of successor nodes of T (ρ0).
Clearly, we may also assume that the set takes at most one point from a
given level of T (ρ0). Shrinking K further, we obtain that ρ2 is constant on
K. Let n be the constant value of ρ2�K. Applying 8.2(ii) to K and n, we
get K0 ⊆ K of size θ such that ρ2(α, δ) > n for all {α, β} and {γ, δ} from K0

with properties α < β, γ < δ and α < γ. Then {(ρ0)β�(α+1): {α, β} ∈ K0}
is an antichain in T (ρ0). a

8.4 Remark. It should be clear that nontrivial C-sequences exist on any
successor cardinal. Indeed, with very little extra work one can show that
nontrivial C-sequences exist for some inaccessible cardinals quite high in the
Mahlo-hierarchy. To show how close this is to the notion of weak compact-
ness, we will give the following characterization of it which is of independent
interest.15

Similar arguments would prove the following result which gives us an
interesting characterization of weakly compact cardinals (see [76]).

8.5 Theorem. The following are equivalent for an inaccessible cardinal θ:

15It turns out that every C-sequence on θ being trivial is not quite as strong as the
weak compactness of θ. As pointed out to us by Donder and König, one can show this
using a model of Kunen [33, §3].
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(i) θ is weakly compact.

(ii) For every C-sequence Cα (α < θ) there is a closed and unbounded set
C ⊆ θ such that for all α < θ there is a β ≥ α with Cβ ∩ α = C ∩ α.a

We have already remarked that every successor cardinal θ = κ+ admits
a nontrivial C-sequence Cα (α < θ). It suffices to take the Cα’s to be all of
order-type ≤ κ. It turns out that for such a C-sequence the corresponding
ρ2-function has a property that is considerably stronger than 8.2(ii). The
proof of this can again be found in [76].

8.6 Theorem. For every infinite cardinal κ there is a C-sequence on κ+

such that the corresponding ρ2-function has the following unboundedness
property: for every family A of κ+ pairwise disjoint subsets of κ+, all of
size < κ, and for every n < ω there exists a B ⊆ A of size κ+ such that
ρ2(α, β) > n whenever α ∈ a and β ∈ b for some a 6= b in B. a

Theorems 8.2 and 8.6 admit the following variation.

8.7 Theorem. Suppose that a regular uncountable cardinal θ supports a
nontrivial C-sequence and let ρ2 be the associated function. Then for every
integer n and every pair of θ-sized families A0 and A1, where the members
of A0 are pairwise disjoint bounded subsets of θ and the members of A1 are
pairwise disjoint finite subsets of θ, there exist B0 ⊆ A0 and B1 ⊆ A1 of
size θ such that ρ2(α, β) > n whenever α ∈ a and β ∈ b for some a ∈ B0

and b ∈ B1 such that sup(a) < min(b). a

9. Square Sequences

9.1 Definition. A C-sequence Cα (α < θ) is a square-sequence if and only
if it is coherent, i.e. it has the property that Cα = Cβ ∩ α whenever α is a
limit point of Cβ .

Note that the nontriviality conditions appearing in Definition 8.1 and
Theorem 8.5 coincide in the realm of square-sequences:

9.2 Lemma. A square-sequence Cα (α < θ) is trivial if and only if there is
a closed and unbounded subset C of θ such that Cα = C ∩ α whenever α is
a limit point of C. a

To a given square-sequence Cα (α < θ) one naturally associates a tree
ordering <2 on θ as follows by letting α <2 β if and only if α is a limit point
of Cβ . The triviality of Cα (α < θ) is then equivalent to the statement that
the tree (θ, <2) has a chain of size θ. In fact, one can characterize the tree
orderings <T on θ for which there exists a square sequence Cα (α < θ) such
that for all α < β < θ,

α <T β if and only if α is a limit point of Cβ . (I.5)
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9.3 Lemma. A tree ordering <T on θ admits a square sequence Cα (α < θ)
satisfying (I.5) if and only if

(i) α <T β can hold only for limit ordinals α and β such that α < β,

(ii) Pβ = {α : α <T β} is a closed subset of β, which is unbounded in β
whenever cf(β) > ω and

(iii) minimal as well as successor nodes of the tree <T on θ are ordinals
of cofinality ω.

Proof. For each ordinal α < θ of countable cofinality we fix a subset Sα ⊆ α
of order-type ω cofinal with α. Given a tree ordering <T on θ with properties
(i)-(iii), for a limit ordinal β < θ let P +

β be the set of all successor nodes from

Pβ ∪ {β} including the minimal one. For α ∈ P +
β let α− be its immediate

predecessor in Pβ . Finally, set

Cβ = Pβ ∪
⋃
{Sα ∩ [α−, α) : α ∈ P+

β }.

It is easily checked that this defines a square-sequence Cβ (β < θ) with the
property that α <T β holds if and only if α is a limit point of Cβ . a

9.4 Remark. It should be clear that the proof of Lemma 9.3 shows that
the exact analogue of this result is true for any cofinality κ < θ rather than
just for the cofinality ω.

The most important result about square sequences is of course the fol-
lowing well-known result of Jensen [27].

9.5 Theorem. If a regular uncountable cardinal θ is not weakly compact in
the constructible subuniverse then there is a nontrivial square sequence on
θ which is moreover constructible. a

9.6 Corollary. If a regular uncountable cardinal θ is not weakly compact
in the constructible subuniverse then there is a constructible Aronszajn tree
on θ.

Proof. Let Cα (α < θ) be a fixed nontrivial square sequence which is con-
structible. Changing the Cα’s a bit, we may assume that if β is a limit
ordinal with α = min Cβ or if α ∈ Cβ but sup(Cβ∩α) < α then α must be a
successor ordinal in θ. Consider the corresponding function ρ0 : [θ]2 −→ Qθ

ρ0(α, β) = tp(Cβ ∩ α)aρ0(α, min(Cβ \ α)),

where ρ0(γ, γ) = ∅ for all γ < θ. Consider the tree

T (ρ0) = {(ρ0)β�α : α ≤ β < θ}.
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Clearly T (ρ0) is constructible. By (I.4) the αth level of T (ρ0) is bounded
by the size of the set {Cβ ∩ α : β ≥ α}. Since the intersection of the form
Cβ ∩ α is determined by its maximal limit point modulo a finite subset of
α, we conclude that the αth level of T (ρ0) has size ≤ |α| + ℵ0. Since the
sequence Cα (α < θ) is nontrivial, the proof of Theorem 8.5 shows that
T (ρ0) has no cofinal branches. a

9.7 Lemma. Suppose Cα (α < θ) is a square sequence on θ, <2 the as-
sociated tree ordering on θ and T (ρ0) = {(ρ0)β�α : α ≤ β < θ} where
ρ0 : [θ]2 −→ Qθ is the associated ρ0-function. Then α 7−→ (ρ0)α is a
strictly increasing map from the tree (θ, <2) into the tree T (ρ0).

Proof. If α is a limit point of Cβ then Cα = Cβ ∩α so the walks α → ξ and
β → ξ for ξ < α get the same code ρ0(ξ, α) = ρ0(ξ, β). a

The purpose of this section, however, is to analyze a family of ρ-functions
associated with a square sequence Cα (α < θ) on some regular uncountable
cardinal θ, both fixed from now on. Recall that an ordinal α divides an
ordinal γ if there is a β such that γ = α·β, i.e. γ can be written as the
union of an increasing β-sequence of intervals of type α. Let κ ≤ θ be a
fixed infinite regular cardinal. Let Λκ : [θ]2 −→ θ be defined by

Λκ(α, β) = max{ξ ∈ Cβ ∩ (α + 1) : κ divides tp(Cβ ∩ ξ)}.

Finally, we are ready to define the main object of study in this section:

ρκ : [θ]2 −→ κ

defined recursively by

ρκ(α, β) = sup{tp(Cβ ∩ [Λκ(α, β), α)), ρκ(α, min(Cβ \ α)),

ρκ(ξ, α) : ξ ∈ Cβ ∩ [Λκ(α, β), α)},

where we stipulate that ρκ(γ, γ) = 0 for all γ.
The following consequence of the coherence property of Cα (α < θ) will

be quite useful.

9.8 Lemma. If α is a limit point of Cβ then ρκ(ξ, α) = ρκ(ξ, β) for all
ξ < α. a

Note that ρκ is something that corresponds to the function ρ : [ω1]2 −→ ω
considered in Definition 2.1 (see also Section 11) and that the ρκ’s are simply
various local versions of the key definition. It turs out that they all have
the crucial subadditive properties (see [76]).

9.9 Lemma. If α < β < γ < θ then

(a) ρκ(α, γ) ≤ max{ρκ(α, β), ρκ(β, γ)},
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(b) ρκ(α, β) ≤ max{ρκ(α, γ), ρκ(β, γ)}. a

The following is an immediate consequence of the fact that the definition
of ρκ is closely tied to the notion of a walk along the fixed square sequence.

9.10 Lemma. ρκ(α, γ) ≥ ρκ(α, β) whenever α ≤ β ≤ γ and β belongs to
the trace of the walk from γ to α. a

9.11 Lemma. Suppose β ≤ γ < θ and that β is a limit ordinal > 0. Then
ρκ(α, γ) ≥ ρκ(α, β) for coboundedly many α < β.

Proof. Let γ = γ0 > γ1 > . . . > γn−1 > γn = β be the trace of the walk
from γ to β. Let γ̄ = γn−1 if β is a limit point of Cγn−1

, otherwise let γ̄ = β.
Note that by Lemma 9.8, in any case we have that

ρκ(α, β) = ρκ(α, γ̄) for all α < β. (I.6)

Let β̄ < β be an upper bound of all Cγi
∩ β (i < n) which are bounded in

β. Then γ̄ is a member of the trace of any walk from γ to some ordinal α
in the interval [β̄, β). Applying Lemma 9.10 to this fact gives us

ρκ(α, γ) ≥ ρκ(α, γ̄) for all α ∈ [β̄, β).

Since ρκ(α, γ̄) = ρκ(α, β) for all α < β (see (I.6)), this gives us the conclu-
sion of the lemma. a

The proof of the following lemma can be found in [76].

9.12 Lemma. The set P κ
ν (β) = {ξ < β : ρκ(ξ, β) ≤ ν} is a closed subset of

β for every β < θ and ν < κ. a

For α < β < θ and ν < κ set

α <κ
ν β if and only if ρκ(α, β) ≤ ν.

9.13 Lemma.

(1) <κ
ν is a tree ordering on θ,

(2) <κ
ν⊆<κ

µ whenever ν < µ < κ,

(3) ∈�(θ × θ) =
⋃

ν<κ <κ
ν .

Proof. This follows immediately from Lemma 9.9. a

Recall the notion of a special tree of height θ from Section 6, a tree T for
which one can find a T -regressive map f : T −→ T with the property that
the preimage of any point is the union of < θ antichains. By a tree on θ
we mean a tree of the form (θ, <T ) with the property that α <T β implies
α < β.
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9.14 Lemma. If a tree T naturally placed on θ is special, then there is an
ordinal-regressive map f : θ −→ θ and a closed and unbounded set C ⊆ θ
such that f is one-to-one on all chains separated by C.

Proof. Let g : θ −→ θ be a T -regressive map such that for each ξ < θ the
preimage g−1({ξ}) can be written as a union of a sequence Aδ(ξ) (δ < λξ) of
antichains, where λξ < θ. Let C be the collection of all limit α < θ with the
property that λξ < α for all ξ < α. Choose an ordinal-regressive f : θ −→ θ
as follows. If there is a δ ∈ C such that g(α) < δ ≤ α, then f(α) is smaller
than the minimal member of C above g(α), f(α) codes in some standard
way the ordinal g(α) as well as the index δ of the antichain Aδ(g(α)) to
which α belongs, and f(α) /∈ C. If no member of C separates g(α) and α,
let f(α) be the maximal member of C that is smaller than α. a

By Lemma 9.13 we have a sequence <κ
ν (ν < κ) of tree orderings on θ.

The following lemma tells us that they are frequently quite large orderings.

9.15 Lemma. If θ > κ is not a successor of a cardinal of cofinality κ then
there must be ν < κ such that (θ, <κ

ν ) is a nonspecial tree on θ.

Proof. Suppose to the contrary that all trees are special. By Lemma 9.14
we may choose ordinal-regressive maps fν : θ −→ θ for all ν < κ and a
single closed and unbounded set C ⊆ θ such that each of the maps fν is
one-to-one on <κ

ν -chains separated by C. Using the Pressing Down Lemma
we find a stationary set Γ of cofinality κ+ ordinals < θ and λ < θ such that
fν(γ) < λ for all γ ∈ Γ and ν < κ. If |λ|+ < θ, let ∆ = λ, Γ = Γ0 and if
|λ|+ = θ, represent λ as the increasing union of a sequence ∆ξ (ξ < cf(|λ|))
of sets of size < |λ|. Since κ 6= cf(|λ|) there is a ξ̄ < cf(|λ|) and a stationary
Γ0 ⊆ Γ such that for all γ ∈ Γ0, fν(γ) ∈ ∆ξ̄ for κ many ν < κ. Let ∆ = ∆ξ̄.
This gives us subsets ∆ and Γ0 of θ such that

(1) |∆|+ < θ and Γ0 is stationary in θ,

(2) Σγ = {ν < κ : fν(γ) ∈ ∆} is unbounded in κ for all γ ∈ Γ0.

Let θ̄ = κ+ · |∆|+. Then θ̄ < θ and so we can find β ∈ Γ0 such that
Γ0 ∩ C ∩ β has size θ̄. Then there will be ν0 < κ and Γ1 ⊆ Γ0 ∩ C ∩ β of
size θ̄ such that ρκ(α, β) ≤ ν0 for all α ∈ Γ1. By (2) we can find Γ2 ⊆ Γ1 of
size θ̄ and ν1 ≥ ν0 such that fν1

(α) ∈ ∆ for all α ∈ Γ2. Note that Γ2 is a
<κ

ν1
-chain separated by C, so fν1

is one-to-one on Γ2. However, this gives
us the desired contradiction since the set ∆, in which fν1

embeds Γ2 has
size smaller than the size of Γ2. This finishes the proof. a

It is now natural to ask the following question: under which assumption
on the square sequence Cα (α < θ) can we conclude that neither of the trees
(θ, <κ

ν ) will have a branch of size θ?



9. Square Sequences 45

9.16 Lemma. If the set Γκ = {α < θ : tp Cα = κ} is stationary in θ, then
none of the trees (θ, <κ

ν ) has a branch of size θ.

Proof. Assume that B is a <κ
ν -branch of size θ. By Lemma 9.12, B is a

closed and unbounded subset of θ. Pick a limit point β of B which belongs
to Γκ. Pick α ∈ B ∩ β such that tp(Cβ ∩ α) > ν. By definition of ρκ(α, β)
we have that ρκ(α, β) ≥ tp(Cβ ∩ α) > ν since clearly Λκ(α, β) = 0. This
contradicts the fact that α <κ

ν β and finishes the proof. a

9.17 Definition. A square sequence on θ is special if the corresponding
tree (θ, <2) is special, i.e. there is a <2-regressive map f : θ −→ θ with the
property that the f -preimage of every ξ < θ is the union of < θ antichains
of (θ, <2).

9.18 Theorem. Suppose κ < θ are regular cardinals such that θ is not
a successor of a cardinal of cofinality κ. Then to every square sequence
Cα (α < θ) for which there exist stationarily many α such that tp Cα = κ,
one can associate a sequence Cαν (α < θ, ν < κ) such that:

(i) Cαν ⊆ Cαµ for all α and ν ≤ µ,

(ii) α =
⋃

ν<κ Cαν for all limit α,

(iii) Cαν (α < θ) is a nonspecial (and nontrivial) square sequence on θ for
all ν < κ.

Proof. Fix ν < κ and define Cαν by induction on α < θ. So suppose β is a
limit ordinal < θ and that Cαν is defined for all α < β. If P κ

ν (β) is bounded
in β, let β̄ be the maximal limit point of P κ

ν (β) (β̄ = 0 if the set has no
limit points) and let

Cβν = Cβ̄ν ∪ P κ
ν (β) ∪ (Cβ ∩ [max(P κ

ν (β)), β)).

If P κ
ν (β) is unbounded in β, let

Cβν = P κ
ν (β) ∪

⋃
{Cαν : α ∈ P κ

ν (β) and α = sup(P κ
ν (β) ∩ α)}.

By Lemmas 9.9 and 9.12, Cβν (β < θ) is well defined and it forms a square
sequence on θ. The properties (i) and (ii) are also immediate. To see that
for each ν < κ the sequence Cβν (β < θ) is nontrivial, one uses Lemma
9.16 and the fact that if α is a limit point of Cβν occupying a place in Cβν

that is divisible by κ, then α <κ
ν β. By Lemma 9.15, or rather its proof, we

conclude that there is a ν̄ < κ such that Cβν (β < θ) is nonspecial for all
ν ≥ ν̄. This finishes the proof. a

The following facts whose proof can be found in [76] gives us a square
sequence satisfying the hypothesis of Lemma 9.18.
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9.19 Lemma. For every pair of regular cardinals κ < θ, every special square
sequence Cα (α < θ) can be refined to a square sequence C̄α (α < θ) with
the property that tp C̄α = κ for stationarily many α < θ. a

Finally we can state the main result of this section which follows from
Theorem 9.18 and Lemma 9.19.

9.20 Theorem. A regular uncountable cardinal θ 6= ω1 carries a nontriv-
ial square sequence iff it also carries such a sequence which is moreover
nonspecial. a

9.21 Corollary. If a regular uncountable cardinal θ 6= ω1 is not weakly com-
pact in the constructible subuniverse then there is a nonspecial Aronszajn
tree of height θ.

Proof. By Theorem 9.5, θ carries a nontrivial square sequence Cα (α < θ).
By Theorem 9.20 we may assume that the sequence is moreover nonspecial.
Let ρ0 be the associated ρ0-function and consider the tree T (ρ0). As in
Corollary 9.6 we conclude that T (ρ0) is an Aronszajn tree of height θ. By
Lemma 9.7 there is a strictly increasing map from (θ, <2) into T (ρ0), so
T (ρ0) must be nonspecial. a

9.22 Remark. The assumption θ 6= ω1 in Theorem 9.20 is essential as
there is always a nontrivial square sequence on ω1 but it is possible to have
a situation where all Aronszajn trees on ω1 are special. For example MAω1

implies this. In [37], Laver and Shelah have shown that any model with a
weakly compact cardinal admits a forcing extension satisfying CH and the
statement that all Aronszajn trees on ω2 are special. A well-known open
problem in this area asks whether one can have GCH rather than CH in a
model where all Aronszajn trees on ω2 are special.

10. The Full Lower Trace of a Square Sequence

In this section θ is a regular uncountable cardinal and Cα (α < θ) is a
nontrivial square sequence on θ. Recall the function Λ = Λω : [θ]2 −→ θ:

Λ(α, β) = maximal limit point of Cβ ∩ (α + 1).

(Λ(α, β) = 0 if Cβ ∩ (α + 1) has no limit points.)
The purpose of this section is to study the following recursive trace for-

mula, describing a mapping F : [θ]2 −→ [θ]<ω :

F(α, β) = F(α, min(Cβ \ α)) ∪
⋃
{F(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

where F(γ, γ) = {γ} for all γ.
As in the case θ = ω1, the full lower trace has the following two properties

(see [76]).
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10.1 Lemma. For all α ≤ β ≤ γ,

(a) F(α, γ) ⊆ F(α, β) ∪ F(β, γ),

(b) F(α, β) ⊆ F(α, γ) ∪ F(β, γ). a

10.2 Lemma. For all α ≤ β ≤ γ,

(a) ρ0(α, β) = ρ0(min(F(β, γ) \ α), β)aρ0(α, min(F(β, γ) \ α)),

(b) ρ0(α, γ) = ρ0(min(F(β, γ) \ α), γ)aρ0(α, min(F(β, γ) \ α)). a

Recall the function ρ2 : [θ]2 −→ ω which counts the number of steps in
the walk along the fixed C-sequence Cα (α < θ) which in this section is
assumed to be moreover a square sequence:

ρ2(α, β) = ρ2(α, min(Cβ \ α)) + 1,

where we let ρ2(γ, γ) = 0 for all γ. Thus ρ2(α, β) + 1 is simply equal to the
cardinality of the trace Tr(α, β) of the minimal walk from β to α.

10.3 Lemma. supξ<α|ρ2(ξ, α) − ρ2(ξ, β)| < ∞ for all α < β < θ.

Proof. By Lemma 10.2, supξ<α|ρ2(ξ, α)−ρ2(ξ, β)| is less than or equal than
supξ∈F (α,β)|ρ2(ξ, α) − ρ2(ξ, β)|. a

10.4 Definition. Set I to be the set of all countable Γ ⊆ θ such that
supξ∈∆ ρ2(ξ, α) = ∞ for all α < θ and infinite ∆ ⊆ Γ ∩ α.

10.5 Lemma. I is a P-ideal of countable subsets of θ.

Proof. Let Γn (n < ω) be a given sequence of members of I and fix β < θ
such that Γn ⊆ β for all n. For n < ω set Γ∗

n = {ξ ∈ Γn : ρ2(ξ, β) ≥ n}.
Since Γn belongs to I, Γ∗

n is a cofinite subset of Γn. Let Γ∞ =
⋃

n<ω Γ∗
n.

Then Γ∞ is a member of I such that Γn \ Γ∞ is finite for all n. a

10.6 Theorem. The P-ideal dichotomy implies that a nontrivial square
sequence can exist only on θ = ω1.

Proof. Applying the P-ideal dichotomy on I from 10.4 we get the two al-
ternatives (see 3.9):

(1) there is an uncountable ∆ ⊆ θ such that [∆]ω ⊆ I, or

(2) there is a decomposition θ =
⋃

n<ω Σn such that Σn ⊥I for all n.

By Lemma 10.3, if (1) holds, then ∆∩α must be countable for all α < θ and
so the cofinality of θ must be equal to ω1. Since we are working only with
regular uncountable cardinals, we see that (1) gives us that θ = ω1 must
hold. Suppose now (2) holds and pick k < ω such that Σk is unbounded
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in θ. Since Σk ⊥I we have that (ρ2)α is bounded on Σk ∩ α for all α < θ.
So there is an unbounded set Γ ⊆ θ and an integer n such that for each
α ∈ Γ the restriction of (ρ2)α on Σk ∩ α is bounded by n. By Theorem 8.2
we conclude that the square sequence Cα (α < θ) we started with must be
trivial. a

10.7 Definition. By Sθ we denote the sequential fan with θ edges, i.e. the
space on (θ × ω)∪ {∗} with ∗ as the only nonisolated point, while a typical
neighborhood of ∗ has the form Uf = {(α, n) : n ≥ f(α)} ∪ {∗} where
f : θ −→ ω.

The tightness of a point x in a space X is equal to θ if θ is the minimal
cardinal such that, if a set W ⊆ X \ {x} accumulates to x, then there is a
subset of W of size ≤ θ that accumulates to x.

10.8 Theorem. If there is a nontrivial square sequence on θ then the square
of the sequential fan Sθ has tightness equal to θ. a

The proof will be given after a sequence of definitions and lemmas.

10.9 Definition. Given a square sequence Cα (α < θ) and its number of
steps function ρ2 : [θ]2 −→ ω we define d : [θ]2 −→ ω by letting

d(α, β) = sup
ξ≤α

|ρ2(ξ, α) − ρ2(ξ, β)|.

10.10 Lemma. For all α ≤ β ≤ γ,

(a) ρ2(α, β) ≤ d(α, β),

(b) d(α, γ) ≤ d(α, β) + d(β, γ),

(c) d(α, β) ≤ d(α, γ) + d(β, γ).

Proof. The conclusion (a) follows from the fact that we allow ξ = α in the
definition of d(α, β). The conclusions (b) and (c) are consequences of the
triangle inequalities of the `∞-norm and the fact that in both inequalities
we have that the domain of functions on the left-hand side is included in
the domain of functions on the right-hand side. a

10.11 Definition. For γ ≤ θ, let

Wγ = {((α, d(α, β)), (β, d(α, β))) : α < β < γ}.

The following lemma establishes that the tightness of the point (∗, ∗) of
S2

θ is equal to θ, giving us the proof of Theorem 10.8.

10.12 Lemma. (∗, ∗) ∈ W̄θ but (∗, ∗) /∈ W̄γ for all γ < θ.
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Proof. To see that Wθ accumulates to (∗, ∗), let U2
f be a given neighborhood

of (∗, ∗). Fix an unbounded set Γ ⊆ θ on which f is constant. By Theorem
8.2 and Lemma 10.10(a) there exists an α < β in Γ such that d(α, β) ≥
f(α) = f(β). Then ((α, d(α, β)), (β, d(α, β))) belongs to the intersection
Wθ ∩ U2

f . To see that for a given γ < θ the set Wγ does not accumulate to
(∗, ∗), choose g : θ −→ ω such that

g(α) = 2d(α, γ) + 1 for α < γ.

Suppose Wγ ∩ U2
g is nonempty and choose ((α, d(α, β)), (β, d(α, β))) from

this set. Then

d(α, β) ≥ 2d(α, γ) + 1 and d(α, β) ≥ 2d(β, γ) + 1,

and so, d(α, β) ≥ d(α, γ) + d(β, γ) + 1, contradicting Lemma 10.10(c). a

Since θ = ω1 admits a nontrivial square sequence, Theorem 10.8 leads to
the following result of Gruenhage and Tanaka [22].

10.13 Corollary. The square of the sequential fan with ω1 edges is not
countably tight. a

10.14 Question. What is the tightness of the square of the sequential fan
with ω2 edges?

10.15 Corollary. If a regular uncountable cardinal θ is not weakly compact
in the constructible subuniverse then the square of the sequential fan with θ
edges has tightness equal to θ. a

11. Special Square Sequences

The following well-known result of Jensen [27] supplements the correspond-
ing result for weakly compact cardinals listed above as Theorem 9.5.

11.1 Theorem. If a regular uncountable cardinal θ is not Mahlo in the
constructible subuniverse then there is a special square sequence on θ which
is moreover constructible. a

Today we know many more inner models with sufficient amount of fine
structure necessary for building special square sequences. So the existence
of special square sequences, especially at successors of strong-limit singular
cardinals, is tied to the existence of some other large cardinal axioms. The
reader is referred to the relevant chapters of this Handbook for the specific
information. In this section we give the combinatorial analysis of walks
along special square sequences and the corresponding distance functions.
Let us start by restating some results of Section 9.
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11.2 Theorem. Suppose κ < θ are regular cardinals and that θ carries a
special square sequence. Then there exist Cαν (α < θ, ν < κ) such that:

(1) Cαν ⊆ Cαµ for all α and ν < µ,

(2) α =
⋃

ν<κ Cα for all limit α,

(3) Cαν (α < θ) is a nontrivial square sequence on θ for all ν < κ.

Moreover, if θ is not a successor of a cardinal of cofinality κ then each of
the square sequences can be chosen to be nonspecial. a

11.3 Theorem. Suppose κ < θ are regular cardinals and that θ carries a
special square sequence. Then there exist <ν (ν < κ) such that:

(i) <ν is a closed tree ordering of θ for each ν < κ,

(ii) ∈�(θ × θ) =
⋃

ν<κ <ν ,

(iii) no tree (θ, <ν) has a chain of size θ. a

11.4 Lemma. The following are equivalent when θ is a successor of some
cardinal κ:

(1) there is a special square sequence on θ,

(2) there is a square sequence Cα (α < θ) such that tp(Cα) ≤ κ for all
α < θ.

Proof. Let Dα (α < κ+) be a given special square sequence. By Lemma 6.2
the corresponding tree (κ+, <2) can be decomposed into κ antichains so let
f : κ+ −→ κ be a fixed map such that f−1({ξ}) is a <2-antichain for all
ξ < κ. Let α < κ+ be a given limit ordinal. If Dα has a maximal limit point
ᾱ < α, let Cα = Dα \ ᾱ. Suppose now that {ξ : ξ <2 α} is unbounded in
α and define a strictly increasing continuous sequence cα(ξ) (ξ < ν(α)) of
its elements as follows. Let cα(0) = min{ξ : ξ <2 α}, cα(η) = supξ<ηcα(ξ)
for η limit, and cα(ξ + 1) is the minimal <2-predecessor γ of α such that
γ > cα(ξ) and has the minimal f -image among all <2-predecessors that are
> cα(ξ). The ordinal ν(α) is defined as the place where the process stops,
i.e. when α = supξ<ν(α)cα(ξ). Let Cα = {cα(ξ) : ξ < ν(α)}. It is easily

checked that this gives a square sequence Cα (α < κ+) with the property
that tp(Cα) ≤ κ for all α < κ+. a

Square sequences Cα (α < κ+) that have the property tp(Cα) ≤ κ for
all α < κ+ are usually called �κ-sequences. So let Cα (α < κ+) be a
�κ-sequence fixed from now on. Let

Λ(α, β) = maximal limit point of Cβ ∩ (α + 1)
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when such a limit point exists; otherwise Λ(α, β) = 0. The purpose of this
section is to analyze the following distance function:

ρ : [κ+]2 −→ κ

defined recursively by

ρ(α, β) = max{tp(Cβ ∩ α), ρ(α, min(Cβ \ α)),

ρ(ξ, α) : ξ ∈ Cβ ∩ [Λ(α, β), α)},

where we stipulate that ρ(γ, γ) = 0 for all γ < κ+. Clearly ρ(α, β) ≥
ρ1(α, β), so by Lemma 7.1 we have

11.5 Lemma. |{ξ ≤ α : ρ(ξ, α) ≤ ν}| ≤ |ν| + ℵ0 for α < κ+ and ν < κ. a

The following two crucial subadditive properties of ρ have proofs that are
almost identical to the proofs of the corresponding properties of, say, the
function ρω discussed above in Section 9.

11.6 Lemma. For all α ≤ β ≤ γ,

(a) ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

(b) ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}. a

The following immediate fact will also be quite useful.

11.7 Lemma. If α is a limit point of Cβ, then ρ(ξ, α) = ρ(ξ, β) for all
ξ < α. a

The following as well is an immediate consequence of the fact that the
definition of ρ is closely tied to the notion of a minimal walk along the
square sequence.

11.8 Lemma. ρ(α, γ) ≥ max{ρ(α, β), ρ(β, γ)} whenever α ≤ β ≤ γ and β
belongs to the trace of the walk from γ to α. a

Using Lemmas 11.7 and 11.8 one proves the following fact exactly as in
the case of ρκ of Section 9 (the proof of Lemma 9.11).

11.9 Lemma. If 0 < β ≤ γ and β is a limit ordinal, then there is a β̄ < β
such that ρ(α, γ) ≥ ρ(α, β) for all α in the interval [β̄, β). a

The proof of the following fact is also completely analogous to the proof
of the corresponding fact for the local version ρκ considered above in Section
9 (the proof of Lemma 9.12).

11.10 Lemma. Pν(γ) = {β < γ : ρ(β, γ) ≤ ν} is a closed subset of γ for
all γ < κ+ and ν < κ. a

The discussion of ρ : [κ+]2 −→ κ now splits naturally into two cases
depending on whether κ is a regular or a singular cardinal (with the case
cf(κ) = ω of special importance).
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12. Successors of Regular Cardinals

In this section, κ is a fixed regular cardinal, Cα (α < κ+) a fixed �κ-
sequence and ρ : [κ+]2 −→ κ the corresponding ρ-function. For ν < κ and
α < β < κ+ set

α <ν β if and only if ρ(α, β) ≤ ν.

The following is an immediate consequence of the analysis of ρ given in
the previous section.

12.1 Lemma.

(a) <ν is a closed tree ordering of κ+ of height ≤ κ for all ν < κ,

(b) <ν⊆<µ whenever ν ≤ µ < κ,

(c) ∈�(κ+ × κ+) =
⋃

ν<κ <ν . a

The following result shows that these trees have some properties of small-
ness not covered by statements of Lemma 12.1.

12.2 Lemma. If κ > ω, then no tree (κ+, <ν) has a branch of size κ.

Proof. Suppose towards a contradiction that some tree (κ+, <ν) does have
a branch of size κ and let B be one such fixed branch (maximal chain). By
Lemmas 11.5 and 11.10, if γ = sup(B) then B is a closed and unbounded
subset of γ of order-type κ. Since κ is regular and uncountable, Cγ ∩ B
is unbounded in Cγ , so in particular we can find α ∈ Cγ ∩ B such that
tp(Cγ ∩ α) > ν. Reading off the definition of ρ(α, γ) we conclude that
ρ(α, β) = tp(Cγ ∩ α) > ν. Similarly we can find a β > α belonging to the
intersection of lim(Cγ) and B. Then Cβ = Cγ ∩ β so α ∈ Cβ and therefore
ρ(α, β) = tp(Cβ ∩ α) > ν contradicting the fact that α <ν β. a

A tree of height κ is Souslin if all of its chains and antichains are of
cardinality less than κ.

12.3 Lemma. If κ > ω, then no tree (κ+, <ν) has a tree of height κ which
is Souslin subtree.

Proof. Forcing with subtree of (κ+, <ν) of height κ which is Souslin would
produce an ordinal γ of cofinality κ and a closed and unbounded subset B
of Cγ forming a chain of the tree (κ+, <ν). It is well-known that in this
case B would contain a ground model subset of size κ, contradicting Lemma
12.2. a

12.4 Lemma. If κ > ω then for every ν < κ and every family A of κ
pairwise disjoint finite subsets of κ+ there exists an A0 ⊆ A of size κ such
that for all a 6= b in A0 and all α ∈ a, β ∈ b we have ρ(α, β) > ν.
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Proof. We may assume that for some n and all a ∈ A we have |a| = n.
Let a(0), . . . , a(n − 1) enumerate a given element a of A increasingly. By
Lemma 12.3, shrinking A we may assume that a(i) (a ∈ A) is an antichain
of (κ+, <ν) for all i < n. Going to a subfamily of A of equal size we may
assume to have a well-ordering <w of A with the property that if a <w b
then no node from a is above a node from b in the tree ordering <ν . Define
f : [A]2 −→ {0} ∪ (n × n) by letting f(a, b) = 0 if a ∪ b is an <ν-antichain;
otherwise, assuming a <w b, let f(a, b) = (i, j) where (i, j) is the minimal
pair such that a(i) <ν b(j). By the Dushnik-Miller partition theorem ([15]),
either there exists an A0 ⊆ A of size κ such that f is constantly equal to
0 on [A0]2 or there exist (i, j) ∈ n × n and an infinite A1 ⊆ A such that
f is constantly equal to (i, j) on [A1]2. The first alternative is what we
want, so let us see that the second one is impossible. Otherwise, choose
a <w b <w c in A1. Then a(i) and b(i) are both <ν-dominated by c(j),
so they must be <ν-comparable, contradicting our initial assumption about
A. This completes the proof. a

The unboundedness property of Lemma 12.4 can be quite useful in de-
signing forcing notions satisfying good chain conditions. Having such ap-
plications in mind, we now state a further refiniement of this kind of un-
boundedness property of the ρ-function. Its tedious proof can be found for
example in [76].

12.5 Lemma. Suppose κ > 0, let γ < κ+ and let {αξ, βξ} (ξ < κ) be a se-
quence of pairwise disjoint elements of [κ+]≤2. Then there is an unbounded
set Γ ⊆ κ such that ρ{αξ, βη} ≥ min{ρ{αξ, γ}, ρ{βη, γ}} for all ξ 6= η in
Γ.16 a

This lemma allows a further refinement as follows (see [76]). A cardinal
κ is λ-inaccessible if ντ < κ for all ν < κ and τ < λ.

12.6 Lemma. Suppose κ is λ-inaccessible for some λ < κ and that A is a
family of size κ of subsets of κ+, all of size < λ. Then for every ordinal
ν < κ there is a subfamily B of A of size κ such that for all a and b in B:

(a) ρ{α, β} > ν for all α ∈ a \ b and β ∈ b \ a.

(b) ρ{α, β} ≥ min{ρ{α, γ}, ρ{β, γ}} for all α ∈ a \ b, β ∈ b \ a and
γ ∈ a ∩ b. a

12.7 Definition. The set-mapping D : [κ+]2 −→ [κ+]<κ is defined by

D(α, β) = {ξ ≤ α : ρ(ξ, α) ≤ ρ(α, β)}.

16Here, and everywhere else later in this chapter, the convention is that, ρ{α, β} is
meant to be equal to ρ(α, β) if α < β, equal to ρ(β, α) if β < α, and equal to 0 if α = β.
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(Note that D(α, β) = {ξ ≤ α : ρ(ξ, β) ≤ ρ(α, β)}, so we could take the
formula

D{α, β} = {ξ ≤ min{α, β} : ρ(ξ, α) ≤ ρ{α, β}}

as our definition of D{α, β} when there is no implicit assumption about the
ordering between α and β as there is whenever we write D(α, β). )

12.8 Lemma. If κ is λ-inaccessible for some λ < κ, then for every family
A of size κ of subsets of κ+, all of size < λ, there exists a B ⊆ A of size κ
such that for all a and b in B and all α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b:

(a) α, β > γ =⇒ D{α, γ} ∪ D{β, γ} ⊆ D{α, β},

(b) β > γ =⇒ D{α, γ} ⊆ D{α, β},

(c) α > γ =⇒ D{β, γ} ⊆ D{α, β},

(d) γ > α, β =⇒ D{α, γ} ⊆ D{α, β} or D{β, γ} ⊆ D{α, β}.

Proof. Choose B ⊆ A of size κ satisfying the conclusion (b) of Lemma 12.6.
Pick a 6= b in B and consider α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b. By the
conclusion of 12.6(b), we have

ρ{α, β} ≥ min{ρ{α, γ}, ρ{β, γ}}. (I.7)

a. Suppose α, β > γ. Note that in this case a single inequality ρ(γ, α) ≤
ρ{α, β} or ρ(γ, β) ≤ ρ{α, β} given to us by (I.7) implies that we actually
have both inequalities simultaneously holding. The subadditivity of ρ gives
us ρ(ξ, α) ≤ ρ{α, β}, or equivalently ρ(ξ, β) ≤ ρ{α, β} for any ξ ≤ γ with
ρ(ξ, γ) ≤ ρ(γ, α) or ρ(ξ, γ) ≤ ρ(γ, β). This is exactly the conclusion of
12.8(a).

b. Suppose that β > γ > α. Using the subadditivity of ρ we see that
in both cases given to us by (I.7) we have that ρ(α, γ) ≤ ρ{α, β}. So the
inclusion D{α, γ} ⊆ D{α, β} follows immediately.

c. Suppose that α > γ > β. The conclusion D{β, γ} ⊆ D{α, β} follows
from the previous case by symmetry.

d. Suppose that γ > α, β. Then ρ(α, γ) ≤ ρ{α, β} gives D{α, γ} ⊆
D{α, β} while ρ(β, γ) ≤ ρ{α, β} gives us D{β, γ} ⊆ D{α, β}.

This completes the proof. a

12.9 Remark. Note that min{x, y} ∈ D{x, y} for every {x, y} ∈ [κ+]2, so
the conclusion (a) of Lemma 12.8 in particular means that γ < min{α, β}
implies γ ∈ D{α, β}. In applications, one usually needs this consequence of
12.8(a) rather than 12.8(a) itself.

12.10 Definition. The ∆-function of some family F of subsets of some
ordinal κ (respectively, a family of functions with domain κ) is the function
∆ : [F ]2 −→ κ defined by ∆(f, g) = min(f 4 g), (respectively, ∆(f, g) =
min{ξ : f(ξ) 6= g(ξ)}).
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Note the following property of ∆:

12.11 Lemma. ∆(f, g) ≥ min{∆(f, h), ∆(g, h)} for all {f, g, h} ∈ [F ]3. a

12.12 Remark. This property can be very useful when transferring objects
that live on κ to objects on F . This is especially interesting when F is of size
larger than κ while all of its restrictions F�ν = {f ∩ν : f ∈ F} (ν < κ) have
size < κ, i.e. when F is a Kurepa family (see for example [10]). We shall now
see that it is possible to have a Kurepa family F = {fα : α < κ+} whose
∆-function is dominated by ρ, i.e. ∆(fα, fβ) ≤ ρ(α, β) for all α < β < κ+.

12.13 Theorem. If �κ holds and κ is λ-inaccessible then there is a λ-
closed κ-cc forcing notion P that introduces a Kurepa family on κ.

Proof. Put p in P , if p is a one-to-one function from a subset of κ+ of size
< λ into the family of all subsets of κ of size < λ such that for all α and β
in dom(p):

p(α) ∩ p(β) is an initial part of p(α) and of p(β), (I.8)

∆(p(α), p(β)) ≤ ρ(α, β) provided that α 6= β. (I.9)

Let p ≤ q whenever dom(p) ⊇ dom(q) and p(α) ⊇ q(α) for all α ∈ dom(q).
Clearly P is a λ-closed forcing notion. The proof that P satisfies the κ-chain
condition, depends heavily on the properties of the set-mapping D and can
be found in [76]. a

Recall that a poset satisfies property K (for Knaster) if every uncountable
subset has a further uncountable subset consisting of pairwise compatible
elements.

12.14 Corollary. If �ω1
holds, and so in particular if ω2 is not a Mahlo

cardinal in the constructible universe, then there is a property K poset, forc-
ing the Kurepa hypothesis. a

12.15 Remark. This is a variation on a result of Jensen, namely that
under �ω1

there is a ccc poset forcing the Kurepa hypothesis. Veličković
[77] was the first to use the function ρ to reprove Jensen’s result though
his proof works only in case κ = ω1 and produces only a ccc poset rather
than a property K poset. It should also be noted that Jensen also proved
(see [28]) that in the Levy collapse of a Mahlo cardinal to ω2 there is no
ccc poset forcing the Kurepa hypothesis. We shall now see that ρ provides
sufficient ground for another well-known forcing construction, the forcing
construction of Baumgartner and Shelah [4] of a locally compact scattered
topology on ω2 all of whose Cantor-Bendixson ranks are countable.

12.16 Theorem. If �ω1
holds then there is a property K forcing notion that

introduces a locally compact scattered topology on ω2 all of whose Cantor-
Bendixson ranks are countable.
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Proof. Let P be the set of all p = 〈Dp,≤p, Mp〉 where Dp is a finite subset of
ω2, where ≤p is a partial ordering of Dp compatible with the well-ordering
and Mp : [Dp]2 −→ [ω2]<ω has the following properties:

(i) Mp{α, β} ⊆ D{α, β} ∩ Dp,

(ii) Mp{α, β} = {α} if α ≤p β and Mp{α, β} = {β} if β ≤p α,

(iii) γ ≤p α, β for all γ ∈ Mp{α, β},

(iv) for every δ ≤p α, β there is a γ ∈ Mp{α, β} such that δ ≤p γ.

We let p ≤ q if and only if Dp ⊇ Dq, ≤p�Dq =≤q and Mp�[Dq ]2 = Mq. To
verify that P satisfies property K one again relies heavily on the properties of
the function D. Full details about this can be found for example in [76]. a

12.17 Remark. A function f : [ω2]2 −→ [ω2]≤ω has property ∆ if for every
uncountable set A of finite subsets of ω2 there exist a and b in A such that
for all α ∈ a \ b, β ∈ b \ a and γ ∈ a ∩ b, α, β > γ implies γ ∈ f{α, β}, if
β > γ implies f{α, γ} ⊆ f{α, β}, and if α > γ implies f{β, γ} ⊆ f{α, β}.
This definition is due to Baumgartner and Shelah [4] who used it in their
forcing construction of the scattered topology on ω2. They were also able to
force a function with the property ∆ using a σ-closed ω2-cc poset. This part
of their result was reproved by Veličković (see [4, p.129]) who showed that
the function D{α, β} = {ξ ≤ min{α, β} : ρ(ξ, α) ≤ ρ{α, β}} has property
∆. We have seen above that D has many more properties of independent
interest which are likely to be needed in similar forcing constructions. The
reader is referred to papers of Koszmider [31] and Rabus [45] for further
work in this area.

13. Successors of Singular Cardinals

In the previous section we saw that the function ρ : [κ+]2 −→ κ defined
from a �κ-sequence Cα (α < κ+) can be quite a useful tool in stepping-up
objects from κ to κ+. In this section we analyse the stepping-up power of
ρ under the assumption that κ is a singular cardinal of cofinality ω. So let
κn (n < ω) be a strictly increasing sequence of regular cardinals converging
to κ fixed from now on. This immediately gives rise to a rather striking tree
decomposition <n (n < ω) of the ∈-relation on κ+:

α <n β if and only if ρ(α, β) ≤ κn. (I.10)

13.1 Lemma.

(1) ∈�(κ+ × κ+) =
⋃

n<ω <n,

(2) <n⊆<n+1,
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(3) (κ+, <n) is a tree of height ≤ κ+
n . a

13.2 Definition. Let Fn(α) = {ξ ≤ α : ρ(ξ, α) ≤ κn}, and let fα(n) =
tp(Fn(α)) for α < κ+ and n < ω. Let L = {fα : α < κ+}, considered as a
linearly ordered set with the lexicographical ordering.

Since L is a subset of ωκ, it has an order-dense subset of size κ, so
in particular it contains no well-ordered subset of size κ+. The following
result shows, however, that every subset of L of smaller size is the union of
countably many well-ordered subsets.

13.3 Lemma. For each β < κ+, Lβ = {fα : α < β} can be decomposed
into countably many well-ordered subsets.

Proof. Let Lβn = {fα : α ∈ Fn(β)} for n < ω. Note that the projection
f 7−→ f�(n + 1) is one-to-one on Lβn so each Lβn is lexicographically well-
ordered. a

13.4 Remark. Note that K = {{(n, fα(n)) : n < ω} : α < κ+} is a family
of countable subsets of ω× κ which has the property that K�X = {K ∩X :
K ∈ K} has size ≤ |X | + ℵ0 for every X ⊆ ω × κ of size < κ. We shall
now see that with a bit more work a considerably finer such a family can
be constructed.

13.5 Definition. If a family K ⊆ [S]ω is at the same time locally countable
and cofinal in [S]ω then we call it a cofinal Kurepa family (cofinal K-family
for short). Two cofinal K-families H and K are compatible if H ∩K ∈ H∩K
for all H ∈ H and K ∈ K. We say that K extends H if they are compatible
and if H ⊆ K.

13.6 Remark. Note that the size of any cofinal K-family K on a set S is
equal to the cofinality of [S]ω. Note also that for every X ⊆ S there is a
Y ⊇ X of size cf([X ]ω) such that K ∩ Y ∈ K for all K ∈ K.

13.7 Definition. Define CK(θ) to be the statement that every sequence
Kn (n < ω) of comparable cofinal K-families with domains included in
θ which are closed under ∪, ∩ and \ can be extended to a single cofinal
K-family on θ, which is also closed under these three operations.

13.8 Lemma. CK(ω1) is true and if CK(θ) is true for some θ such that
cf([θ]ω) = θ then CK(θ+) is also true.

Proof. The easy proof of CK(ω1) is left to the reader.
Suppose CK(θ) and let Kn (n < ω) be a given sequence of compatible

cofinal K-families as in the hypothesis of CK(θ+). By Remark 13.6 there
is a strictly increasing sequence δξ (ξ < θ+) of ordinals < θ such that
Kn�δξ ⊆ Kn for all ξ < θ+ and n < ω. Recursively on ξ < θ+ we construct
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a chain Hξ (ξ < θ+) of cofinal K-families as follows. If ξ = 0 or ξ = η + 1
for some η, using CK(δξ) we can find a cofinal K-family Hξ on δξ extending
Hξ−1 and Kn�δξ (n < ω). If ξ has uncountable cofinality then the union
of H̄ξ =

⋃
η<ξ Hη is a cofinal K-family with domain included in δξ, so

using CK(δξ) we can find a cofinal K-family Hξ on δξ extending H̄ξ and
Kn�δξ (n < ω). If ξ has countable cofinality, pick a sequence {ξn} converging
to ξ and use CK(δξ) to find a cofinal K-family Hξ on δξ extending Hξn

(n <
ω) and Kn (n < ω). When the recursion is done, set H =

⋃
ξ<θ+ Hξ . Then

H is a cofinal K-family on θ+ extending Kn (n < ω). a

13.9 Corollary. For each n < ω there is a cofinal Kurepa family on ωn. a

13.10 Definition. Let κ be a cardinal of cofinality ω. A Jensen matrix on
κ+ is a matrix Jαn (α < κ+, n < ω) of subsets of κ with the following prop-
erties, where κn (n < ω) is some increasing sequence of cardinals converging
to κ:

(1) |Jαn| ≤ κn for all α < κ+ and n < ω,

(2) for all α < β and n < ω there is an m < ω such that Jαn ⊆ Jβm,

(3)
⋃

n<ω[Jβn]ω =
⋃

α<β

⋃
n<ω[Jαn]ω whenever cf(β) > ω,

(4) [κ+]ω =
⋃

α<κ+

⋃
n<ω[Jαn]ω .

13.11 Remark. The notion of a Jensen matrix is the combinatorial essence
behind Silver’s proof of Jensen’s model-theoretic two-cardinal transfer the-
orem in the constructible universe (see [27, appendix]), so the matrix could
equally well be called ‘Silver matrix’. It has been implicitly or explicitly
used in several places in the literature. The reader is referred to the paper
of Foreman and Magidor [21] which gives quite a complete discussion of this
notion and its occurrence in the literature.

13.12 Lemma. Suppose some cardinal κ of countable cofinality carries a
Jensen matrix Jαn (α < κ+, n < ω) relative to some sequence of cardinals
κn (n < ω) that converge to κ. If CK(κn) holds for all n < ω then CK(κ+)
is also true.

Proof. Let Kn (n < ω) be a given sequence of compatible cofinal K-families
with domains included in κ+. Given Jαn, there is a natural continuous
chain Jξ

αn (ξ < ω1) of subsets of κ+ of size ≤ κn such that J0
αn = Jαn

and Jξ+1
αn equal to the union of all K ∈

⋃
n<ω Kn which intersect Jξ

αn. Let

J∗
αn =

⋃
ξ<ω1

Jξ
αn. It is easily seen that J∗

αn (α < κ+, n < ω) is also a Jensen

matrix. By recursion on α and n we define a sequence Hαn (α < κ+, n < ω)
of compatible cofinal K-families as follows. If α = β + 1 or α = 0 and
n < ω using CK(κn) we can find a cofinal K-family Hαn with domain J∗

αn
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compatible with Hαm (m < n), H(α−1)m (m < ω) and Km�J∗
αn (m < ω). If

cf(α) = ω let αn (n < ω) be an increasing sequence of ordinals converging
to α. Using CK(κn) we can find a cofinal K-family Hαn which extends
Hαm (m < n), Km�J∗

αn (m < ω) and each of the families Hαik (i < ω, k <
ω and J∗

αik
⊆ J∗

αn). Finally, suppose that cf(α) > ω. For n < ω, set

Hαn = [J∗
αn]ω ∩ (

⋃
ξ<α

⋃
m<ωHξm).

Using the properties of the Jensen matrix (especially (3)) as well as the
compatibility of Hξm (ξ < α, m < ω) one easily checks that Hαn is a cofinal
K-family with domain J∗

αn which extends each member of Hαm (m < n)
and Km�J∗

αn (m < ω) and which is compatible with all of the previously
constructed families Hξm (ξ < α, m < ω). When the recursion is done we
set

H =
⋃

α<κ+

⋃
n<ωHαn.

Using the property (4) of J∗
αn (α < κ+, n < ω), it follows easily that H is a

cofinal K-family on κ+ extending Kn (n < ω). a

13.13 Theorem. If a Jensen matrix exists on any successor of a cardinal
of cofinality ω, then a cofinal Kurepa family exists on any domain. a

The ρ-function ρ : [κ+]2 −→ κ associated with a �κ-sequence Cα (α <
κ+) for some singular cardinal κ of cofinality ω leads to the matrix

Fn(α) = {ξ < α : ρ(ξ, α) ≤ n}(α < κ+, n < ω) (I.11)

which has the properties (1)-(3) of 13.10 as well as some other properties
not captured by the definition of a Jensen matrix. If one additionally has
a sequence aα (α < κ+) of countable subsets of κ+ that is cofinal in [κ+]ω

one can extend the matrix (I.11) as follows:

Mβn =
⋃

α<nβ(aα ∪ {α}) (β < κ+, n < ω).

(Recall that <n is the tree ordering on κ+ defined by the formula α <n β iff
ρ(α, β) ≤ κn where κn is a fixed increasing sequence of cardinals converging
to κ.) The matrix Mβn (β < κ+, n < ω) has properties not captured by
Definition 13.10 that are of independent interest.

13.14 Lemma.

(1) α <n β implies Mαn ⊆ Mβn,

(2) Mαm ⊆ Mαn whenever m < n,

(3) if β = sup{α : α <n β} then Mβn =
⋃

α<nβ Mαn,

(4) every countable subset of κ+ is covered by some Mβn.
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(5) M = {Mβn : β < κ+, n < ω} is a locally countable family if we have
started with a locally countable K = {aα : α < κ+}. a

13.15 Remark. One can think of the matrix M = {Mβn : β < κ+, n < ω}
as a version of a ‘morass’ for the singular cardinal κ (see [78]). It would be
interesting to see how far one can go in this analogy. We give a few appli-
cations just to illustrate the usefulness of the families we have constructed
so far.

13.16 Definition. A Bernstein decomposition of a topological space X is
a function f : X −→ 2N with the property that f takes all the values from
2N on any subset of X homeomorphic to the Cantor set.

13.17 Remark. The classical construction of Bernstein [6] can be inter-
preted by saying that every space of size at most continuum admits a Bern-
stein decomposition. For larger spaces one must assume Hausdorff’s separa-
tion axiom, a result of Nešetril and Rődl (see [42]). In this context Malykhin
was able to extend Bernstein’s result to all spaces of size < c

+ω (see [39]).
To extend this to all Hausdorff spaces, some use of square sequences seems
natural. In fact, the first Bernstein decompositions of an arbitrary Haus-
dorff space have been constructed using �κ and κω = κ+ for every κ > c of
cofinality ω by Weiss [82] and Wolfsdorf [83]. We shall now see that cofinal
K-families are quite natural tools in constructions of Bernstein decomposi-
tions. The proof of this result can be found for example in [76].

13.18 Theorem. Suppose every regular θ > c supports a cofinal Kurepa
family of size θ. Then every Hausdorff space admits a Bernstein decompo-
sition. a

It is interesting that various less pathological classes of spaces admit a
local version of Theorem 13.18 (see [76]).

13.19 Theorem. Every metric space that carries a cofinal Kurepa family
admits a Bernstein decomposition. a

13.20 Definition. Recall the notion of a coherent family of partial functions
indexed by some ideal I, a family of the form fa : a −→ ω (a ∈ I) with the
property that {x ∈ a ∩ b : fa(x) 6= fb(x)} is finite for all a, b ∈ I.

It can be seen (see [74]) that the P-ideal dichotomy (see 3.9) has a strong
influence on such families provided I is a P-ideal of countable subsets of
some set Γ.

13.21 Theorem. Assuming the P-ideal dichotomy, for every coherent fam-
ily of functions fa : a −→ ω (a ∈ I) indexed by some P-ideal I of countable
subsets of some set Γ, either
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(1) There is an uncountable ∆ ⊆ Γ such that fa�∆ is finite-to-one for all
a ∈ I, or

(2) There is a g : Γ −→ ω such that g�a =∗ fa for all a ∈ I.

Proof. Let L be the family of all countable subsets b of Γ for which one can
find an a in I such that b \ a is finite and fa is finite-to-one on b. To see
that L is a P-ideal, let {bn} be a given sequence of members of L and for
each n fix a member an of I such that fan

is finite-to-one on bn. Since I is
a P-ideal, we can find a ∈ I such that an \ a is finite for all n. Note that
for all n, bn \ a is finite and that fa is finite-to-one on bn. For n < ω, let

b∗n = {ξ ∈ bn ∩ a : fa(ξ) > n}.

Then b∗n is a cofinite subset of bn for each n, so if we set b to be equal to the
union of the b∗n’s, we get a subset of a which almost includes each bn and
on which fa is finite-to-one. It follows that b belongs to L. This completes
the proof that L is a P-ideal. Applying the P-ideal dichotomy to L, we get
the two alternatives that translate into the alternatives (1) and (2) of the
theorem. a

This leads to the natural question whether for any set Γ one can construct
a family {fa : a −→ ω} of finite-to-one mappings indexed by [Γ]ω. This
question was answered by Koszmider [30] using the notion of a Jensen matrix
discussed above. We shall present Koszmider’s result using the notion of a
cofinal Kurepa family instead.

13.22 Theorem. If Γ carries a cofinal Kurepa family then there is a co-
herent family fa : a −→ ω (a ∈ [Γ]ω) of finite-to-one mappings.

Proof. Let K be a fixed well-founded cofinal K-family on Γ and let <w be
a well-ordering of K compatible with ⊆. It suffices to produce a coherent
family of finite-to-one mappings indexed by K. This is done by induction
on <w. Suppose K ∈ K and fH : H −→ ω is determined for all H ∈ K
with H <w K. Let Hn (n < ω) be a sequence of elements of K that are
<w K and have the property that for every H ∈ K with H <w K there is
an n < ω such that H ∩K =∗ Hn∩K. So it suffices to construct a finite-to-
one fK : K −→ ω which coheres with each fHn

(n < ω), a straightforward
task. a

13.23 Corollary. For every nonnegative integer n there is a coherent family
fa : a −→ ω (a ∈ [ωn]ω) of finite-to-one mappings. a

13.24 Remark. It is interesting that ‘finite-to-one’ cannot be replaced by
‘one-to-one’ in these results. For example, there is no coherent family of
one-to-one mappings fa : a −→ ω (a ∈ [c+]ω). We finish this section with a
typical application of coherent families of finite-to-one mappings discovered
by Scheepers [48].
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13.25 Theorem. If there is a coherent family fa : a −→ ω (a ∈ [Γ]ω)
of finite-to-one mappings, then there is an F : [[Γ]ω]2 −→ [Γ]<ω with the
property that for every strictly ⊆-increasing sequence an (n < ω) of count-
able subsets of Γ, the union of F (an, an+1) (n < ω) covers the union of
an (n < ω).

Proof. For a ∈ [Γ]ω let xa : ω −→ ω be defined by letting xa(n) = |{ξ ∈ a :
fa(ξ) ≤ n}|. Note that xa is eventually dominated by xb whenever a is a
proper subset of b. Choose Φ : ωω −→ ωω with the property that x <∗ y
implies Φ(y) <∗ Φ(x), where <∗ is the ordering of eventual dominance on
ωω (i.e. x <∗ y if x(n) < y(n) for all but finitely many n’s). Define another
family of functions ga : a −→ ω (a ∈ [Γ]ω) by letting

ga(ξ) = Φ(xa)(fa(ξ)).

Note the following interesting property of ga (a ∈ [Γ]ω):

F (a, b) = {ξ ∈ a : gb(ξ) ≥ ga(ξ)} is finite for all a $ b in [Γ]ω.

So if an (n < ω) is a strictly ⊆-increasing sequence of countable subsets of Γ
and ξ̄ belongs to some an̄ then the sequence of integers gan

(ξ̄) (n̄ ≤ n < ω)
must have some place n ≥ n̄ with the property that gan

(ξ̄) < gan+1
(ξ̄), i.e. a

place n ≥ n̄ such that ξ ∈ F (an, an+1). a

13.26 Remark. Note that if κ is a singular cardinal of cofinality ω with
the property that cf([θ]ω) < κ for all θ < κ, then the existence of a cofinal
Kurepa family on κ+ implies the existence of a Jensen matrix on κ+. So
these two notions appear to be quite close to each other. The three ba-
sic properties of the function ρ : [κ+] −→ κ (11.5 and 11.6(a),(b)) seem
much stronger in view of the fact that the linear ordering as in 13.3 cannot
exist for κ above a supercompact cardinal and the fact that Foreman and
Magidor [21] have produced a model with a supercompact cardinal that car-
ries a Jensen matrix on any successor of a singular cardinal of cofinality ω.
The “Chang’s conjecture” (κ+, κ) � (ω1, ω) is the model-theoretic transfer
principle asserting that every structure of the form (κ+, κ, <, . . .) with a
countable signature has an uncountable elementary submodel B with the
property that B∩ω1 is countable. Note that (κ+, κ) � (ω1, ω) for some sin-
gular κ of cofinality ω implies that every locally countable family K ⊆ [κ]ω

must have size ≤ κ. So, one of the models of set theory that has no cofinal
K-family on, say ℵω+1, is the model of Levinski, Magidor and Shelah [38],
in which (ℵω+1,ℵω) � (ω1, ω) holds. It seems still unknown whether the
conclusion of Theorem 13.25 can be proved without additional set-theoretic
assumptions.
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14. The Oscillation Mapping

In what follows, θ will be a fixed regular infinite cardinal.

osc : P(θ)2 −→ Card

is defined by
osc(x, y) = |x \ (sup(x ∩ y) + 1)/ ∼ |,

where ∼ is the equivalence relation on x\ (sup(x∩y) + 1) defined by letting
α ∼ β iff the closed interval determined by α and β contains no point from
y. So, if x and y are disjoint, osc(x, y) is simply the number of convex pieces
the set x is split by the set y. The oscillation mapping has proven to be a
useful device in various schemes for coding information. It usefulness in a
given context depend very much of the corresponding ‘oscillation theory’,
a set of definitions and lemmas that disclose when it is possible to achieve
a given number as oscillation between two sets x and y in a given family
X . The following definition reveals the notion of largeness relevant to the
oscillation theory that we develop in this section.

14.1 Definition. A family X ⊆ P(θ) is unbounded if for every closed and
unbounded subset C of θ there exist x ∈ X and an increasing sequence
{δn : n < ω} ⊆ C such that sup(x ∩ δn) < δn and [δn, δn+1) ∩ x 6= ∅ for all
n < ω.

This notion of unboundedness has proven to be the key behind a number
of results asserting the complex behaviour of the oscillation mapping on X 2.
The case θ = ω seems to contain the deeper part of the oscillation theory
known so far (see [64],[65, §1] and [73]), though in this section we shall only
consider the case θ > ω. We shall also restrict ourselves to the family K(θ)
of all closed bounded subsets of θ rather than the whole power-set of θ. Our
next lemma is the basic result about the behavior of the oscillation mapping
in this context. Its proof can again be found in [76].

14.2 Lemma. If X is an unbounded subfamily of K(θ) then for every pos-
itive integer n there exist x and y in X such that osc(x, y) = n. a

Lemma 14.2 also has a rectangular form.

14.3 Lemma. If X and Y are two unbounded subfamilies of K(θ) then for
all but finitely many positive integers n there exist x ∈ X and y ∈ Y such
that osc(x, y) = n. a

Recall the notion of a nontrivial C-sequence Cα (α < θ) on θ from Section
8, a C-sequence with the property that for every closed and unbounded
subset C of θ there is a limit point δ of C such that C ∩ δ * Cα for all
α < θ.
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14.4 Definition. For a subset D of θ let lim(D) denote the set of all α < θ
with the property that α = sup(D ∩α). A subsequence Cα (α ∈ Γ) of some
C-sequence Cα (α < θ) is stationary if the union of all lim(Cα) (α ∈ Γ) is a
stationary subset of θ.

14.5 Lemma. A stationary subsequence of a nontrivial C-sequence on θ is
an unbounded family of subsets of θ.

Proof. Let Cα (α ∈ Γ) be a given stationary subsequence of a nontrivial
C-sequence on θ. Let C be a given closed and unbounded subset of θ. Let
∆ be the union of all lim(Cα) (α ∈ Γ). Then ∆ is a stationary subset of θ.
For ξ ∈ ∆ choose αξ ∈ Γ such that ξ ∈ lim(Cαξ

). Applying the assumption
that Cα (α ∈ Γ) is a nontrivial C-subsequence, we can find a ξ ∈ ∆∩ lim(C)
such that

C ∩ [η, ξ) * Cαξ
for all η < ξ. (I.12)

If such a ξ cannot be found using the stationarity of the set ∆ ∩ lim(C) we
would be able to use the Pressing Down Lemma on the regressive mapping
that would give us an η < ξ violating (I.12) and get that a tail of C trivializes
Cα (α ∈ Γ). Using (I.12) and the fact that Cαξ

∩ξ is unbounded in ξ we can
find a strictly increasing sequence δn (n < ω) of elements of (C∩ξ)\Cαξ

such
that [δn, δn+1) ∩ Cαξ

6= ∅ for all n. So the set Cαξ
satisfies the conclusion

of Definition 14.1 for the given closed and unbounded set C. a

Recall that Qθ denotes the set of all finite sequences of ordinals < θ and
that we consider it ordered by the right lexicographical ordering. We need
the following two further orderings on Qθ: s v t if and only if s is an initial
segment of t, and s @ t if and only if s is a proper initial part of t.

14.6 Definition. Given a C-sequence Cα (α < θ) we can define an action
(α, t) 7−→ αt of Qθ on θ recursively on the ordering v of Qθ as follows:
α∅ = α, α〈ξ〉 is equal to the ξth member of Cα if ξ < tp(Cα); otherwise
α〈ξ〉 = α, and finally, αta〈ξ〉 = (αt)〈ξ〉.

14.7 Remark. Note that if ρ0(α, β) = t for some α < β < θ then βt = α.
In fact, if β = β0 > . . . > βn = α is the walk from β to α along the
C-sequence, each member of the trace Tr(α, β) = {β0, β1, . . . , βn} has the
form βs where s is the uniquely determined initial part of t. Note, however,
that in general βt = α does not imply that ρ0(α, β) = t.

14.8 Notation. Given a C-sequence Cα (α < θ) on θ we shall use osc(α, β)
to denote osc(Cα, Cβ).

The proof of the following result can be found in [76].

14.9 Theorem. If Cα (α < θ) is a nontrivial C-sequence on θ, then for
every unbounded set Γ ⊆ θ and positive integer n there exist α < β in Γ and
t v ρ0(α, β) such that osc(αt, βt) = n, but osc(αs, βs) = 1 for all s @ t. a
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14.10 Corollary. Suppose a regular uncountable cardinal θ carries a non-
trivial C-sequence. Then there is an f : [θ]2 −→ ω which takes all the values
from ω on any set of the form [Γ]2 for an unbounded subset of θ.

Proof. Given α < β < θ, if there is a t v ρ0(α, β) satisfying the conclusion
of 14.9, put f(α, β) = osc(αt, βt) − 2; otherwise put f(α, β) = 0. a

14.11 Remark. The class of all regular cardinals θ that carry a nontrivial
C-sequence is quite extensive. It includes not only all successor cardinals
but also some inaccessible as well as hyperinaccessible cardinals such as for
example, the first inaccessible cardinal or the first Mahlo cardinal. In view
of the well-known Ramsey-theoretic characterization of weak compactness,
Corollary 14.10 leads us to the following natural question.

14.12 Question. Can the weak compactness of a strong limit regular
uncountable cardinal be characterized by the fact that for every f : [θ]2 −→
ω there exists an unbounded set Γ ⊆ θ such that f“[Γ]2 6= ω? This is true
when ω is replaced by 2, but can any other number beside 2 be used in this
characterization?

15. The Square-Bracket Operation

In this section we show that the basic idea of the square-bracket operation on
ω1 introduced in Definition 4.3 extends to a general setting on an arbitrary
uncountable regular cardinal θ that carries a nontrivial C-sequence Cα (α <
θ). The basic idea is based on the oscillation map defined in the previous
section and, in particular, on the property of this map described in Theorem
14.9: for α < β < θ we set

[αβ] = βt, where t v ρ0(α, β) is such that osc(αt, βt) ≥ 2
but osc(αs, βs) = 1 for all s @ t; if such a t does not exist,
we let [αβ] = α.

(I.13)

Thus, [αβ] is the first place visited by β on its walk to α where a nontrivial
oscillation with the corresponding step of α occurs. What Theorem 14.9
is telling us is that the nontrivial oscillation indeed happens most of the
time. Results that would say that the set of values {[αβ] : {α, β} ∈ [Γ]2}
is in some sense large no matter how small the unbounded set Γ ⊆ θ is,
would correspond to the results of Lemmas 4.4-4.5 about the square-bracket
operation on ω1. It turns out that this is indeed possible and to describe it
we need the following definition.

15.1 Definition. A C-sequence Cα (α < θ) on θ avoids a given subset ∆
of θ if Cα ∩ ∆ = ∅ for all limit ordinals α < θ.
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The proof of the following lemma is quite similar to the proof of the
corresponding fact in case θ = ω1 considered above though its full proof can
be found in [76].

15.2 Lemma. Suppose Cα (α < θ) is a given C-sequence on θ that avoids
a set ∆ ⊆ θ. Then for every unbounded set Γ ⊆ θ, the set of elements of ∆
not of the form [αβ] for some α < β in Γ is nonstationary in θ. a

A similar proof gives the following more general result.

15.3 Lemma. Suppose Cα (α < θ) avoids ∆ ⊆ θ and let A be a family
of size θ consisting of pairwise disjoint finite sets, all of some fixed size
n. Then the set of all elements of ∆ that are not of the form [a(1)b(1)] =
[a(2)b(2)] = . . . = [a(n)b(n)] for some a 6= b in A is nonstationary in θ. a

Since [αβ] belongs to the trace Tr(α, β) of the walk from β to α it is not
surprising that [··] strongly depends on the behavior of Tr. The following is
one of the results which brings this out.

15.4 Lemma. The set Ω \ {[αβ] : {α, β} ∈ [Γ]2} is not stationary in θ if
and only if the set Ω \

⋃
{Tr(α, β) : {α, β} ∈ [Γ]2} is not stationary in θ. a

This fact suggests the following definition.

15.5 Definition. The trace filter of a given C-sequence Cα (α < θ) is the
normal filter on θ generated by sets of the form

⋃
{Tr(α, β) : {α, β} ∈ [Γ]2}

where Γ is an unbounded subset of θ.

15.6 Remark. Having a proper (i.e. 6= P(θ)) trace filter is a strengthening
of the nontriviality requirement on a given C-sequence Cα (α < θ). For
example, if a C-sequence avoids a stationary set Ω ⊆ θ, then its trace filter
is nontrivial and in fact no stationary subset of Γ is a member of it. Note the
following analogue of Lemma 15.4: the trace filter of a given C-sequence
is the normal filter generated by sets of the form {[αβ] : {α, β} ∈ [Γ]2}
where Γ is an unbounded subset of θ. So to obtain the analogues of the
results of Section 4 about the square-bracket operation on ω1 one needs a
C-sequence Cα (α < θ) on θ whose trace filter is not only nontrivial but
also not θ-saturated, i.e. it allows a family of θ pairwise disjoint positive
sets. It turns out that the hypothesis of Lemma 15.2 is sufficient for both
of these conclusions.

15.7 Lemma. If a C-sequence on θ avoids a stationary subset of θ, then
there exist θ pairwise disjoint subsets of θ that are positive with respect to
its trace filter.17

17A subset A of the domain of some filter F is positive with respect to F if A ∩ F 6= ∅
for every F ∈ F .
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Proof. This follows from the well-known fact (see [29]) that if there is a
normal, nontrivial and θ-saturated filter on θ, then for every stationary
Ω ⊆ θ there exists a λ < θ such that Ω ∩ λ is stationary in λ (and the fact
that the stationary set which is avoided by the C-sequence does not reflect
in this way). a

15.8 Corollary. If a regular cardinal θ admits a nonreflecting stationary
subset then there is a c : [θ]2 −→ θ which takes all the values from θ on any
set of the form [Γ]2 for some unbounded set Γ ⊆ θ. a

To get such a c, one composes the square-bracket operation of some C-
sequence, that avoids a stationary subset of θ, with a mapping ∗ : θ −→ θ
with the property that the ∗-preimage of each point from θ is positive with
respect to the trace filter of the square sequence. In other words, c is equal
to the composition of [··] and ∗, i.e. c(α, β) = [αβ]∗. Note that, as in Section
4, the property of the square-bracket operation from Lemma 15.3 leads to
the following rigidity result which corresponds to Lemma 4.7.

15.9 Lemma. The algebraic structure (θ, [··], ∗) has no nontrivial automor-
phisms. a

15.10 Remark. Note that every θ which is a successor of a regular cardinal
κ admits a nonreflecting stationary set. For example, Ω = {δ < θ : cf(δ) =
κ} is such a set. Thus any C-sequence on θ that avoids Ω leads to a square
bracket operation which allows analogues of all the results from Section 4
about the square-bracket operation on ω1. The reader is urged to examine
these analogues.

Let us now introduce a useful projection of the square-bracket operation,
the analogue of 4.11 considered above. This concerns the case when θ
is the successor of some regular cardinal κ and when the square-bracket
operation is based on a fixed C-sequence Cα (α < κ+) on κ+ such that
tp(Cα) ≤ κ for all α, or equivalently, such that Cα (α < κ+) avoids the set
Ωκ = {δ < κ+ : cf(δ) = κ}. Let [··] be the corresponding square-bracket
operation. Let λ be the minimal cardinal such that 2λ ≥ κ+. Choose a
sequence rξ (ξ < κ+) of distinct subsets of λ. Let H be the collection
of all maps h : P(D(h)) −→ κ+ where D(h) is a finite subset of λ. Let
π : κ+ −→ H be a map with the property that π−1({h})∩ Ωκ is stationary
for all h ∈ H. Finally, define an operation [[··]] on κ+ as follows:

[[αβ]] = π([αβ])(rα ∩ D(π([αβ]))).

The following is a simple consequence of the property 15.3 of the square-
bracket operation.

15.11 Lemma. For every family A of size κ+ consisting of pairwise disjoint
finite subsets of κ+ all of some fixed size n and every sequence ξ0, . . . , ξn−1
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of ordinals < κ+ there exist a 6= b in A such that [[a(i)b(i)]] = ξi for all
i < n. a

For sufficiently large cardinals θ we have the following variation on the
theme first encountered above in Theorem 8.2 and the reader can find its
full proof in [76].

15.12 Theorem. Suppose θ is bigger than the continuum and carries a C-
sequence avoiding a stationary set Γ of cofinality > ω ordinals in θ. Let A
be a family of θ pairwise disjoint finite subsets of θ, all of some fixed size n.
Then for every stationary Γ0 ⊆ Γ there exist s, t ∈ ωn and a positive integer
k such that for every l < ω there exist a < b 18 in A and δ0 > δ1 > . . . > δl

in Γ0 ∩ (max(a), min(b)) such that:

(1) ρ2(δi+1, δi) = k for all i < l,

(2) ρ0(a(i), b(j)) = ρ0(δ0, b(j))aρ0(δ1, δ0)a . . . aρ0(δl, δl−1)aρ0(a(i), δl)
for all i, j < n,

(3) ρ2(δ0, b(j)) = tj and ρ2(a(i), δl) = si for all i, j < n. a

From now on, θ is assumed to be a fixed cardinal satisfying the hypotheses
of Theorem 15.12. It turns out that Theorem 15.12 gives us a way to define
another square-bracket operation which has complex behaviour not only on
squares of unbounded subsets of θ but also on rectangles formed by two
unbounded subsets of θ. To define this new operation we choose a mapping
h : ω −→ ω such that:

for every k, m, n, p < ω and s ∈ ωn there is an l < ω such
that h(m + l · k + s(i)) = m + p for all i < n.

(I.14)

15.13 Definition. [··]h : [θ]2 −→ θ is defined by letting [αβ]h = βt where
t = ρ0(α, β)�h(ρ2(α, β)).

Thus, [αβ]h is the h(ρ2(α, β))th place that β visits on its walk to α. It is
clear that Theorem 15.12 and the choice of h in (I.14) give us the following
conclusion.

15.14 Lemma. Let A be a family of θ pairwise disjoint finite subsets of θ,
all of some fixed size n, and let Ω be an unbounded subset of θ. Then almost
every δ ∈ Γ has the form [a(0)β]h = [a(1)β]h = . . . = [a(n− 1)β]h for some
a ∈ A, β ∈ Ω, a < β.19 a

18Recall that if a and b are two sets of ordinals, then the notation a < b means that
max(a) < min(b).

19Here ‘almost every’ is to be interpreted by ‘all except a nonstationary set’.
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In fact, one can get a projection of this square-bracket operation with
seemingly even more complex behaviour. Keeping the notation of Theorem
15.12, pick a function ξ 7−→ ξ∗ from θ to ω such that {ξ ∈ Γ : ξ∗ = n} is
stationary for all n. This gives us a way to consider the following projection
of the trace function Tr∗ : [θ]2 −→ ω<ω:

Tr∗(α, β) = 〈min(Cβ \ α)∗〉aTr∗(α, min(Cβ \ α)),

where we stipulate that Tr∗(γ, γ) = 〈γ∗〉 for all γ < θ. It is clear that the
proof of Theorem 15.12 allows us to add the following conclusions:

15.12∗ Theorem. Under the hypothesis of Theorem 15.12, its conclusion
can be extended by adding the following two new statements:

(4) Tr∗(δ1, δ0) = . . . = Tr∗(δl, δl−1),

(5) The maximal term of the sequence Tr∗(δ1, δ0) = . . . = Tr∗(δl, δl−1) is
bigger than the maximal term of any of the sequences Tr∗(δ0, b(j)) or
Tr∗(a(i), δl) for i, j < n. a

15.15 Definition. For α < β < θ, let [αβ]∗ = βt for t the minimal initial
part of ρ0(α, β) such that β∗

t = max(Tr∗(α, β)).

Thus [αβ]∗ is the first place in the walk from β to α where the function ∗
reaches its maximum among all other places visited during the walk. Note
that combining the conclusions (1)-(5) of Theorem 15.12(∗) we get:

15.12∗∗ Theorem. Under the hypothesis of Theorem 15.12, its conclusion
can be extended by adding the following:

(6) [a(i)b(j)]∗ = [δ1δ0]∗ for all i, j < n. a

Having in mind the property of [··]h stated in Lemma 15.14, the following
variation is now quite natural.

15.16 Definition. [αβ]∗h = [α[αβ]∗]h for α < β < θ.

Using Theorem 15.12(∗∗)(1)-(6) one easily gets the following conclusion.

15.17 Lemma. Let A be a family of θ pairwise disjoint finite subsets of θ,
all of some fixed size n. Then for all but nonstationarily many δ ∈ Γ one
can find a < b in A such that [a(i)b(j)]∗h = δ for all i, j < n. a

15.18 Remark. Composing [··]∗h with a mapping π : θ −→ θ with the
property that π−1({ξ})∩Γ is stationary for all ξ < θ, one gets a projection
of [··]∗h for which the conclusion of Lemma 15.17 is true for all δ < κ.
Assuming that θ is moreover a successor of a regular cardinal κ (of size at
least continuum), in which case Γ can be taken to be {δ < κ+ : cf(δ) = κ},
and proceeding as in 15.11 above we get a projection [[··]]∗h with the following
property:
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15.19 Lemma. For every family A of pairwise disjoint finite subsets of κ+

all of some fixed size n and for every q : n × n −→ κ+ there exist a < b in
A such that [[a(i)b(j)]]∗h = q(i, j) for all i, j < n. a

15.20 Remark. The first example of a cardinal with such a complex bi-
nary operation was given by the author [64] using the oscillation mapping
described above in Section 14. It was the cardinal b, the minimal cardinality
of an unbounded subset of ωω under the ordering of eventual dominance.
The oscillation mapping restricted to some well-ordered unbounded subset
W of ωω is perhaps still the most interesting example of this kind due to
the fact that its properties are preserved in forcing extensions that do not
change the unboundedness of W (although they can collapse cardinals and
therefore destroy the properties of the square-bracket operations on them).
This absoluteness of osc is the key feature behind its applications in various
coding procedures (see e.g. [70]).

15.21 Theorem. For every regular cardinal κ of size at least the contin-
uum, the κ+-chain condition is not productive, i.e. there exist two partially
ordered sets P0 and P1 satisfying the κ+-chain condition but their product
P0 ×P1 fails to have this property.

Proof. Fix two disjoint stationary subsets Γ0 and Γ1 of {δ < κ+ : cf(δ) = κ}.
Let Pi be the collection of all finite subsets p of κ+ with the property that
[αβ]∗h ∈ Γi for all α < β in p. By Lemma 15.17, P0 and P1 are κ+-cc posets.
Their product P0 × P1, however, contains a family 〈{α}, {α}〉 (α < κ+) of
pairwise incomparable conditions. a

15.22 Remark. Theorem 15.21 is due to Shelah [52] who proved it using
similar methods. The first ZFC-examples of non-productiveness of the κ+-
chain condition were given by the author in [62] using what is today known
under the name ‘pcf theory’. After the full development of pcf theory it
became apparent that the basic construction from [62] applies to every suc-
cessor of a singular cardinal [53]. A quite different class of cardinals θ with
θ-cc non-productive was given by the author in [61]. For example, θ = cf(c)
is one of these cardinals. For an overview of recent advances in this area,
the reader is referred to [41]. The following problem seems still open:

15.23 Question. Suppose that θ is a regular strong limit cardinal and the
θ-chain condition is productive. Is θ necessarily a weakly compact cardinal?
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16. Unbounded Functions on Successors of

Regular Cardinals

In this section, κ is a regular cardinal and Cα (α < κ+) is a fixed sequence
with tp(Cα) ≤ κ for all α < κ+. Define ρ∗ : [κ+]2 −→ κ by

ρ∗(α, β) = sup{tp(Cβ∩α), ρ∗(α, min(Cβ \α)), ρ∗(ξ, α) : ξ ∈ Cβ∩α}, (I.15)

where we stipulate that ρ∗(γ, γ) = 0 for all γ < κ+. Since ρ∗(α, β) ≥
ρ1(α, β) for all α < β < κ+ by Lemma 7.1 we have the following:

16.1 Lemma. For ν < κ, α < κ+ the set Pν(α) = {ξ ≤ α : ρ∗(ξ, α) ≤ ν}
has size no more than |ν| + ℵ0. a

The proof of the following subadditivity properties of ρ∗ is very similar
to the proof of the corresponding fact for the function ρ from Section 11.

16.2 Lemma. For all α ≤ β ≤ γ,

(a) ρ∗(α, γ) ≤ max{ρ∗(α, β), ρ∗(β, γ)},

(b) ρ∗(α, β) ≤ max{ρ∗(α, γ), ρ∗(β, γ)}. a

We mention a typical application of this function to the problem of exis-
tence of partial square sequences which, for example, have some applications
in pcf theory (see [7]).

16.3 Theorem. For every regular uncountable cardinal λ < κ and station-
ary Γ ⊆ {δ < κ+ : cf(δ) = λ}, there is a stationary set Σ ⊆ Γ and a
sequence Cα (α ∈ Σ) such that:

(1) Cα is a closed and unbounded subset of α,

(2) Cα ∩ ξ = Cβ ∩ ξ for every ξ ∈ Cα ∩ Cβ.

Proof. For each δ ∈ Γ, choose ν = ν(δ) < κ such that the set P<ν(δ) =
{ξ < δ : ρ∗(ξ, δ) < ν} is unbounded in δ and closed under taking suprema of
sequences of size < λ. Then there are ν̄, µ̄ < κ and stationary Σ ⊆ Γ such
that ν(δ) = ν̄ and tp(P<ν̄(δ)) = µ̄ for all δ ∈ Σ. Let C be a fixed closed
and unbounded subset of µ̄ of order-type λ. Finally, for δ ∈ Γ set

Cδ = {α ∈ P<ν̄(δ) : tp(P<ν̄(α)) ∈ C}.

Using Lemma 16.2, one easily checks that Cα (α ∈ Σ) satisfies the conditions
(1) and (2). a

Another application concerns the fact described above in Section 13, that
the inequalities 16.2(a),(b) are particularly useful when κ has cofinality ω.
Also consider the well-known phenomenon first discovered by K.Prikry (see
[29]), that in some cases, the cofinality of a regular cardinal κ can be changed
to ω, while preserving all cardinals.
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16.4 Theorem. In any cardinal-preserving extension of the universe which
has no new bounded subsets of κ, but in which κ has a cofinal ω-sequence
diagonalizing the filter of closed and unbounded subsets of κ restricted to
the ordinals of cofinality > ω, there is a sequence Cαn(α ∈ lim (κ+), n < ω)
such that for all α < β in lim(κ+):

(1) Cαn is a closed subset of α for all n,

(2) Cαn ⊆ Cαm, whenever n ≤ m,

(3) α =
⋃

n<ω Cαn,

(4) α ∈ lim(Cβn) implies Cαn = Cβn ∩ α.

Proof. For α < κ+, let Dα be the collection of all ν < κ for which P<ν(α) is
σ-closed, i.e. closed under suprema of bounded countable subsets. Clearly,
Dα contains a closed unbounded subset of κ, restricted to cofinality > ω
ordinals. Note that ν ∈ Dβ and ρ∗(α, β) < ν imply that ν ∈ Dα. In the
extended universe, pick a strictly increasing sequence νn (n < ω) which
converges to κ and has the property that for each α < κ+ there is an n < ω
such that νm ∈ Dα for all m ≥ n. Let n(α) be the minimal integer n with
this property.

Given α < κ+ and n < ω, we define Cαn according to the following cases.
If there is a γ ≥ α such that n ≥ n(γ) and supPνn

(γ) ∩ α = α, let γ(α, n)
be the minimal such γ and let Cαn = Pνn

(γ(α, n)) ∩ α. If there is no such
γ ≥ α, we let Cαn = ∅ for n < n(α) and Cαn = Pνn

(α) ∩ α for n ≥ n(α).
Then one can easily verify that Cαn (α < κ+, n < ω) satisfies the condi-

tions (1),(2), (3) and (4). Detailed checking of this, however, can be found
in [76]. a

16.5 Remark. The combinatorial principle appearing in the statement of
Theorem 16.4 is a member of a family of square principles that has been
studied systematically by Schimmerling and others (see e.g. [49]). It is
definitely a principle sufficient for all of the applications of �κ appearing in
Section 13 above.

16.6 Definition. A function f : [κ+]2 −→ κ is unbounded if f“[Γ]2 is
unbounded in κ for every Γ ⊆ κ+ of size κ. We shall say that such an f is
strongly unbounded if for every family A of size κ+, consisting of pairwise
disjoint finite subsets of κ+, and every ν < κ there exists an A0 ⊆ A of size
κ such that f(α, β) > ν for all α ∈ a, β ∈ b and a 6= b in A0.

16.7 Lemma. If f : [κ+]2 −→ κ is unbounded and subadditive (i.e. it
satisfies the two inequalities 16.2(a),(b)), then f is strongly unbounded.

Proof. For α < β < κ+, set α <ν β if and only if f(α, β) ≤ ν. Then
our assumption about f satisfying 16.2(a) and (b) reduces to the fact that
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each <ν is a tree ordering on κ+ compatible with the usual ordering on
κ+. Note that the unboundedness property of f is preserved by any forcing
notion satisfying the κ-chain condition, so in particular no tree (κ+, <ν)
can contain a subtree of height κ which is Souslin. In the proof of Lemma
12.4 above we have seen that this property of (κ+, <ν) alone is sufficient
to conclude that every family A of κ many pairwise disjoint subsets of κ+

contains a subfamily A0 of size κ such that for every a 6= b in A0 every
α ∈ a is <ν-incomparable to every β ∈ b, which is exactly the conclusion of
f being strongly unbounded. a

The following useful facts whose proof can be found in [76] relates the
notions of unboundedness and subadditivity.

16.8 Lemma. The following are equivalent:

(1) There is a structure (κ+, κ, <, Rn)n<ω with no substructure B of size
κ such that B ∩ κ is bounded in κ.

(2) There is an unbounded function f : [κ+]2 −→ κ,

(3) There is a strongly unbounded, subadditive function f : [κ+]2 −→ κ.a

16.9 Remark. Recall that Chang’s conjecture is the model-theoretic trans-
fer principle asserting that every structure of the form (ω2, ω1, <, . . .) with
a countable signature has an uncountable elementary submodel B with the
property that B ∩ ω1 is countable. This principle shows up in many con-
siderations including the first two uncountable cardinals ω1 and ω2. For
example, it is known that it is preserved by ccc forcing extensions, that it
holds in the Silver collapse of an ω1-Erdős cardinal, and that it in turn im-
plies that ω2 is an ω1-Erdős cardinal in the core model of Dodd and Jensen
(see e.g. [11], [29]).

16.10 Corollary. The negation of Chang’s conjecture is equivalent to the
statement that there exists an e : [ω2]2 −→ ω1 such that:

(a) e(α, γ) ≤ max{e(α, β), e(β, γ)} whenever α ≤ β ≤ γ,

(b) e(α, β) ≤ max{e(α, γ), e(β, γ)} whenever α ≤ β ≤ γ,

(c) For every uncountable family A of pairwise disjoint finite subsets of
ω2 and every ν < ω1 there exists an uncountable A0 ⊆ A such that
e(α, β) > ν whenever α ∈ a and β ∈ b for every a 6= b ∈ A0. a

16.11 Remark. Note that if a mapping e : [ω2]2 −→ ω1 has properties
(a),(b) and (c) of Corollary 16.10, then De : [ω2]2 −→ [ω2]ℵ0 defined by
De{α, β} = {ξ ≤ min{α, β} : e(ξ, α) ≤ e{α, β}} satisfies the weak form of
the Baumgartner-Shelah definition of a ∆-function considered above, where
only the first condition is kept. It could be shown, however, that all three



74 I. Coherent Sequences

properties of a ∆-function cannot be achieved assuming only the negation
of Chang’s conjecture. This shows that the function ρ, based on a �ω1

-
sequence, is a considerably deeper object than an e : [ω2]2 −→ ω1 satisfying
16.10(a),(b),(c).

Recall that the successor of the continuum is characterized as the min-
imal cardinal θ with the property that every f : [θ]2 −→ ω is constant on
the square of some infinite set. We shall now see that in slightly weak-
ening the partition property by replacing squares by rectangles one gets a
characterization of a quite different sort. To see this, let us use the arrow
notation

(
θ
θ

)
−→

(
ω
ω

)1,1

ω

to succinctly express the statement that for every map f : θ × θ −→ ω,
there exist infinite sets A, B ⊆ θ such that f is constant on their product.
Let θ2 be the minimal θ which fails to satisfy this property. Note that
ω1 < θ2 ≤ c

+. The following result whose proof can be found in [76] shows
that θ2 can have the minimal possible value ω2, as well as that θ2 can be
considerably smaller than the continuum.

16.12 Theorem. Chang’s conjecture is equivalent to the statement that

(
ω2

ω2

)
−→

(
ω
ω

)1,1

ω

holds in every ccc forcing extension. a

16.13 Remark. The relative size of θ2 (or its higher-dimensional analogues
θ3, θ4, . . .) in comparison to the sequence of cardinals ω2, ω3, ω4, . . . is of
considerable interest, both in set theory and model theory (see e.g. [51],
[67], [72]). On the other hand, even the following most simple questions,
left open by Theorem 16.12, are still unanswered.

16.14 Question. Can one prove any of the bounds like θ2 ≤ ω3, θ3 ≤ ω4,
θ4 ≤ ω5, etc. without appealing to additional axioms?

Note that by Corollary 16.10, Chang’s conjecture is equivalent to the
statement that within every decomposition of the usual ordering on ω2 as an
increasing chain of tree orderings, one of the trees has an uncountable chain.
Is it possible to have decompositions of ∈�(ω2 × ω2) into an increasing ω1-
chain of tree orderings of countable heights? It turns out that the answer to
this question is equivalent to a different well-known combinatorial statement
about ω2 rather than Chang’s conjecture itself. Recall that f : [κ+]2 −→ κ
is transitive if f(α, γ) ≤ max{f(α, β), f(β, γ)} whenever α ≤ β ≤ γ. Given
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a transitive map f : [κ+]2 −→ κ, one defines ρf : [κ+]2 −→ κ recursively on
α ≤ β < κ+ as follows

ρf (α, β) = sup{f(min(Cβ \ α), β), tp(Cβ ∩ α),

ρf (α, min(Cβ \ α)), ρf (ξ, α) : ξ ∈ Cβ ∩ α},

where we stipulate that ρf (α, α) = 0 for all α < κ+.

16.15 Lemma. For every transitive map f : [κ+]2 −→ κ the corresponding
ρf : [κ+]2 −→ κ has the following properties:

(a) ρf (α, γ) ≤ max{ρf (α, β), ρf (β, γ)} whenever α ≤ β ≤ γ,

(b) ρf (α, β) ≤ max{ρf (α, γ), ρf (β, γ)} whenever α ≤ β ≤ γ,

(c) |{ξ ≤ α : ρf (ξ, α) ≤ ν}| ≤ |ν| + ℵ0 for ν < κ and α < κ+,

(d) ρf (α, β) ≥ f(α, β) for all α < β < κ+. a

Transitive maps are frequently used combinatorial objects, especially
when one works with quotient structures. Adding the extra subadditiv-
ity condition 16.15(b), one obtains a considerably more subtle object which
is much less understood. For example, let fα : κ −→ κ (α < κ+) be
a given sequence of functions such that fα <∗ fβ whenever α < β.20

Then the corresponding transitive map f : [κ+]2 −→ κ is defined by
f(α, β) = min{µ < κ : fα(ν) < fβ(ν) for all ν ≥ µ}. Let ρf be the cor-
responding ρ-function that dominates this particular f and for ν < κ let
<f

ν be the corresponding tree ordering of κ+, i.e., α <f
ν β if and only if

ρf (α, β) ≤ ν.

16.16 Lemma. Suppose fα ≤ g for all α < κ+ where ≤ is the ordering of
everywhere dominance. Then for every ν < κ the tree (κ+, <f

ν ) has height
≤ g(ν).

Proof. Let P be a maximal chain of (κ+, <f
ν ). f(α, β) ≤ ρf (α, β) ≤ ν for

every α < β in P . It follows that fα(ν) < fβ(ν) ≤ g(ν) for all α < β in P .
So P has order-type ≤ g(ν). a

Note that if we have a function g : κ −→ κ which bounds the sequence
fα (α < κ+) in the ordering <∗ of eventual dominance, then the new
sequence f̄α = min{fα, g} (α < κ+) is still strictly <∗-increasing but now
bounded by g even in the ordering of everywhere dominance. So this proves
the following result of Galvin (see [26],[46]).

16.17 Corollary. The following two conditions are equivalent for every
regular cardinal κ.

20Here, fα <∗ fβ whenever {ν < κ : fα(ν) ≥ fβ(ν)} is bounded in κ.
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(1) There is a sequence fα : κ −→ κ (α < κ+) which is strictly increasing
and bounded in the ordering of eventual dominance.

(2) The usual order-relation of κ+ can be decomposed into an increasing
κ-sequence of tree orderings of heights < κ. a

16.18 Remark. The assertion that every strictly <∗-increasing κ+-sequen-
ce of functions from κ to κ is <∗-unbounded is strictly weaker than Chang’s
conjecture and in the literature it is usually referred to as weak Chang’s
conjecture. This statement still has considerable large cardinal strength
(see [12]). Also note the following consequence of Corollary 16.17 which can
be deduced from Lemmas 16.1 and 16.2 above as well.

16.19 Corollary. If κ is a regular limit cardinal (e.g. κ = ω), then the
usual order-relation of κ+ can be decomposed into an increasing κ-sequence
of tree orderings of heights < κ. a

17. Higher Dimensions

The reader must have noticed already that in this chapter so far, we have
only considered functions of the form f : [θ]2 −→ I or equivalently se-
quences fα : α −→ I (α < θ) of one-place functions. To obtain analo-
gous results about functions defined on higher-dimensional cubes [θ]n one
usually develops some form of stepping-up procedure that lifts a function
of the form f : [θ]n −→ I to a function of the form g : [θ+]n+1 −→ I .
The basic idea seems quite simple. One starts with a coherent sequence
eα : α −→ θ (α < θ+) of one-to-one mappings and wishes to define
g : [θ+]n+1 −→ I as follows:

g(α0, α1, . . . , αn) = f(eαn
(α0), . . . , eαn

(αn−1)). (I.16)

In other words, we use eαn
to send {α0, . . . , αn−1} to the domain of f and

then apply f to the resulting n-tuple. The problem with such a simple-
minded definition is that for a typical subset Γ of θ+, the sequence of re-
strictions eδ�(Γ∩ δ) (δ ∈ Γ) may not cohere, so we cannot produce a subset
of θ that would correspond to Γ and on which we would like to apply some
property of f . It turns out that the definition (I.16) is basically correct ex-
cept that we need to replace eαn

by eτ(αn−2,αn−1,αn), where τ : [θ+]3 −→ θ+

is defined as follows (see Definition 14.6):

τ(α, β, γ) = γt, where t = ρ0(α, γ) ∩ ρ0(β, γ). (I.17)

The function ρ0 to which (I.17) refers is of course based on some C-sequence
Cα (α < θ+) on θ+. The following result shows that if the C-sequence
is carefully chosen, the function τ will serve as a stepping-up tool. The
following lemma whose proof can be found in [76] gives the basic idea behind
this.
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17.1 Lemma. Suppose ρ0 and τ are based on some �θ-sequence Cα (α <
θ+) and let κ be a regular uncountable cardinal ≤ θ. Then every set Γ ⊆ θ+

of order-type κ contains a cofinal subset ∆ such that, if ε = sup(Γ) =
sup(∆), then ρ0(ξ, ε) = ρ0(ξ, τ(α, β, γ)) for all ξ < α < β < γ in ∆.

Recall that for a given C-sequence Cα (α < θ+) such that tp(Cα) ≤ θ
for all α < θ+, the range of ρ0 is the collection of all finite sequences of
ordinals < θ. There is a natural way to identify Qθ with θ itself via the
well-ordering of Qθ of length θ: s <w t if and only if max(s) < max(t), or
max(s) = max(t) and t ⊆ s, or max(s) = max(t) and s(i) 6= t(i) for some
i in the common domain of s and t and s(i) < t(i) for the minimal such
i. This identification gives us a way to define a lift-up of an arbitrary map
f : [θ]n −→ I (really, f : [Qθ]n −→ I) to a map f+ : [θ+]n+1 −→ I by the
following formula:

f+(α0, . . . , αn−1, αn) = f(ρ0(α0, ε), . . . , ρ0(αn−1, ε)), (I.18)

where ε = τ(αn−2, αn−1, αn).

Let us examine how this stepping-up procedure works on a particular
example, a combinatorial property of a function f which has been stepped
up by Velleman [79] from n = 3 to n = 4 using his version of the gap-2
morass.

17.2 Theorem. Suppose θ is an arbitrary cardinal for which �θ holds.
Suppose further that for some regular κ > ω and integer n ≥ 2 there is a
map f : [θ]n −→ [[θ]<κ]<κ such that:

(1) A ⊆ min(a) for all a ∈ [θ]n and A ∈ f(a).

(2) For all ν < κ and Γ ⊆ θ of size κ there exist a ∈ [Γ]n and A ∈ f(a)
such that tp(A) ≥ ν and A ⊆ Γ.

Then θ+ and κ satisfy the same combinatorial property, but with n + 1 in
place of n.

Proof. Identifying Qθ with θ using the wellordering <w defined above, we
assume that actually f : [Qθ]n −→ [[Qθ]<κ]<κ. Apply the idea of (I.18) and
define g : [θ+]n −→ [[θ+]<κ]<κ by the formula

g(α0, . . . , αn−1, αn) = (ρ0)−1
ε (f(ρ0(α0, ε), . . . , ρ0(αn−1, ε))),

where ε = τ(αn−2, αn−1, αn) and where τ is based on a fixed �θ-sequence.

Note that the transformation (ρ0)−1
ε does not necessarily preserve (1), so

we intersect each member of a given g(a) with min(a) in order to satisfy this
condition. To check (2), let Γ ⊆ θ+ be a given set of size κ. By Lemma 17.1,
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shrinking Γ we may assume that Γ has order-type κ and that if ε = sup(Γ),
then

ρ0(ξ, ε) = ρ0(ξ, τ(α, β, γ)) for all α < β < γ in Γ. (I.19)

It follows that g restricted to [Γ]n+1 satisfies the formula

g(α0, . . . , αn−1, αn) = (ρ0)−1
ε (f(ρ0(α0, ε), . . . , ρ0(αn−1, ε))). (I.20)

Shrinking Γ further we assume that the mapping (ρ0)ε : (ε,∈) −→ (Qθ, <w)
is strictly increasing, when restricted to Γ. Given an ordinal ν < κ, we apply
(2) for f to the set ∆ = {ρ0(α, ε) : α ∈ Γ} and find a ∈ [∆]n and A ∈ f(a)
such that tp(A) ≥ ν and A ⊆ ∆. Let {α0, . . . , αn−1} be the increasing
enumeration of the preimage (ρ0)−1

ε (a) and pick αn ∈ Γ above αn−1. Let B
be the preimage (ρ0)−1

ε (A). Then B ∈ g(α0, . . . , αn−1, αn), tp(B) ≥ ν and
B ⊆ Γ. This completes the proof. a

If we apply this stepping-up procedure to the projection [[··]] of the square-
bracket operation defined in 4.11, one obtains analogues of families G,H and
K of Theorem 4.13 for ω2 instead of ω1. This will give us the following result
whose proof can be found in [76].

17.3 Theorem. Assuming �ω1
, there is a reflexive Banach space E with

a transitive basis of type ω2 with the property that every bounded operator
T : E −→ E can be written as a sum of an operator with a separable range
and a diagonal operator (relative to the basis) with only countably many
changes of constants. a

17.4 Remark. In [32], Koszmider has shown that such a space cannot
be constructed on the basis of the usual axioms of set theory. We refer
the reader to that paper for more details about these kinds of examples of
Banach spaces.

For the rest of this section we shall examine the stepping-up method with
fewer restrictions on the given C-sequence Cα (α < θ+) on which it is based.

17.5 Theorem. The following are equivalent for a regular cardinal θ such
that log θ+ = θ.21

(1) There is a substructure of the form (θ++, θ+, <, . . .) with no substruc-
ture B of size θ+ with B ∩ θ+ of size θ.

(2) There is an f : [θ++]3 −→ θ+ which takes all the possible values on
the cube of any subset Γ of θ++ of size θ+.

21log κ = min{λ : 2λ ≥ κ}.
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Proof. To prove the nontrivial direction from (1) to (2), we use Lemma 16.8
and choose a strongly unbounded and subadditive e : [θ++]2 −→ θ+. We
also choose a C-sequence Cα (α < θ+) such that tp(Cα) ≤ θ for all α < θ+

and consider the corresponding function ρ∗ : [θ+]2 −→ θ defined above in
(I.15). Finally, we choose a one-to-one sequence rα (α < θ++) of elements

of {0, 1}θ+

and consider the corresponding function ∆ : [θ++]2 −→ θ+:

∆(α, β) = ∆(rα, rβ) = min{ν : rα(ν) 6= rβ(ν)}. (I.21)

The definition of f : [θ++]3 −→ θ is given according to the following two
rules applied to a given triple x = {α, β, γ} ∈ [θ++]3 (α < β < γ):

Rule 1: If ∆(rα, rβ) < ∆(rβ , rγ) and rα <lex rβ <lex rγ or rα >lex

rβ >lex rγ , let

f(α, β, γ) = min(Pν(∆(β, γ)) \ ∆(α, β)),

where ν = ρ∗(min{ξ ≤ ∆(α, β) : ρ∗(ξ, ∆(α, β)) 6= ρ∗(ξ, ∆(β, γ))}, ∆(β, γ)).

Rule 2: If α ∈ x is such that rα is lexicographically between the other
two rξ ’s for ξ ∈ x, if β ∈ x \ {α} is such that ∆(rα, rβ) > ∆(rα, rγ), where
γ is the remaining element of x and if x does not fall under Rule 1, let

f(α, β, γ) = min(Pν(e(β, γ)) \ e(α, β)),

where ν = ρ∗{∆(α, β), e(β, γ)}.
The proof of the theorem is complete once we show the following: for

every stationary set Σ of cofinality θ ordinals < θ+ and every Γ ⊆ θ++ of
size θ+ there exist α < β < γ in Γ such that f(α, β, γ) ∈ Σ. The details of
this can again be found in [76]. a

17.6 Theorem. If θ is a regular strong limit cardinal carrying a nonreflect-
ing stationary set, then there is an f : [θ+]3 −→ θ which takes all the values
from θ on the cube of any subset of θ+ of size θ.

Proof. This is really a corollary of the proof of Theorem 17.5, so let us
only indicate the adjustments. By Corollary 16.19 and Lemma 16.7, we
can choose a strongly unbounded subadditive map e : [θ+]2 −→ θ. By
the assumption about θ we can choose a C-sequence Cα (α < θ) avoiding
a stationary set Σ ⊆ θ and consider the corresponding notion of a walk,
trace, ρ0-function and the square-bracket operation [··] as defined in (I.13)
in Section 15. As in the proof of Theorem 17.5, we choose a one-to-one
sequence rα (α < θ+) of elements of {0, 1}θ and consider the corresponding
function ∆ : [θ+]2 −→ θ:

∆(α, β) = ∆(rα, rβ) = min{ν < θ : rα(ν) 6= rβ(ν)}.
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The definition of f : [θ+]3 −→ θ is given according to the following rules,
applied to a given x ∈ [θ+]3.

Rule 1: If x = {α < β < γ}, ∆(rα, rβ) < ∆(rβ , rγ) and rα <lex rβ <lex

rγ , or rα >lex rβ >lex rγ , let

f{α, β, γ} = [∆(α, β)∆(β, γ)].

Rule 2: If α ∈ x is such that rα is lexicographically between the other
two rξ’s for ξ ∈ x, if β ∈ x \ {α} is such that ∆(rα, rβ) > ∆(rα, rγ), where
γ is the remaining element of x, and they do not satisfy the conditions of
Rule 1, set

f{α, β, γ} = min(Tr(∆(α, β), e{β, γ}) \ e{α, β}),

i.e. f{α, β, γ} is the minimal point on the trace of the walk from e{β, γ}
to ∆(α, β) above the ordinal e{α, β}; if such a point does not exist, set
f{α, β, γ} = 0.

Then it suffices to show that for every stationary Ω ⊆ Σ and every Γ ⊆ θ+

of size θ, there exists an x ∈ [Γ]3 such that f(x) ∈ Ω. The details of this
are given in [76]. a

Since log ω1 = ω, we get the following consequence of Theorem 17.5.

17.7 Theorem. Chang’s conjecture is equivalent to the statement that for
every f : [ω2]3 −→ ω1 there is an uncountable Γ ⊆ ω2 such that f“[Γ]3 6= ω1.
a

17.8 Remark. Since this same statement is stronger for functions from
higher dimensional cubes [ω2]n into ω1 the Theorem 17.7 shows that they
are all equivalent to Chang’s conjecture. Note also that n = 3 is the minimal
dimension for which this equivalence holds, since the case n = 2 follows from
the Continuum Hypothesis, which has no relationship to Chang’s conjecture.

For the rest of this section we examine the stepping-up procedure without
the assumption that some form of Chang’s conjecture is false. So let θ be
a given regular uncountable cardinal and let Cα (α < θ+) be a fixed C-
sequence such that tp(Cα) ≤ κ for all α < θ+. Let ρ∗ : [θ+]2 −→ θ be
the ρ∗-function defined above in (I.15). Recall that, in case Cα (α < θ+)
is a �θ-sequence, the key to our stepping-up procedure was the function
τ : [θ+]3 −→ θ+ defined by the formula (I.17). Without the assumption of
Cα (α < θ+) being a �θ-sequence, the following related function turns out
to be a good substitute: χ : [θ+]3 −→ ω defined by

χ(α, β, γ) = |ρ0(α, γ) ∩ ρ0(β, γ)|.

Thus χ(α, β, γ) is equal to the length of the common part of the walks
γ → α and γ → β.
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17.9 Definition. A subset Γ of θ+ is stable if χ is bounded on [Γ]3.

The following result whose proof can be found in [76] relates this notion
to the unboundedness property of ρ∗.

17.10 Lemma. Suppose that Γ is a stable subset of θ+ of size θ. Then
{ρ∗(α, β) : {α, β} ∈ [Ω]2} is unbounded in θ for every Ω ⊆ Γ of size θ. a

17.11 Definition. The 3-dimensional version of the oscillation mapping,
osc : [θ+]3 −→ ω, is defined on the basis of the 2-dimensional version of
Section 14 as follows

osc(α, β, γ) = osc(Cβs
\ α, Cγt

\ α),

where s = ρ0(α, β)�χ(α, β, γ) and t = ρ0(α, γ)�χ(α, β, γ).

In other words, we let n be the length of the common part of the two
walks γ → α and γ → β, then we consider the walks γ = γ0 > . . . > γk = α
and β = β0 > . . . > βl = α from γ to α and β to α respectively; if both k and
l are bigger than n, i.e. if γn and βn are both defined, we let osc(α, β, γ) be
equal to the oscillation of the two sets Cβn

\α and Cγn
\α. If min{k, l} < n,

we let osc(α, β, γ) = 0. The proof of the following basic fact about the
three-dimensional oscillation mapping can again be found in [76].

17.12 Lemma. Suppose that Γ is a subset of θ+ of size κ, a regular un-
countable cardinal, and that every subset of Γ of size κ is unstable. Then for
every integer n ≥ 1, there exist α < β < γ in Γ such that osc(α, β, γ) = n.a

Applying the last two lemmas to the subsets of θ+ of size θ, we get an
interesting dichotomy:

17.13 Lemma. Every Γ ⊆ θ+ of size θ can be refined to a subset Ω of size
θ such that either:

(1) ρ∗ is unbounded and therefore strongly unbounded on Ω, or

(2) the oscillation mapping takes all possible values on the cube of Ω. a

We finish the section with a typical application of this dichotomy.

17.14 Theorem. Suppose θ is a regular cardinal such that log θ+ = θ.
Then there is an f : [θ++]3 −→ ω which takes all the values from ω on the
cube of any subset of θ++ of size θ+.

Proof. We choose two C-sequences Cα (α < θ+) and C+
α (α < θ++) on θ+

and θ++ respectively, such that tp(Cα) ≤ θ for all α < θ+ and tp(C+
α ) ≤

θ+ for all α < θ++. Let ρ∗ : [θ+]2 −→ θ and ρ∗+ : [θ++]2 −→ θ+ be
the corresponding ρ∗-functions defined above in I.15. Also choose a one-
to-one sequence rα (α < θ++) of elements of {0, 1}θ+

and consider the
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corresponding function ∆ : [θ++]2 −→ θ+ defined in (I.21). We define
f : [θ++]3 −→ θ+ according to the following two cases for a given triple
α < β < γ of elements of θ++.

Case 1: (Cβs
∩ Cγt

) \ α 6= ∅, where s = ρ0(α, β)�χ(α, β, γ) and t =
ρ0(α, γ)�χ(α, β, γ) of course assuming that ρ0(α, β) has length at least
χ(α, β, γ).

Rule 1: If ∆(rα, rβ) < ∆(rβ , rγ) and rα <lex rβ <lex rγ or rα >lex

rβ >lex rγ , set

f(α, β, γ) = min(Pν(∆(β, γ)) \ ∆(α, β)),

where ν = ρ∗(min{ξ ≤ ∆(α, β) : ρ∗(ξ, ∆(α, β)) 6= ρ∗(ξ, ∆(β, γ))}, ∆(β, γ)).

Rule 2: If ᾱ ∈ {α, β, γ} is such that rᾱ is lexicographically between
the other two rξ ’s for ξ ∈ {α, β, γ}, if β̄ ∈ {α, β, γ} \ {ᾱ} is such that
∆(rᾱ, rβ̄) > ∆(rᾱ, rγ̄), where γ̄ is the remaining member of {α, β, γ}, and
if {α, β, γ} does not fall under Rule 1, let

f(α, β, γ) = min(Pν(ρ∗+{β̄, γ̄}) \ ρ∗+(α, β)),

where ν = ρ∗{∆(α, β), ρ∗+(β, γ)}.

Case 2: (Cβs
∩ Cγt

) \ α = ∅, where s = ρ0(α, β)�χ(α, β, γ) and t =
ρ0(α, γ)�χ(α, β, γ) of course assuming that ρ0(α, β) has length at least
χ(α, β, γ). Let

f(α, β, γ) = osc(α, β, γ).

If a given triple α < β < γ does not fall into one of these two cases, let
f(α, β, γ) = 0.

Then it suffices to show that for every Γ ⊆ θ++ of size θ+, the image
f“[Γ]3 either contains all positive integers or almost all ordinals < θ+ of
cofinality θ. The details of this are given in [76]. a

17.15 Corollary. There is an f : [ω2]3 −→ ω which takes all the values on
the cube of any uncountable subset of ω2. a

17.16 Remark. Note that the dimension 3 in this Corollary cannot be
lowered to 2 as long as one does not use some additional axioms to construct
such f . Note also that the range ω cannot be replaced by a set of bigger
size, as this would contradict Chang’s conjecture. We have seen above that
Chang’s conjecture is equivalent to the statement that for every f : [ω2]3 −→
ω1 there is an uncountable set Γ ⊆ ω2 such that f“[Γ]3 6= ω1. Is there a
similar reformulation of the Continuum Hypothesis? More precisely, one
can ask the following question.

17.17 Question. Is CH equivalent to the statement that for every
f : [ω2]2 −→ ω there exists an uncountable Γ ⊆ ω2 with f“[Γ]2 6= ω?
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Vojtěch Rődl, editors, Mathematics of Ramsey theory, pages 155–171.
Springer-Verlag, 1990.

[83] Kurt Wolfsdorf. Färbungen großer Würfel mit bunten Wegen. Archiv
der Mathematik, 40:569–576, 1983.

[84] W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and
the Nonstationary Ideal. Walter de Gruyter & Co., Berlin, 1999.



Index

<c, 6
<p, 14
<r, 6
<x, 14
<ρ̄, 14
D, 53
Fn(α), 57
G 7−→ G∗, 11
Gα, 8
KΓ, 32
Sθ, 48
T (ρ0), 8
Wγ , 48
[αβ], 25
[αβ]∗, 69
[αβ]∗h, 69
[··]h, 68
∆, 54
∆-function, 54
Λ, 20
Λ + n, 20
αt, 64
ρ̄, 13
ρ̄1, 38
χV , 10
≤, 23
F-Cohen, 15
F-Souslin, 15
GΓ, 28
I, 47
Uf , 48
| αβ |, 31
ρ, 12
ρ0, 5
ρ1, 8

ρ2, 19
ρ3, 19
ρa, 16
σ(α, β), 25
τe, 16
[[αβ]], 28
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