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GENERIC ABSOLUTENESS AND THE CONTINUUM

Stevo Todorcevic

Let Hω2 denote the collection of all sets whose transitive closure has size at
most ℵ1. Thus, (Hω2 ,∈) is a natural model of ZFC minus the power-set axiom
which correctly estimates many of the problems left open by the smaller and
better understood structure (Hω1 ,∈) of hereditarily countable sets. One of such
problems is, for example, the Continuum Hypothesis. It is largely for this reason
that the structure (Hω2 ,∈) has recently received a considerable amount of study
(see e.g. [15] and [16]). Recall the well-known Levy-Schoenfield absoluteness
theorem ([10, §2]) which states that for every Σ0−sentence ϕ(x, a) with one free
variable x and parameter a from Hω2 , if there is an x such that ϕ(x, a) holds
then there is such an x in Hω2 , or in other words,

(Hω2 ,∈) ≺1 (V,∈).(1)

Strictly speaking, what is usually called the Levy-Schoenfield absoluteness the-
orem is a bit stronger result than this, but this is the form of their absoluteness
theorem that allows a variation of interest to us here. The generic absoluteness
considered in this paper is a natural strengthening of (1) where the universe V
is replaced by one of its boolean-valued extensions V B, i.e. the statement of the
form

(Hω2 ,∈) ≺1 (V B,∈)(2)

for a suitably chosen boolean-valued extension V B. This sort of generic abso-
luteness has apparently been first considered by J. Stavi (see [11]) and then by
J. Bagaria [4] who has also observed that any of the ‘Bounded Forcing Axioms’
introduced by M.Goldstern and S.Shelah [9] is equivalent to the corresponding
generic absoluteness statement for the structure (Hω2 ,∈). The most prominent
such statement (besides of course Martin’s axiom; see [6]) is the Bounded Mar-
tin’s Maximum which asserts (2) for any boolean-valued extension V B which
preserves stationary subsets of ω1 (see [1]-[4], [6]-[9], [11]-[12], [14]-[16]). The
purpose of this note is to answer the natural question (appearing explicitely or
implicitly in some of the listed papers) which asks whether any of the standard
forms of the generic absoluteness (2) discussed above decides the size of the
continuum.

Theorem 1. Assume generic absoluteness (2) for boolean-valued extensions
which preserve stationary subsets of ω1. Then there is a well ordering of the
continuum of length ω2 which is definable in the structure (Hω2 ,∈).
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Remark 2. It should be noted that prior to our work, substantial and quite
inspiring advances towards Theorem 1 had already been made. For example,
W. H. Woodin [16, §10.3] proved Theorem 1 under the additional assumption
of the existence of a measurable cardinal and D. Aspero [2] proved the weaker
conclusion in Theorem 1 to the effect that there is F ⊆ ωω of size ℵ2 which is
cofinal in the ordering of eventual dominance of ωω.

We start proving Theorem 1 by fixing the only parameter of our definition, a
one-to-one sequence rξ(ξ < ω1) of elements of the Cantor set 2ω. This allows us
to associate to every countable set of ordinals X, the real

rX = rotp(X).

(See [13] for a more precise functor X → rotp(X) which can also be used in the
definitions that follow.) For a pair x and y of distinct members of 2ω, set

∆(x, y) = min{n < ω : x(n) 
= y(n)}.
Note that for three distinct members x, y and z of 2ω, the set

∆(x, y, z) = {∆(x, y),∆(y, z),∆(x, z)}
has exactly two elements.

Definition 3. Let θAC denote the statement that for every S ⊆ ω1 there exist
ordinals γ > β > α ≥ ω1 and an increasing continuous decomposition

γ =
⋃

ν<ω1

Nν

of the ordinal γ into countable sets such that for all ν < ω1,

Nν ∩ ω1 ∈ S iff ∆(rNν∩α, rNν∩β) = max ∆(rNν∩α, rNν∩β , rNν
).(3)

For a given S ⊆ ω1 we let θ1
AC(S, {rξ : ξ < ω1}) denote the Σ1−sentence of

(Hω2 ,∈) asserting the existence of γ > β > α ≥ ω1 and the decomposition
Nν(ν < ω1) of γ satisfying the equivalence (3) for all ν < ω1.

Theorem 1 follows from the following more informative result.

Theorem 4. For every S ⊆ ω1 there is a boolean-valued extension which pre-
serves stationary subsets of ω1 and satisfies θ1

AC(S, {rξ : ξ < ω1}).

Corollary 5. The generic absoluteness (2) for boolean extensions which pre-
serve stationary subsets of ω1 implies θAC .

We need a few definitions, so let λ = 22ℵ1 .
For ω1 ≤ α < β < γ ≤ λ+ and P ∈ {min, max}, set

SP
αβγ = {N ∈ [γ]ω : ∆ (rN∩α, rN∩β) = P∆(rN∩α, rN∩β , rN )}.

For A ⊆ ω1 and α, β, γ and P as above, set

SP
αβγ(A) = {N ∈ SP

αβγ : N ∩ ω1 ∈ A}.
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For ω1 ≤ α < β < λ+, A ⊆ ω1 and P ∈ {min, max}, set

ΓP
αβ(A) = {γ < λ+ : SP

αβγ(A) is stationary}.

Lemma 6. There exist ω1 ≤ α < β < λ+, such that ΓP
αβ(A) is stationary for

all stationary A ⊆ ω1 and P ∈ {min, max}.

Proof. Otherwise, for each ω1 ≤ α < β < λ+, we can choose a stationary
A(α, β) ⊆ ω1 and P (α, β) ∈ {min, max} such that

D(α, β) = {γ < λ+ : SP (α,β)
αβγ (A(α, β)) is nonstationary}

contains a closed and unbounded subset of λ+. It follows that there is a single
closed and unbounded set D ⊆ λ+ such that for all α < β in D,

D \ (β + 1) ⊆ D(α, β).

Applying λ+ → (ω + 2)2
2ℵ1 to the coloring of (α, β) �→ (A(α, β), P (α, β)), we

can find E ⊆ D of order-type ω+2, a stationary set A ⊆ ω1, and P ∈ {min,max}
such that A(α, β) = A and P (α, β) = P for all α < β in E. It follows that

SP
αβγ(A) is nonstationary for all α < β < γ in E.(4)

Let κ be a large enough regular cardinal and Mν(ν < ω1) a continuous ∈-
chain of countable elementary submodels of (Hκ,∈) containing all the objects
accumulated so far. Let

Nν = Mν ∩ λ+, (ν < ω1),

and
A0 = {ν ∈ A : Nν ∩ ω1 = ν}.

Then A0 is stationary as A \ A0 is not. Note that for ν < ω1 and α < β < γ
from E, the set SP

αβγ(A) belongs to Mν , so by (4)

Nν ∩ γ = Mν ∩ γ /∈ SP
αβγ(A).

It follows that:

∆(rNν∩α, rNν∩β) = P̄∆(rNν∩α, rNν∩β , rNν∩γ) for all(5)

ν ∈ A0 and α < β < γ from E,

where P̄ = min if P = max and P̄ = max if P = min .

Case 1. P̄ = min . For α < β in E and k ∈ ω, set

Aαβ [≥ k] = {ν ∈ A0 : ∆(rNν∩α, rNν∩β) ≥ k}.
For α < β in E, set

kαβ = max{k ∈ ω : A \ Aαβ [≥ k] is nonstationary}.
Fix α < β < γ < δ in E. Consider ν ∈ Aαβ [≥ kαβ ]. Applying (5) to triples
α < β < γ and α < β < δ, we get that
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∆(rNν∩α, rNν∩β) < ∆(rNν∩β , rNν∩γ ), and

∆(rNν∩α, rNν∩β) < ∆(rNν∩β , rNν∩δ).
Note that this gives the equalities

rNν∩γ � n = rNν∩β � n = rNν∩δ � n

for n = ∆(rNν∩α, rNν∩β) + 1. It follows that,

kαβ ≤ ∆(rNν∩α
, rNν∩β) < ∆(rNν∩γ

, rNν∩δ).

Since ν was chosen to be an arbitrary member of Aαβ [≥ kαβ ], we conclude that
the set

A \ Aγδ[≥ kαβ + 1]
is nonstationary. Hence kγδ ≥ kαβ + 1. This shows that

kαβ < kγδ for all α < β < γ < δ from E,

and this is in direct contradiction with the fact that E has order-type ω + 2.

Case 2. P̄ = max . Fix α < β < γ < δ in E and consider an arbitrary ν ∈ Aγδ[≥
kγδ]. Applying (5) to triples α < γ < δ and β < γ < δ, we get that

∆(rNν∩α, rNν∩γ) > ∆(rNν∩γ , rNν∩δ
), and

∆(rNν∩β , rNν∩γ) > ∆(rNν∩γ , rNν∩δ).
This gives that

rNν∩α � n = rNν∩γ � n = rNν∩β � n

for n = ∆(rNν∩γ , rNν∩δ) + 1. It follows that,

kγδ ≤ ∆(rNν∩γ
, rNν∩δ) < ∆(rNν∩α

, rNν∩β).

Since ν is an arbitrary member of Aγδ[≥ kγδ], we conclude that the set

A \ Aαβ [≥ kγδ + 1]

is nonstationary. Hence kαβ ≥ kγδ + 1. This shows that

kαβ > kγδ for all α < β < γ < δ from E,

and this can happen only if the set E is finite, a contradiction. The case-analysis
shows that our initial assumption that the conclusion of Lemma 6 is false, leads
to contradictions finishing thus the proof.

Fix ω1 ≤ α < β < λ+ satisfying the conclusion of Lemma 6.

Lemma 7. For every stationary set A ⊆ ω1 and P ∈ {min,max}, the set

SP
αβ(A) = {N ∈ [λ+]ω : N ∩ ω1 ∈ A & ∆(rNν∩α, rNν∩β) =

= P∆(rNν∩α, rNν∩β , rN )}
is stationary.
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Proof. Consider an f : (λ+)<ω → λ+. We need to find N ∈ SP
αβ(A) such that

f ′′(N)<ω ⊆ N. Since α and β satisfy the conclusion of Lemma 6, the set ΓP
αβ(A)

is a stationary subset of λ+, so there is γ ∈ ΓP
αβ(A) such that f ′′γ<ω ⊆ γ.

Then SP
αβγ(A) is stationary so applying this to the restriction g = f � γ<ω we

find N ∈ SP
αβγ(A) such that g′′N<ω ⊆ N. Note that N ∈ SP

αβ(A) and that
g′′N<ω = f ′′N<ω. This finishes the proof.

We are now ready to start the proof of Theorem 4.

Proof of Theorem 4. Fix a subset S of ω1. Let P be the poset of all countable
increasing continuous transfinite sequences of the form p = 〈Np

ν : ν ≤ νp〉 such
that for all ν ≤ νp,

Np
ν ∩ ω1 ∈ S iff ∆(rNp

ν ∩α, rNp
ν ∩β) = max ∆(rNp

ν ∩α, rNp
ν ∩β , rNp

ν
).(6)

Clearly, it suffices to show that P preserves stationary subsets of ω1. So,
consider a stationary subset A of ω1, p ∈ P, and a P-term τ for a closed and
unbounded subset of ω1. Let κ be a large enough regular cardinal so that the
structure (Hκ,∈) contains all the objects accumulated so far. Suppose first that
A ∩ S is stationary. By Lemma 7, the set Smax

αβ (A ∩ S) is stationary, so we can
find a countable elementary submodel M of (Hκ,∈) containing all the relevant
objects such that

M ∩ λ+ ∈ Smax
αβ (A ∩ S).

Working in M we build a decreasing sequence p = p0 ≥ p1 ≥ · · · ≥ pn ≥ · · · of
elements of P ∩M and a sequence ξn(n < ω) of ordinals from M ∩ω1 such that:

(a) M ∩ λ+ =
⋃

n<ω

⋃
ν≤νpn

Npn
ν ,

(b) pn forces that ξn belongs to τ ,
(c) supn<ω ξn = M ∩ ω1.

Let νq = supn<ω νpn and

q = (
⋃

n<ω

pn) ∪ {〈νq, M ∩ λ+〉}.

Then q ∈ P, q ≤ p and q forces that M ∩ω1 belongs to the intersection of τ and
A. The case when A \ S is stationary is considered similarly using Lemma 7 for
A \ S and P = min, i.e., the fact that Smin

αβ (A \ S) is stationary. This finishes
the proof of Theorem 4.

We finish this note with the following observation which shows that θAC not
only gives an upper bound on the size of the continuum but also the exact value.

Theorem 8. θAC implies 2ℵ0 = 2ℵ1 = ℵ2.

Proof. It remains to show that θAC implies 2ℵ0 = 2ℵ1 . This will be done by
showing that θAC violates the weak-diamond principle of Devlin and Shelah [5].
Define F : 2<ω1 → 2 by letting F (f) = 0 iff f codes (in the usual way) a well
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ordering <f of its domain ν which has to be a countable limit ordinal bigger
than 0 such that if we let

αf = otp ({ξ < ν : ξ <f 0}, <f ),
βf = otp ({ξ < ν : ξ <f 1}, <f ),
γf = otp (ν, <f ),

then αf < βf < γf and

∆(rαf
, rβf

) = max ∆(rαf
, rβf

, rγf
).

If weak-diamond holds it would apply to F giving us g ∈ 2ω1 such that for every
f ∈ 2ω1 , the set

{ν < ω1 : F (f � ν) = g(ν)}
is a stationary subset of ω1. Let S be equal to g−1(1). Applying θAC to S we get
ω1 ≤ α < β < γ < ω2 and an increasing continuous decomposition

γ =
⋃

ν<ω1

Nν

of the ordinal γ into countable subsets such that for all ν < ω1,

Nν ∩ ω1 ∈ S iff ∆(rNν∩α, rNν∩β) = max ∆(rNν∩α, rNν∩β , rNν
).(7)

Then we can find f ∈ 2ω1 which codes a well-ordering <f of ω1 of order type
γ so that for almost all countable limit ordinals ν,

αf�ν = otp(Nν ∩ α),
βf�ν = otp(Nν ∩ β),
γf�ν = otp(Nν).

It follows that for almost all ν < ω1,

ν ∈ S iff ∆(rαf�ν
, rβf�ν

) = max ∆(rαf�ν
, rβf�ν

, rγf�ν
).(8)

Let A = {ν < ω1 : F (f � ν) = g(ν)}. Then by the choice of g, the set A is
stationary. If A∩S is stationary, we can find ν ∈ A∩S for which the equivalence
(8) is true, i.e., such that

∆(rαf�ν
, rβf�ν

) = max ∆(rαf�ν
, rβf�ν

, rγf�ν
).

Going back to the definition of F we see that F (f � ν) = 0, and therefore,
g(ν) = 0 which means that ν /∈ S, a contradiction. If A \ S is stationary we
chose ν ∈ A \ S satisfying the equivalence (8), i.e., such that

∆(rαf�ν
, rβf�ν

) = min ∆(rαf�ν
, rβf�ν

, rγf�ν
).

Applying the definition of F , we see that F (f � ν) = 1, and therefore g(ν) = 1
which means ν ∈ S, a contradiction. This finishes the proof of Theorem 8.
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[1] D. Asperó, Bounded forcing axioms and the continuum, preprint, 2000.
[2] , Bounded Martin’s Maximum, d and c, preprint, 2002.
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