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CHAPTER 1

Laplace Transforms

1. Definitions

Definition 1.1 (Laplace transform). Let f : [0,∞) → R. The Laplace transform of f , denoted L(f) or

f̂ , is the function

f̂(s) :=
∫ ∞

0

e−stf(t) dt.

The domain of f̂ is the set of s for which the integral converges. ♦

Theorem 1.2. If f̂(s0) converges, then f̂(s) converges for all s > s0.

Proof. Suppose that s > s0. We wish to show that the “tail” of the integral is small, i.e., show that,

given an ε > 0, there exists an a such that ∣∣∣∣∣
∫ b

a

e−stf(t) dt

∣∣∣∣∣ < εk

for all b ≥ a, where k is a constant, i.e., independent of a and b. Let

β(x) = −
∫ ∞

x

e−s0tf(t) dt,

where x ≥ 0. The integral exists since f̂(s0) converges. Note that β(x) is also differentiable (fundamental

theorem of calculus) with β′(x) = e−s0xf(x). Therefore, limx→∞ β(x) = 0.

Choose an a such that x ≥ a ⇒
∣∣β(x)

∣∣ < ε. Then∫ b

a

e−stf(t) dt =
∫ b

a

e−stes0te−s0tf(t) dt

=
∫ b

a

e−(s−s0)tβ′(t) dt

= e−(s−s0)tβ(t)
∣∣∣b
a

+
∫ b

a

(s− s0) e−(s−s0)tβ(t) dt.

Choosing

u = e−(s−s0)t, dv = β′(t) dt,

du = − (s− s0) e−(s−s0)t dt, v = β(t),

we have ∫ b

a

e−stf(t) dt = e−(s−s0)bβ(b)− e−(s−s0)aβ(a) + (s− s0)
∫ b

a

e−(s−s0)tβ(t) dt.

Since s ≥ s0 and b ≥ a ≥ 0, we have e−(s−s0)b ≤ 1 and e−(s−s0)a ≤ 1. Therefore,∣∣∣∣∣
∫ b

a

e−stf(t) dt

∣∣∣∣∣ ≤ ∣∣β(b)
∣∣+ ∣∣β(a)

∣∣+ (s− s0)

∣∣∣∣∣
∫ b

a

e−(s−s0)tβ(t) dt

∣∣∣∣∣
1
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≤ ε + ε + (s− s0)
∫ b

a

e−(s−s0)tε dt

= 2ε + ε (s− s0)
2

(
(s− s0)

2
∣∣∣b
a

)
= 2ε + ε (s− s0)

2
(
e−(s−s0)a − e−(s−s0)b

)
≤ 2ε + ε (s− s0)

2
e−(s−s0)a

≤ 2ε + ε (s− s0)
2

= ε
(
2 + (s− s0)

2
)

.

Therefore, letting k = 2 + (s− s0)
2, we have∣∣∣∣∣

∫ b

a

e−stf(t) dt

∣∣∣∣∣ < εk

for all b ≥ a. �

Recall from MATA30/36/37 that

(1) if 0 ≤ g(x) ≤ h(x), then
∫∞
0

h(x) dx converges implies that
∫∞
0

g(x) dx converges.

(2)
∫∞
0

∣∣g(x)
∣∣ dx converges implies that

∫∞
0

g(x) dx converges.

Also note that s > s0 ⇒ e−st ≤ e−s0t. Therefore, if
∫∞
0

e−s0t
∣∣f(t)

∣∣ dt converges, then Theorem 1.2 follows

immediately. The general case requires more careful analysis.

Example 1.3. Compute L(f) for f(x) = eax. �

Solution. We have

f̂(s) =
∫ ∞

0

e−steat dt =
∫ ∞

0

e(a−s)t dt = lim
b→∞

e(a−s)t

a− s

∣∣∣∣b
0

= lim
b→∞

(
e(a−s)b

a− s
− 1

a− s

)
= 0− 1

a− s
=

1
s− a

,

where the domain is s > a, i.e., (a,∞). �

Definition 1.4 (Exponential order). Given a constant α, a continuous function f : [0,∞) → R is said

to have exponential order α if there exists a constant C such that
∣∣f(x)

∣∣ ≤ Ceαx for sufficiently large x.

More precisely, f has exponential order if there exist constants C and b such that
∣∣f(x)

∣∣ ≤ Ceαx for x > b.

We write f ∈ ξα to mean that f has exponential order α. ♦

Theorem 1.5 (Comparison theorem). If f ∈ ξα, then f̂(s) is defined for all s > α.

From now on, we will assume that f ∈ ξα for some α.

2. Laplace Transforms of Derivatives

To take into account the Laplace transform of derivatives, note that, from the definition of the Laplace

transform, we have

L(f ′) =
∫ ∞

0

e−stf ′(t) dt = lim
b→∞

∫ b

0

e−stf ′(t) dt.
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Letting

u = e−st, dv = f ′(t) dt,

du = −se−st dt, v = f(t),

we have

L(f ′) = lim
b→∞

(
e−stf(t)

∣∣∣b
0

+ s

∫ b

0

e−stf(t) dt

)
= lim

b→∞

(
e−sbf(b)

)
− f(0) + sL(f).

Our interest now lies in limb→∞
(
e−sbf(b)

)
. Note that

0 ≤
∣∣e−sbf(b)

∣∣ ≤ Ce−sbeαb︸ ︷︷ ︸
?

.

But ? → 0 as b →∞. So by squeezing, we have limb→∞
∣∣e−stf(b)

∣∣ = 0. But then limb→∞

(
−
∣∣e−sbf(b)

∣∣) = 0

while

−
∣∣e−sbf(b)

∣∣ ≤ e−sbf(b) ≤
∣∣e−sbf(b)

∣∣ ,
so we conclude that limb→∞ e−sbf(b) = 0. Hence,

L(f ′) = 0− f(0) + sL(f) = sL(f)− f(0).

Example 1.6. Solve y′ − 4y = ex with y(0) = 1. �

Solution. Taking the Laplace transform of the entire equation, we have

L(y′ − 4y) = L(ex) ,

L(y′)− 4L(y) =
1

s− 1
,

sL(y)− y(0)− 4L(y) =
1

s− 1
,

(s− 4)L(y)− 1 =
1

s− 1
,

(s− 4)L(y) =
1

s− 1
+ 1,

(s− 4)L(y) =
s

s− 1
,

L(y) =
s

(s− 1) (s− 4)
.

Rearranging the expression to reveal terms with easily identifiable inverse Laplace transforms, we have

L(y) =
4
3

1
s− 4

− 1
3

1
s− 1

.

Taking the inverse Laplace transform gives

y =
4
3
e4x − 1

3
ex.

�

Property 1.7 (Laplace transform).

(1) L(af + bg) = aL(f) + bL(g)
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(2)

L(f ′) = sL(f)− f(0),

L(f ′′) = sL(f ′)− f ′(0) = s2L(f)− sf(0)− f ′(0),

...

L
(
f (n)

)
= snL(f)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

(3) If f and g are continuous on [0,∞) and L(f) = L(g), then f = g.

(4) L
(
eaxf(x)

)
= f̂(s− a)

(5) (a) f̂ is differentiable and L
(
xnf(x)

)
= (−1)nf̂ (n)(s).

(b) f̂ is integrable and L
(
f(x)/x

)
= −

∫ s

0
f̂(u) du.

(6) lims→∞ f̂(s) = 0

Proof of (1). This is trivial. �

Proof of (2). Note that

L
(
f ′(x)

)
=
∫ ∞

0

e−sxf ′(x) dx.

Letting

u = e−sx, dv = f ′(x) dx,

du = −se−sx dx, v = f(x),

we have

L
(
f ′(x)

)
= e−sxf(x)

∣∣∣∞
0

+ s

∫ ∞

0

e−sxf(x) dx

= 0− 1f(x) + sL(f)

= sL(f)− f(0). �

Proof of (3). Suppose that L(f) = L(g) and let h = f − g. Then L(h) = 0. To show that h = 0 as

well, we use the corollary to the Weierstrass Approximation Theorem (MATC37). If f is continuous on [0, 1]

and
∫ 1

0
tnf(t) dt = 0 for all n = 0, 1, 2, . . . , then f ≡ 0. Suppose that f̂(s) = 0 for all s ≥ s0. Consider

s = s0 + n. Then

ĥ(s0 + n) =
∫ ∞

0

e−(s0+n)th(t) dt

=
∫ ∞

0

e−nte−s0th(t) dt

=
∫ ∞

0

e−ntv′(t) dt.

Let v(x) =
∫ x

0
e−s0th(t) dt so that v′(x) = e−s0xh(x). Letting

u = e−nt, dv = v′(t) dt,

du = −ne−nx dx, v = v,
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we have

ĥ(s0 + n) = e−ntv(t)
∣∣∣∞
0

+ n

∫ ∞

0

e−ntv(t) dt

= lim
b→∞

e−nb

∫ b

0

e−s0th(t)− v(0) + n

∫ ∞

0

e−ntv(t) dt

= 0ĥ(s0)− v(0) + n

∫ ∞

0

e−ntv(t) dt

= 0 · 0− 0 + n

∫ ∞

0

e−ntv(t) dt

= n

∫ ∞

0

e−ntv(t) dt.

Therefore,
∫∞
0

e−ntv(t) dt = 0 for all n. Now let z = et so that t = ln(1/z) = − ln(z) and dt = − (1/z) dz.

Then t = 0 ⇒ z = 0 and limt→∞ e−t = 0. Therefore,

0 =
∫ ∞

0

e−ntv(t) dt

=
∫ 1

0

znv
(
− ln(z)

)(
−1

z

)
dz

=
∫ 1

0

zn−1v
(
− ln(z)

)
dz

for all n. Therefore, v
(
− ln(z)

)
= 0. As z runs through [0, 1], − ln(z) runs through [0,∞), i.e., v(t) = 0 for

all t ∈ [0,∞). Therefore, v(t) = 0 and v′(t) = 0 = e−s0th(t) for all t ∈ [0,∞). Therefore, h(t) = 0 as well

since e−s0t 6= 0. �

Proof of (4). We have

L
(
eaxf(x)

)
=
∫ ∞

0

e−sxeaxf(x) dx

=
∫ ∞

0

e−(s−a)xf(x) dx

= f̂(s− a). �

Proof of (5).

We have

f̂(s) = lim
h→0

f̂(s + h)− f̂(s)
h

and

L
(
−xf(x)

)
=
∫ ∞

0

−e−sttf(t) dt.

We must show that for all ε > 0, we have∣∣∣∣∣ f̂(s + h)− f̂(s)
h

− I

∣∣∣∣∣ < ε

for sufficiently small h. We have

f̂(s + h)− f̂(s)
h

− I =

∫ ∞

0

e−(s+h)tf(t) dt−
∫ ∞

0

e−stf(t) dt

h
−
∫ ∞

0

−e−sttf(t) dt
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=
∫ ∞

0

e−st e
−ht − 1

h
f(t) dt +

∫ ∞

0

e−sttf(t) dt

=
∫ ∞

0

e−st

(
e−ht − 1

h
+ t

)
f(t) dt.

Note that

e−ht − 1
h

+ t =
1− ht + h2t2

2! + · · · − 1
h

+ t

=
ht2

2
+

h2t3

6
+ · · ·

= ht2
(

1
2
− th

3!
+

t2h2

4!
+ · · ·

)
< ht2

(
1 +

th

2!
+

t2h2

3!
+ · · ·

)
= ht2eth.

Therefore, ∣∣∣∣∣ f̂(s + h)− f̂(s)
h

− I

∣∣∣∣∣ ≤
∫ ∞

0

ht2ethe−st
∣∣f(t)

∣∣ dt

≤ h

∫ ∞

0

t2e(h−s−α)t dt.

If h is sufficiently small, then h− s− α < 0. So∫ ∞

0

t2e(h−s−α)t dt < ∞

for h sufficiently small. So we can make

h

∫ ∞

0

t2e(h−s−α)t dt < ε

for h sufficiently small. Therefore,

f̂ ′(s) = lim
h→0

f̂(s + h)− f̂(s)
h

= I = L
(
−xf(x)

)
.

We can differentiate again by the same procedure. �

Proof of (6). For large x, we have
∣∣f(x)

∣∣ ≤ Ceαx for some C and α. So

∣∣∣f̂(s)
∣∣∣︸ ︷︷ ︸

|R∞0 e−sxf(x) dx|

≤

∫ ∞

b

e−sx
∣∣f(x)

∣∣ dx

+
∫ b

0

e−sx
∣∣f(x)

∣∣ dx

≤
C

∫ ∞

b

e−(s−α)x dx

+
∫ b

0

e−sx
∣∣f(x)

∣∣ dx.︸ ︷︷ ︸
C

s−α +
R b
0 e−sx

∣∣f(x)
∣∣ dx

Therefore, by the Squeeze Theorem, we have

lim
s→∞

f̂(s) = 0,

lim
s→∞

∫ b

0

e−sx
∣∣f(x)

∣∣ dx = 0,
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0

(
lim

s→∞
e−sx

) ∣∣f(x)
∣∣ dx = 0. �

Table 1.1 shows a partial list of Laplace transforms.∗ Note that s/
(
s2 + 1

)
is defined for all s, but it

Table 1.1: Laplace transforms

f L(f)

xn Γ(n + 1)
sn+1

cos(ax)
s

s2 + a2
, s > 0

sin(ax)
a

s2 + a2

x cos(ax)
s2 − a2

(s2 + a2)2

x sin(ax)
2as

(s2 + a2)2

equals
∫∞
0

e−sx cos(x) dx only when s > 0 (it does not converge for s ≤ 0).

3. The Gamma Function

Definition 1.8 (Gamma function). The Gamma function is defined as

Γ(n) :=
∫ ∞

0

xn−1e−x dx, n > 0.

♦

Property 1.9 (Gamma function).

(1) Γ(n) = (n− 1) Γ(n− 1)

(2) Γ(n) = (n− 1)! if n is a positive integer

(3) Γ
(

1
2

)
=
√

π

Proof of (1). From the definition of the Gamma function, we have

Γ(n) =
∫ ∞

0

xn−1e−x dx.

Considering integration by parts, we have

u = xn−1, dv = e−x dx,

du = (n− 1) xn−2 dx, v = −e−x.

Therefore,

Γ(n) = − xn−1e−x
∣∣∣∞
0

+ (n− 1)
∫ ∞

0

xn−2e−x dx

= 0 + 0 + (n− 1) Γ(n− 1)

∗See [?, p. 304] for a more comprehensive list.
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= (n− 1) Γ(n− 1). �

Proof of (2). First note that

Γ(1) =
∫ ∞

0

e−x dx = − e−x
∣∣∣∞
0

= 1.

So by induction in part (1), Γ(n) = (n− 1)! for any positive integer n. �

Proof of (3). From the definition of the Gamma function, we have

Γ
(

1
2

)
=
∫ ∞

0

e−x

√
x

dx.

Considering the substitution u =
√

x, it follows that x2 = u and dx = 2u du. Therefore,

Γ
(

1
2

)
=
∫ ∞

0

e−u2

u
2u du = 2

∫ ∞

0

e−u2
du.

Let I =
∫∞
0

e−u2
du. Then

I2 =
∫ ∞

0

∫ ∞

0

e−(u2+v2) dv du

=
∫ π/2

0

∫ ∞

0

e−r2
r dr dθ

=
π

2
e−r2

2

∣∣∣∣∣
∞

0

=
π

4
.

Therefore, I =
√

π/2. So Γ(1/2) = 2I =
√

π. �

With the Gamma function and its properties established, we can now prove the entries in Table 1.1.

Proof of Table 1.1.

(1) We have

L(xn) =
∫ ∞

0

e−sxxn dx.

If n is an integer, then

L(1) = L
(
e0·x) =

1
s− 0

=
1
s
,

L(x) = − d

ds

(
1
s

)
=

1
s2

,

L
(
x2
)

= − d

ds

(
1
s2

)
=

2!
s3

, . . .

and so on. Let t = sx. Then

L(xn) =
∫ ∞

0

e−t tn

sn

dt

s
=

1
sn+1

∫ ∞

0

e−ttn dt =
Γ(n + 1)

sn+1
.

(2) We have

L
(
ebx
)

=
1

s− b
.

Let b = ia. Then

L
(
eiax

)
=

1
s− ia

=
s + ia

s2 + a2
.
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Therefore,

L
(
cos(ax)

)
= Re

(
L
(
eiax

))
=

s

s2 + a2
.

(3) It follows immediately from (2) that

L
(
sin(ax)

)
= Im

(
L
(
eiax

))
=

a

s2 + a2
.

(4) We have

L
(
xebx

)
=

1
(s− b)2

.

Therefore,

L
(
xeiax

)
=

1
(s− ia)2

=
(s + ia)2

(s2 + a2)2
=

s2 − a2 + 2ias

(s2 + a2)2
.

So it follows that

L
(
x cos(ax)

)
=

s2 − a2

(s2 + a2)2
.

(5) It follows immediately from (4) that

L
(
x sin(ax)

)
=

2as

(s2 + a2)2
. �

4. Convolutions

Let L(f) = f̂ and L(g) = ĝ. Then we wish to find an h such that L(h) = f̂ ĝ. To do so, we have

L(h)(s) = f̂(s)ĝ(s)

=
(∫ ∞

0

e−sxf(x) dx

)(∫ ∞

0

e−syg(y) dy

)
=
∫ ∞

0

∫ ∞

0

e−s(x+y)f(x)g(y) dx dy.

Let u = x + y and t = y. Figure 1.1 shows graphically this substitution. Then

x

y

(a) The xy-plane.

u

t

(b) The half-plane u > t.

Figure 1.1: The xy-plane and half-plane below t = u.
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J =

[
1 1

0 1

]
and |J| = 1. Thus,

L(h)(s) =
∫ ∞

0

∫ u

0

e−suf(u− t)g(t) dt du

=
∫ ∞

0

(
e−su

∫ u

0

f(u− t)g(t) dt

)
du

=
∫ ∞

0

(
e−sx

∫ x

0

f(x− t)g(t) dt

)
dx

= L
(∫ x

0

f(x− t)g(t) dt

)
.

So

h(x) =
∫ x

0

f(x− t)g(t) dt,

called the convolution of f and g, written f ∗ g.

Property 1.10 (Convolution).

(1) f ∗ g = g ∗ f

(2) (f ∗ g) ∗ h = f ∗ (g ∗ h)

(3) f ∗ (g + h) = f ∗ g + f ∗ h

(4) (λf) ∗ g = λ (f ∗ g), where λ is a constant

Example 1.11. Solve y′′+y = f(x), where y(0) = 0 and y′(0) = 0. In addition, consider the case where

f(x) = tan(x). �

Solution. Taking the Laplace transform of every term, we have

L(y′′) = sL(y′)− y′(0) = s2ŷ,

L(y′) = sŷ − y(0) = sŷ.

Therefore, (
s2 + 1

)
ŷ = f̂ =⇒ ŷ =

1
s2 + 1

f̂ ,

so

y = L−1

(
1

s2 + 1
f̂

)
= L−1

(
1

s2 + 1

)
∗ L−1

(
f̂
)

= sin(x) ∗ f =
∫ x

0

f(t) sin(x− t) dt.

With f(x) = tan(x), we have

y =
∫ x

0

tan(t) sin(x− t) dt

=
∫ x

0

tan(t)
(
sin(x) cos(−t) + cos(x) sin(−t)

)
dt

=
∫ x

0

tan(t)
(
sin(x) cos(t)− cos(x) sin(t)

)
dt
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=
∫ x

0

(
sin(x) sin(t)− cos(x)

sin2(t)
cos(t)

)
dt

=
∫ x

0

sin(x) sin(t) dt−
∫ x

0

cos(x)
(

1− cos2(t)
cos(t)

)
dt

= sin(x)
∫ x

0

sin(t) dt− cos(x)
∫ x

0

sec(t) dt + cos(x)
∫ x

0

cos(t) dt

= sin(x)
(
− cos(t)

∣∣∣x
0

)
− cos(x)

(
ln
(∣∣sec(t) + tan(t)

∣∣)∣∣∣x
0

)
+ cos(x)

(
sin(t)

∣∣∣x
0

)
= sin(x)

(
− cos(x) + 1

)
− cos(x)

(
ln
(∣∣sec(x) + tan(x)

∣∣)− ln
(
|1 + 0|

))
+ cos(x) sin(x)

= (((((((− sin(x) cos(x) + sin(x)− cos(x) ln
(∣∣sec(x) + tan(x)

∣∣)+((((((cos(x) sin(x)

= sin(x)− cos(x) ln
(∣∣sec(x) + tan(x)

∣∣).
�

5. Laplace Transforms of Some Discontinuous Functions

5.1. Step Functions. Let

u(x) :=

1, x ≥ 0,

0, x < 0,

called the step function. Suppose x0 ≥ 0 and let g(x) := u(x− x0). Then

g(x) =

1, x ≥ x0,

0, x < x0.

We have

L(ĝ) (s) =
∫ ∞

0

e−sxg(x) dx =
∫ ∞

x0

e−sx dx =
e−sx0

s
.

Therefore,

L−1

(
e−sx0

s

)
= u(x− x0).

Recall that L(1) = 1/s. This is the case where x0 = 0. More generally, we have the following theorem.

Theorem 1.12. We have

L
(
u(x− x0)f(x− x0)

)
= e−sx0 f̂(s).

In particular, f shifted to the right by x0.

Figure 1.2 illustrates the idea of these shifts.

Proof 1. We have

L−1
(
e−sx0 f̂(s)

)
= L−1

(
e−sx0 f̂(s)

)
= L−1

(
e−sx0

L(f ′) + f(0)
s

)
= L−1

(
e−sx0

s
L−1(f ′)

)
+ L−1

(
e−sx0f(0)

s

)
= u(x− x0) ∗ f ′(x) + f(0)u(x− x0)



12 1. LAPLACE TRANSFORMS

(a) f(x) (b) u(x− x0)f(x− x0)

Figure 1.2: A plot showing f(x) and f(x) shifted to the right by x0.

=
∫ x

0

f ′(x− t)u(t− x0) dt + f(0)u(x− x0)

=


∫ x

x0
f ′(x− t) dt, x ≥ x0,

0, x < x0

+ f(0)u(x− x0)

= u(x− x0)
(∫ x

x0

f ′(x− t) dt + f(0)
)

= u(x− x0)
(
− f(x− t)

∣∣∣x
x0

+ f(0)
)

= u(x− x0)
(
−f(0) + f(x− x0) + f(0)

)
= u(x− x0)f(x− x0). �

Proof 2. We have

L
(
u(x− x0)f(x− x0)

)
=
∫ ∞

x0

e−stf(t− x0) dt.

Considering a substitution, let v = t− x0 so that dv = dt. Then

L
(
u(x− x0)f(x− x0)

)
=
∫ ∞

0

e−s(v−x0)f(v) dv

= e−sx0

∫ ∞

0

e−svf(v) dv

= e−sx0 f̂(s). �

Also note that

L
(
u(x− x0)f(x)

)
= L

(
u(x− x0)g(x− x0)

)
= e−sx0L(g)

= e−sx0L
(
f(x− x0)

)
,

where g(x− x0) = f(x) and g(x) = f(x + x0).
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Example 1.13. Solve 3y′′ + 7y′ + 2y = f(x) with y(0) = 0 and y′(0) = 0, where

f(x) =

 x, x ≥ 2,

−1, x < 2.

�

Solution. Taking the Laplace transform, we have

L(y′) = sŷ − y(0) = sŷ,

L(y′′) = s (sŷ)− y′(0) = s2ŷ.

Therefore, our equation becomes(
3s2 + 7s + 2

)
ŷ = L

(
u(x− 2)(x + 1)

)
− L(1),

(s + 2) (3s + 1) ŷ = e−2sL(x + 3)− L(1)

= e−2s

(
1
s2

+
3
s

)
− 1

s

= e−2s

(
3s + 1

s2

)
− 1

s
.

Solving for ŷ gives

ŷ = e−2s 1
s2 (s + 2)︸ ︷︷ ︸

?

− 1
s (s + 2) (3s + 1)

.

We now must consider partial fractions. First considering ?, note that

1
s2 (s + 2)

=
As + B

s2
+

C

s + 2
=

(As + B) (s + 2) Cs2

s2 (s + 2)
.

Comparing coefficients, we see that

s = −2 =⇒ 1 = 4C =⇒ C =
1
4
,

s = 0 =⇒ 2B = 1 =⇒ B =
1
2
,

and

(A + B) 3 + C = 1,

3
(

A +
1
2

)
+

1
4

= 1,

12A + 6 + 1 = 4,

12A = −3,

A = −1
4
.

Therefore,
1

s2 (s + 2)
= −

1/4

s
+

1/2

s2
+

1/4

s + 2
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and we tentatively have

ŷ = e−2s

(
−

1/4

s
+

1/2

s2
+

1/4

s + 2

)
− 1

s (s + 2) (3s + 1)︸ ︷︷ ︸
??

.

Now considering ??, note that

1
s (s + 2) (3s + 1)

=
A

s
+

B

s + 2
+

C

3s + 1

=
A (s + 2) (3s + 1) + Bs (3s + 1) + Cs (s + 2)

s (s + 2) (3s + 1)
.

Comparing coefficients gives us

s = 0 =⇒ 1 = 2A =⇒ A =
1
2
,

s = −2 =⇒ 1 = 10 =⇒ B =
1
10

,

s = −1
3

=⇒ 1 = −5
9

=⇒ C = −9
5
.

Therefore,
1

s (s + 2) (3s + 1)
=

1/2

s
+

1/10

s + 2
−

9/5

3s + 1
and we finally have

ŷ = e−2s

(
−

1/4

s
+

1/2

s2
+

1/4

s + 2

)
−

1/2

s
−

1/10

s + 2
+

3/5

s + 1/3
.

Therefore,

y = u(x− 2)
(
−1

4
+

1
2

(x− 2) +
1
4
e−2(x−2)

)
− 1

2
− 1

10
e−2x +

3
5
e−x/3.

�

Example 1.14 (Trick). Solve xy′′ + (2x + 3) y′ + (x + 3) y = 3e−x with y(0) = 0. �

Solution. First note that the initial condition y(0) = 0 alone specifies the solution as it implies the

value of y′(0). More precisely,

0 + 3y′(0) + 3y(0) = 3 =⇒ y′(0) = 1.

Taking the Laplace transform, we have

L(xy′′) + 2L(xy′) + 3L(y′) + L(xy) + 3L(y) = 3L
(
e−x

)
,

− d

ds

(
s2ŷ − sy(0)− y′(0)

)
− 2

d

ds

(
sŷ − y(0)

)
+ 3
(
sŷ − y(0)

)
− d

ds
ŷ + 3ŷ =

3
s + 1

,

−2sŷ − s2 dŷ

ds
− 2ŷ − 2s

dŷ

ds
+ 3sŷ − dŷ

ds
+ 3ŷ =

3
s + 1

,

−
(
s2 + 2s + 1

) dŷ

ds
+ sŷ + ŷ =

3
s + 1

,

(s + 1)2
dŷ

ds
− (s + 1) ŷ = − 3

s + 1
,

dŷ

ds
− 1

s + 1
ŷ = − 3

(s + 1)3
.
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At this point it is appropriate to introduce the integrating factor

I = e−
R

ds
s+1 = e− ln(s+1) =

1
s + 1

.

Multiplying both sides by 1/ (s + 1) gives us

1
s + 1

dŷ

ds
− 1

(s + 1)2
ŷ = − 3

(s + 1)4
,

ŷ

s + 1
=

1
(s + 1)3

+ C,

ŷ =
1

(s + 1)2
+ C (s + 1) .

Note that lims→∞ ŷ = 0 ⇒ C = 0. Therefore,

ŷ(s) =
1

(s + 1)2

and

y = e−xL−1

(
1
s2

)
= xe−x.

Note that if any x2 had appeared in the original equation, the resulting differential equation for ŷ would

have had order 2. So this trick has limited applicability. �

5.2. Impulse Functions. A force F (t) acting between t = a and t = b produces momentum ρ =∫ b

a
F dt. An “instantaneous” transfer of momentum ρ at time a can be thought of as the limit as ε → 0 of

the result of a force of size ρ/ε acting over time ε (from a to a + ε). Consider the step function shown in

Figure 1.3. We have

²

1

²

t

 F t

Figure 1.3: The step function with width ε and height 1/ε, bounded by the y-axis, encloses a region with
area 1.

∫ ∞

0

fε(x) dx = ε · 1
ε

= 1,

where

fε =
1
ε

(
1− u(x− ε)

)
.
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Thus,

L(fε) =
1
ε

(
1
s
− e−εs

s

)
=

1− e−εs

εs
.

Taking the limit, we have

lim
ε→0

L(fε) = lim
ε→0

1− e−εs

εs︸ ︷︷ ︸
l’Hôpital’s Rule

= lim
ε→0

se−εs

s
= 1.

Example 1.15. A block of wood of mass 80 g is motionless at the end of a spring with spring constant

10 g/sec2. At time t = 0, it is hit by a bullet weighing 1 g and traveling upward at 100 m/sec. Find the equation

of motion of the block of wood (assuming that there is no resistance). �

Solution. Let x(t) be the distance above the starting position at time t. Then we have

90
d2x

dt2
+ 10x = F (t)

with initial conditions x(0) = 0 and x′(0) = 0, where F (t) is the “impulse” function with momentum

1 g × 100 m/sec = 100 g·m/sec.

Taking the Laplace transform, we have

s2x̂ + 10x̂ = 100,

x̂ =
100

90s2 + 10
=

10
9s2 + 1

=
10
9

1
s2 + 1/9

=
10
3

1/3

s2 + 1/9
.

Therefore,

x =
10
3

sin
(

t

3

)
.

Figure 1.4 shows the plot of the equation. �

p 2 p 3 p 4 p 5 p 6 p
x

-3

-2

-1

1

2

3

t

Figure 1.4: The plot of the equation of the motion of the block of wood in Example 1.15.



CHAPTER 2

Phase Portraits: Qualitative and Pictorial Descriptions of

Solutions of Two-Dimensional Systems

1. Introduction

Let V : R2 → R2 be a vector field. Imagine, for example, that V(x, y) represents the velocity of a

river at the point (x, y).∗ We wish to get the description of the path that a leaf dropped in the river at

the point (x0, y0) will follow. For example, Figure 2.1 shows the vector field of V(x, y) =
(
y, x2

)
. Let

-4 -2 0 2 4

-4

-2

0

2

4

(a) The vector field plot of
`
y, x2

´
.

-4 -2 0 2 4

-4

-2

0

2

4

(b) The trajectories of
`
y, x2

´
Figure 2.1: The vector field plot of

(
y, x2

)
and its trajectories.

γ(t) =
(
x(t), y(t)

)
be such a path. At any time, the leaf will go in the direction that the river is flowing at

the point at which it is presently located, i.e., for all t, we have γ′(t) = V
(
x(t), y(t)

)
. If V = (F,G), then

dx

dt
= F (x, y)︸ ︷︷ ︸

y

,
dy

dt
= G(x, y)︸ ︷︷ ︸

x2

.

In general, it will be impossible to solve this system exactly, but we want to be able to get the overall

shape of the solution curves, e.g., we can see that in Figure 2.1, no matter where the leaf is dropped, it will

head towards (∞,∞) as t →∞.

∗We are assuming here that V depends only on the position (x, y) and not also on time t.

17
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2. Phase Portraits of Linear Systems

Before considering the general case, let us look at the linear case where we can solve it exactly, i.e.,

V = (ax + by, cx + dy) with
dx

dt
= ax + by,

dy

dt
= cx + dy,

or x′ = Ax, where

x =

[
x

y

]
, A =

[
a b

c d

]
.

Recall the existence and uniqueness theorem for ODE’s from MATB44: if all the entries of A are continuous,

then for any point (x0, y0), there is a unique solution of x′ = Ax satisfying x(t0) = x0 and y(t0) = y0.

In other words, there exists a unique solution through each point; in particular, the solution curves do not

cross.

The above case can be solved explicitly, where

x = eAt

[
x0

y0

]
is a solution passing through (x0, y0) at time t = 0. We will consider only cases where det(A) 6= 0.

2.1. Real Distinct Eigenvalues. Let λ1 and λ2 be distinct eigenvalues of A and let v and w be their

corresponding eigenvectors. Let P = [v,w]. Then

P−1AP =

[
λ1 0

0 λ2

]
︸ ︷︷ ︸

D

.

Therefore, At = P (Dt)P−1 and we have

x = eAt

[
x0

y0

]
= PeDtP−1

[
x0

y0

]
= [v,w]

[
eλ1t 0

0 eλ2t

][
C1

C2

]

= [v,w]

[
C1e

λ1t

C2e
λ2t

]
= C1e

λ1tv + C2e
λ2tw.

Different C1 and C2 values give various solution curves.

Note that C1 = 1 and C2 = 0 implies that x = eλ1tv. If λ1 < 0, then the arrows point toward the origin,

as shown in Figure 2.2a which contains a stable node. Note that

x = C1e
λ1tv + C2e

λ2tw = eλ2t
(
C1e

(λ1−λ2)tv + C2w
)

.

The coefficient of v goes to 0 as t →∞, i.e., as t →∞, x → (0, 0), approaching along a curve whose tangent

is w. As t → −∞, x = eλ1t
(
C1v + C2e

(λ2−λ1)tw
)
, i.e., the curves get closer and closer to being parallel to

v as t → −∞.

We have the degenerate case when λ1 < λ2 = 0, in which case x = C1e
λ1tv + C2w.

The case when λ1 < 0 < λ2 gives us the phase portrait shown in Figure 2.2b which contains a saddle

point. This occurs when det(A) < 0. The case when 0 < λ1 < λ2 gives us the phase portrait shown in

Figure 2.2c which contains an unstable node. We have

x = C1e
λ1tv + C2e

λ2tw = eλ1t
(
C1v + C2e

(λ2−λ1)tw
)

.



2. PHASE PORTRAITS OF LINEAR SYSTEMS 19

0

0

0

0

(a) λ1 < λ2 < 0

0

0

0

0

(b) λ1 < 0 < λ2

0

0

0

0

(c) 0 < λ1 < λ2

Figure 2.2: The cases for λ1 and λ2.

Therefore, as t → −∞, x → [0, 0], approaching v as tangent; as t → ∞, x approaches parallel to w

asymptotically.

Note that in all cases, the origin itself is a fixed point, i.e., at the origin, x′ = 0 and y′ = 0, so anything

dropped at the origin stays there. Such a point is called an equilibrium point; in a stable node, if it is

disturbed, it will come back; in an unstable node, if perturbed slightly, it will leave the vicinity of the origin.

2.2. Complex Eigenvalues. Complex eigenvalues come in the form λ = α±βi, where β 6= 0. In such

a case, we have

x = C1 Re
(
eλtv

)
+ C2 Im

(
eλtv

)
,

where v = p + iq is an eigenvector for λ. Then

eλtv = eαteβit (p + iq)

= eαt
(
cos(βt) + i sin(βt)

)
(p + iq)
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= eαt
(
cos(βt)p− sin(βt)q + i cos(βt)q + i sin(βt)p

)
.

Therefore,

x = eαt
[(

C1 cos(βt)p− C1 sin(βt)q
)

+ C1 cos(βt)q + C2 sin(βt)p
]

= eαt

[
k1 cos(βt) + k2 sin(βt)

k3 cos(βt) + k4 sin(βt)

]

= eαt

(
cos(βt)

[
k1

k3

]
+ sin(βt)

[
k2

k4

])
.

Note that tr(A) = 2α.∗ So

α = 0 =⇒ tr(A) = 0,

α > 0 =⇒ tr(A) < 0,

α < 0 =⇒ tr(A) > 0.

Consider first α = 0. To consider the axes of the ellipses, first note that

x =

[
p1 q1

p2 q2

]
︸ ︷︷ ︸

P

[
C1 C2

C2 −C1

]
︸ ︷︷ ︸

C

[
cos(βt)

sin(βt)

]
.

Except in the degenerate case, where p and q are linearly dependent, we have[
cos(βt)

sin(βt)

]
= C−1P−1x.

Therefore,

cos(βt) + sin(βt)

[
cos(βt)

sin(βt)

]
= xt

(
P−1

)t (
C−1

)t
C−1P−1x,

cos2(βt) + sin2(βt) = xt
(
P−1

)t (
C−1

)t
C−1P−1x,

1 = xt
(
P−1

)t (
C−1

)t
C−1P−1x.

Note that C = Ct, so

CCt =

[
C1 C2

C2 −C1

][
C1 C2

C2 −C1

]
,

C2 =

[
C2

1 + C2
2 0

0 C2
1 + C2

2

]
=
(
C2

1 + C2
2

)
I.

Therefore,

C−1 =
C

C2
1 + C2

2

,

(
C−1

)t
= C−1 =

C
C2

1 + C2
2

,

∗Recall that the trace of a matrix is the sum of the elements on the main diagonal.
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(
C−1

)t
C−1 =

(
C−1

)2
=

(
C2

1 + C2
2

)
I

(C2
1 + C2

2 )2
=

I
C2

1 + C2
2

.

Therefore,

1 = xt
(
P−1

)t (
C−1

)t
C−1P−1x =

1
C2

1 + C2
2

xt
(
P−1

)t
P−1x.

Let T =
(
P−1

)t
P−1. Then xtTx = C2

1 + C2
2 and T = Tt (T is symmetric). Therefore, the eigenvectors of

T are mutually orthogonal and form the axes of the ellipses. Figure 2.3 shows a stable spiral and an unstable

spiral.

0

0

0

0

(a) α < 0

0

0

0

0

(b) α > 0

Figure 2.3: The cases for α, where we have a stable spiral when α > 0 and an unstable spiral when α > 0.

2.3. Repeated Real Roots. We have N = A− λI, where N2 = 0 and A = N + λI. So

eAt = eNt+λtI = eNteλtI = (I + Nt)

[
eλt 0

0 eλt

]
.

Therefore,

x = eAt

[
C1

C2

]
= (I + Nt)

[
eλt 0

0 eλt

][
C1

C2

]
= eλt (I + Nt)

[
C1

C2

]
.

Note that N2 = 0 ⇒ det(N)2 = 0 ⇒ det(N) = 0. Therefore,

N =

[
n1 n2

αn1 αn2

]
.

Also, N2 = 0 ⇒ tr(N) = 0 ⇒ n1 + αn2 = 0. Let

v =

[
1

α

]
.

Then

Nv =

[
n1 + αn2

α (n1 + αn2)

]
=

[
0

0

]
.
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So Av = (N + λI)v = λv, i.e., v is an eigenvector for λ. Therefore,

x = eλt (I + Nt)

[
C1

C2

]
= eλt

[
C1 + (n1C1 + n2C2) t

C2 + α (n1 + n2C2) t

]

= eλt

([
C1

C2

]
+ (n1C1 + n2C2) t

[
1

α

])

= eλt

([
C1

C2

]
+ (n1C1 + n2C2) tv

)
.

If λ < 0, we have [
x

y

]
→

[
0

0

]
as t →∞. If λ > 0, then [

x

y

]
→

[
0

0

]
as t → −∞. What is the limit of the slope? In other words, what line is approached asymptotically? We

have

lim
t→∞

y

x
= lim

t→∞

C2 + (n1C1 + n2C2) tv2

C1 + (n1C1 + n2C2) tv1
=

v2

v1
,

i.e., it approaches v. Similarly,

lim
t→−∞

y

x
=

v2

v1
,

i.e., it also approaches v as t → −∞. Figure 2.4 illustrates the situation.

0

0

0

0

(a) λ < 0

0

0

0

0

(b) λ > 0

Figure 2.4: The cases for λ, where we have a stable node when λ < 0 and an unstable node when λ > 0.

We encounter the degenerate case when N = 0. This does not work, but then A = λI, so

x = eAt

[
C1

C2

]
=

[
eλt 0

0 eλt

][
C1

C2

]
= eλt

[
C1

C2

]
,
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which is just a straight line through [
C1

C2

]
.

Figure 2.5 illustrates this situation.

0

0

0

0

(a) λ < 0

0

0

0

0

(b) λ > 0

Figure 2.5: The degenerate cases for λ when N = 0, where we have a stable node when λ < 0 and an
unstable node when λ > 0.

3. Phase Portraits of Non-Linear Systems

Returning to the general case, we have 
dx

dt
= F (x, y),

dy

dt
= G(x, y).

Definition 2.1 (Equilibrium point). A point where dx/dy = 0 and dy/dt = 0 is called an equilibrium

point (or singular point or critical point). ♦

We can get an approximation to the behaviour in the vicinity of each equilibrium point by determining

the behaviour of the linear approximation. Let (p, q) be an equilibrium point. Since F (p, q) = 0 and

G(p, q) = 0, the Taylor expansion of F (x, y) and G(x, y) around (p, q) are

F (x, y) =
∂F

∂x

∣∣∣∣
(p,q)

(x− p) +
∂F

∂y

∣∣∣∣
(p,q)

(y − p) + · · · ,

G(x, y) =
∂G

∂x

∣∣∣∣
(p,q)

(x− p) +
∂G

∂y

∣∣∣∣
(p,q)

(y − p) + · · · .

Let x̃ = x− p and ỹ = y − q. So the behaviour near (p, q) is approximated by that of dx/dt = Ax, where

x =

[
x̃

ỹ

]
=

[
x− p

y − q

]
, A =


∂F
∂x

∣∣
(p,q)

∂F
∂y

∣∣∣
(p,q)

∂G
∂x

∣∣
(p,q)

∂G
∂y

∣∣∣
(p,q)

 .
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Definition 2.2 (Stable equilibrium point). An equilibrium point p is called stable if for all ε > 0, there

exists a δ > 0 such that any solution which comes within δ of p never gets farther than ε from p at any later

time. ♦

Definition 2.3 (Asymptotically stable equilibrium point). A stable equilibrium point p is called asymp-

totically stable if, in addition to the properties of a stable equilibrium point, there exists an r such that every

solution which comes within r of p approaches p as t →∞. Figure 2.6 illustrates this situation. ♦

x

y

(a) Stable but not asymptotically stable.

x

y

(b) Asymptotically stable.

Figure 2.6: Stability and asymptotic stability.

From §2.1, linear systems in which both eigenvalues have negative real parts are stable, while, if at least

one eigenvalue has a positive real part, it is unstable. The follow theorem ties these ideas together.∗

Theorem 2.4. An equilibrium point is stable if the real parts of both eigenvalues of the corresponding

linear system are negative. It is unstable if the real part of at least one eigenvalue is positive.

In these cases, stability is determined by behaviour of the corresponding linear system. In other words,

(e.g., no eigenvalue with positive real part but at least one eigenvalue with no real part) we would require

the need to analyze higher order terms (not just linear terms) in the Taylor expansion to determine its

behaviour.

Example 2.5. Find and classify the equilibrium points ofF (x, y) = 3x− 3y − x2 + xy,

G(x, y) = 3y + x2 − 4xy.

�

Solution. To find the equilibrium points, we set

3x− 3y − x2 + xy = 0, (∗)

3y + x2 − 4xy = 0. (∗∗)

∗See §5, p. 32.
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Equation (∗) implies that

3 (x− y)− x (x− y) = 0 =⇒ (3− x) (x− y) = 0

=⇒ x = 3 or x = y.

If x = 3, then

3y + 9− 12y = 0,

9− 9y = 0,

so y = 1 and (3, 1) is an equilibrium point.

If x = y, then

3y + y2 − 4y2 = 0,

3y − 3y2 = 0,

and y = y2 implies that y = 0 or y = 1. Therefore, two more equilibrium points are (0, 0) and (1, 1). So in

summary, the equilibrium points are

(0, 0), (1, 1), (3, 1).

Note that

A =


∂F
∂x

∣∣
(p,q)

∂F
∂y

∣∣∣
(p,q)

∂G
∂x

∣∣
(p,q)

∂G
∂y

∣∣∣
(p,q)

 =

 3− 2p + q −3 + p

2p− 4q 3− 4p

 ,

where (p, q) is an equilibrium point, i.e., the matrix A is obtained by evaluating its entries at the equilibrium

points.

At (0, 0), we have

A =

[
3− 2(0) + 0 −3 + 0

2(0)− 4(0) 3− 4(0)

]
=

[
3 −3

0 3

]
,

which gives us a double root λ = 3, which is indicative of an unstable equilibrium point. Note that[
0 −3

0 0

][
a

b

]
=

[
0

−3b

]
=⇒ b = 0.

The eigenvector is [1, 0].

At (1, 1), we have

A =

[
3− 2(1) + 1 −3 + 1

2(1)− 4(1) 3− 4(1)

]
=

[
2 −2

−2 −1

]
.

Finding eigenvalues, we have ∣∣∣∣∣
[

2 −2

−2 −1

]
− λI

∣∣∣∣∣ = 0,

(2− λ) (−1− λ)− 4 = 0,

−2− λ + λ2 − 4 = 0,

λ2 − λ− 6 = 0,

(λ− 3) (λ + 2) = 0.
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Therefore, λ ∈ {−2, 3}, which is indicative of an unstable equilibrium point. For λ = 3, we have[
−1 −2

−2 −4

][
a

b

]
=

[
−a− 2b

−2a− 4b

]
=⇒ a = −2b,

which gives us the eigenvector [−2, 1]. For λ = −2, we have[
4 −2

−2 1

][
a

b

]
=

[
4a− 2b

−2a + b

]
=⇒ b = 2a,

which gives us the eigenvector [1, 2].

At (3, 1), we have

A =

[
3− 2(3) + 1 −3 + 3

2(3)− 4(1) 3− 4(3)

]
=

[
−2 0

2 −9

]
.

Finding eigenvalues, we have ∣∣∣∣∣
[
−2 0

2 −9

]
− λI

∣∣∣∣∣ = 0,

λ2 + 11λ + 18 = 0,

(λ + 9) (λ + 2) = 0.

Therefore, λ ∈ {−9,−2}, which is indicative of a stable equilibrium point.

For λ = −2, we have [
0 0

2 −7

][
a

b

]
=

[
0

2a− 7b

]
,

so 2a = 7b and the eigenvector is [7, 2].

For λ− 9, we have [
7 0

2 0

][
a

b

]
=

[
7a

2a

]
,

so a = 0 and the eigenvector is [0, 1]. Figure 2.7 shows the phase portrait. �

4. Applications

4.1. The Pendulum. Consider the pendulum in Figure 2.8. Let a = (ax, ay) denote the acceleration

and let anormal denote its component in the normal direction. Then we know that

g sin(θ) = anormal = −ax cos(θ)− ay sin(θ).

Since x = ` sin(θ), we have
dx

dt
= ` cos(θ)

dθ

dt
.

Therefore,

ax =
d2x

dt2
= −` sin(θ)

(
dθ

dt

)2

+ ` cos(θ)
d2θ

dt2
.

Similarly, since y = −` cos(θ), we have
dy

dt
= ` sin(θ)

dθ

dt
,
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0,0

1,1 3,1

-1 1 2 3 4
x

-1

1

2

3

4

Figure 2.7: The phase portrait of (F,G).

m
x

y

`

θ

mg

sin( )mg θ cos( )mg θ

Figure 2.8: A pendulum with a length ` and a mass m.

and it follows that

ay =
d2y

dt2
= ` cos(θ)

(
dθ

dt

)2

+ ` sin(θ)
d2θ

dt2
.

Therefore, we have

g sin(θ) =
����������

` sin(θ) cos(θ)
(

dθ

dt

)2

− ` cos2(θ)
d2θ

dt2
−

����������

` cos(θ) sin(θ)
(

dθ

dt

)2

− ` cos2(θ)
d2θ

dt2

= −`
d2θ

dt2
,

which finally results in
d2θ

dt2
+

g

`
sin(θ) = 0, (2.1)
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where θ is the angle, t is time, g is the acceleration due to gravity, and ` is the length of the pendulum.

Change the notation: use x to represent the angle. Then Equation (2.1) becomes

d2x

dt2
+

g

`
sin(x) = 0.

Let y = dx/dt. Then

x =

[
x

y

]
,

dx
dt

=

[
y

− g
` sin(x)

]
.

Let F (x, y) = y and G(x, y) = (−g/`) sin(x). Then the equilibrium points are (nπ, 0) for n ∈ Z. It then

follows that
∂F

∂x
= 0,

∂F

∂y
= 1,

∂G

∂x
= −g

`
cos(x),

∂G

∂y
= 0,

and
∂g

∂x

∣∣∣∣
nπ

= −g

`
(−1)n = (−1)n+1 g

`
.

For n even, we have

A =

[
0 1

− g
` 0

]
,

where λ = ±i
√

g/` is a centre. For n odd, we have

A =

[
0 1
g
` 0

]
,

where λ = ±
√

g/` is a saddle point. Figure 2.9 shows the phase portrait. The actual solution curves are

-3 p -2 p -p p 2 p 3 p
x

-4

-2

2

4

y

Figure 2.9: The phase portrait of a pendulum.

given by

x′x′′ +
g

`
sin(x)x′ = 0.

Reducing its order gives us
(x′)2

2
− g

`
cos(x) = C,

which finally gives us

y2 = 2
g

`
cos(x) + C̃.
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Note that a closed loop in a phase portrait, e.g., the ones surrounding the centres in Figure 2.9, indicates a

periodic solution.

4.2. The Damped Pendulum. Adding an air resistance term −r`dx
dt to Equation (2.1), we have

m`
d2x

dt2
= −mg sin(x)− r`

dx

dt
,

d2x

dt2
+

r

m

dx

dt
+

g

`
sin(x) = 0.

Letting y = dx/dt, we have
dy

dt
= − r

m
y − g

`
sin(x).

Let F = y and G = − (g/`) sin(x) − (r/m) y. Then the equilibrium points are y = 0 and x = nπ, where

n ∈ Z. Note that
∂F

∂x
= 0,

∂F

∂y
= 1,

∂G

∂x
= −g

`
cos(x),

∂G

∂y
= − r

m
,

and
∂G

∂x

∣∣∣∣
nπ

= (−1)n+1 g

`
.

For n even, we have

A =

[
0 1

− g
` − r

m

]
,

which gives us

λ2 +
r

m
λ +

g

`
= 0.

Solving for λ gives us

λ =
− r

m ± i
√

4g
` − r2

m2

2
.

Assuming that r < 2m
√

g/`, this gives a stable spiral.

For n odd, we have

A =

[
0 1
g
` − r

m

]
,

which gives us

λ2 +
r

m
λ− g

`
= 0.

Solving for λ gives us

λ =
− r

m ±
√

4g
` + r2

m2

2
.

Assuming once again that r < 2m
√

g/`, this gives a saddle. Figure 2.10 shows the phase portrait of a

damped pendulum.

4.3. Predator-Prey Equations.

Example 2.6 (Predator-Prey). Consider a land populated by foxes and rabbits, where the foxes prey

upon the rabbits. Let x(t) and y(t) be the number of rabbits and foxes, respectively, at time t. In the

absence of predators, at any time, the number of rabbits would grow at a rate proportional to the number

of rabbits at that time. However, the presence of predators also causes the number of rabbits to decline in

proportion to the number of encounters between a fox and a rabbit, which is proportional to the product



30 2. PHASE PORTRAITS
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Figure 2.10: The phase portrait of a damped pendulum.

x(t)y(t). Therefore, dx/dt = Ax − Bxy for some positive constants a and b. For the foxes, the presence of

other foxes represents competition for food, so the number declines proportionally to the number of foxes

but grows proportionally to the number of encounters. Therefore dy/dt = −Cy + Dxy for some positive

constants c and d. The system 
dx

dt
= Ax−Bxy,

dy

dt
= −Cy + Dxy

is our mathematical model.

If we want to find the function y(x), which gives the way that the number of foxes and rabbits are

related, we begin by dividing to get the differential equation

dy

dx
=
−Cy + Dxy

Ax−Bxy

with A,B, C, D, x(t), y(t) positive. In this case, we can solve explicitly as

dy

dx
=

y (−C + Dx)
x (A−By)

,

A−By

y
dy =

−C + Dx

x
dx,(

A

y
−B

)
dy =

(
−C

x
+ D

)
dx,

A ln
(
|y|
)
−By = −C ln

(
|x|
)

+ Dx + C̃,

yAe−By = kx−CeDx (2.2)

for some constant k. We can use the method of implicit differentiation∗ to verify that it is indeed a solution

of the equation for any k.

∗MATA30.
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Explicitly, if y(x) is the function defined implicitly by Equation (2.2), then

AyA−1y′e−By + yA (−B) e−Byy′ = k (−C) x−C−1eDx + kx−CDeDx.

Replacing k from Equation (2.2) gives

AyA−1y′e−By + yA (−B) e−Byy′ = −Cx−C−1eDx yAe−By

x−CeDx
+ x−CDeDx yAe−By

x−CeDx

= −CyAe−By

x
+ DyAe−By.

Dividing by yA−1e−By gives

Ay′ + y(−B)y′ = −Cy

x
+ Dy,

and so solving for y′ gives

y′ =
−Cy + Dxy

Ax−Bxy
,

as desired.

The graph of a typical solution is shown in Figure 2.11.

A

B

C

D

2 4 6 8 10 12 14 16 18 20
x
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4
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y

Figure 2.11: A typical solution of the Predator-Prey model with a = 9.4, b = 1.58, c = 6.84, d = 1.3, and
k = 7.54.

Beginning at a point such as A, where there are few rabbits and few foxes, the fox population does not

initially increase much due to the lack of food, but with so few predators, the number of rabbits multiplies

rapidly. After a while, the point B is reached, at which time the large food supply causes the rapid increase

in the number of foxes, which in turn curtails the growth of the rabbits. By the time point C is reached, the

large number of predators causes the number of rabbits to decrease. Eventually, point D is reached, where

the number of rabbits has declined to the point where the lack of food causes the fox population to decrease,

eventually returning the situation to point A.



32 2. PHASE PORTRAITS

To find the equilibrium points, we know that we either must have x = 0 or A = By and y = 0 or

C = Dx. Therefore, the equilibrium points are

(0, 0),
(

C

D
,
A

B

)
,

so we have

A =

[
A−By −Bx

Dy −C + Dx

]
.

At (0, 0), we have [
A 0

0 −C

]
,

giving us a saddle point. At (C/D, A/B), we have[
0 −BC

D
AD
B 0

]
,

the determinant of which is AC, so λ = ±i
√

AC, giving us a centre point. Figure 2.12 shows the phase

portrait. �

CD,AB
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Figure 2.12: The phase portrait of Example 2.6, showing a saddle point at the origin and a centre point at(
C
D , A

B

)
.

5. Liapunov’s Second Method

We have been examining linearized systems about each equilibrium point to get an idea of how the

original system behaves. But to what extent is it possible to conclude that the properties of linearized

systems accurately reflect properties of the actual system?
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Theorem 2.8a. Consider x′ = F (x, y),

y′ = G(x, y).
(2.3)

Let V = (F,G) and let 0 be an equilibrium point of System (2.3).∗ Suppose there exists a function E with

the following properties:∗∗

(1) E(x, y) > 0 for (x, y) 6= (0, 0) and E(0, 0) = 0.

(2) E is differentiable.

(3) For any solution
(
x(t), y(t)

)
of System (2.3), there exists an r > 0 such that ∇E ·V ≤ 0 whenever

x2 + y2 < r.

Then 0 is a stable equilibrium point of System (2.3).

Proof. The idea of the theorem is this. Consider a contour line E = C, as shown in Figure 2.13.

Intuitively, the hypothesis that ∇E ·V ≤ 0 says that V points inwards, so that once a solution enters the

=E C

V

E∇

Figure 2.13: Some contour line E = C.

region surrounded by E = C it can never leave. More precisely, if
(
x(t), y(t)

)
is a solution, then

d

dt
E
(
x(t), y(t)

)
=

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt

=
∂E

∂x
F +

∂E

∂y
G

= ∇E ·V︸ ︷︷ ︸
≤0

So if p1 =
(
x(t1), y(t1)

)
and p2 =

(
x(t2), y(t2)

)
are points on a solution curve with t2 > t1, then∫ t2

t1

dE

dt
dt ≤ 0,

E(x, y)
∣∣∣t2
t1
≤ 0,

E(p2)− E(p1) ≤ 0.

Therefore, E(p2) ≤ E(p1), i.e., E decreases with t, so once it enters a region bounded by a contour line of

E, it can never leave.

∗We can always move our point to the origin by translation.
∗∗Such a function is called a Liapunov’s Function for the system.
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Recall the definition of stability (p. 24) that states that given an ε > 0, there exists a δ > 0 such that

any solution coming within δ of p never thereafter gets farther than ε of p. So given an ε > 0, let m be the

minimum value of R on x2 +y2 = ε. Such a value exists because E is continuous and the locus of x2 +y2 = ε

is compact. Furthermore, m > 0 because E > 0 on x2 + y2 = ε. Then the contour line E(x, y) = m/2

lies entirely inside x2 + y2 = ε, as illustrated in Figure 2.14. Since E is continuous and E(0, 0) = 0, there

2 2+ =x y ²

2
( , ) = mE x y

Figure 2.14: The contour line E(x, y) = m/2 lies entirely inside x2 + y2 = ε. They can’t touch because there
is no point on x2 + y2 = ε where E(x, y) = m/2.

exists a δ > 0 such that E(x, y) < m/2 whenever x2 + y2 < δ. Once a solution enters x2 + y2 = δ, then

E(x, y) < m/2, so it can never thereafter leave E = m/2 and thus can never leave x2 + y2 = ε. �

Theorem 2.8b. Assume the hypotheses of Theorem 2.8a hold except that condition (3) is strengthened

to

(3’) There exists an r > 0 and α > 0 such that ∇E ·V ≤ −αE whenever 0 < x2 + y2 < r2.

Then we get the (stronger) conclusion that 0 is asymptotically stable.

Proof. Suppose that for any solution
(
x(t), y(t)

)
of System (2.3), there exists an r > 0 and α > 0 such

that ∇E ·V ≤ −αE whenever 0 < x2 + y2 < r2. Then

dE

dt
= ∇E ·V ≤ −αE.

Therefore,
dE

dt
+ αE ≤ 0

and so

eαt dE

dt
+ eαtE ≤ 0.

Furthermore,

eαtE ≤ C =⇒ E ≤ Ce−αt =⇒ lim
t→∞

E
(
x(t), y(t)

)
= 0,

that is, on each solution curve, E → 0, so (x, y) → 0. �

Theorem 2.8c. Assume the conditions of Theorem 2.8a but conditions (2) and (3) are strengthened to

(2’) E is continuously differentiable (as Boyce and Di Prima assume)
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(3”) There exists an r > 0 such that ∇E ·V < 0 whenever 0 < x2 + y2 < r. Then 0 is asymptotically

stable.

Proof. As in the proof of Theorem 2.8a, E is a decreasing function along each solution curve. We

already showed stability. Therefore, suppose k has the property that a solution entering x2 + y2 ≤ k never

leaves.

We want to show that limt→∞ E
(
x(t)

)
= 0 for any solution curve x(t). Suppose x(t) is a solution curve

which does not have this property. Then there exists a c > 0 such that E
(
x(t)

)
≥ c for all t. Therefore,

the solution x(t) avoids the open set E−1
(
[0, c)

)
and so there exists a radius R such that the solution never

enters the ball ‖x‖ < R. Thus, for some t0, the solution lies in the annulus R ≤ ‖x‖ ≤ r for all t ≥ t0. Since

dE/dt = ∇E ·V is continuous (and negative), it attains a maximum −M (where M > 0) on the compact

set R ≤ ‖x‖ ≤ r for all t ≥ t0.

Therefore, for all t > t0, ∫ t

t0

d

dt
E
(
x(t)

)
︸ ︷︷ ︸
E
(
x(t)
)
−E
(
x(t)
) ≤

∫ t

t0

−M dt = −M (t− t0) .

This implies that

E
(
x(t)

)
≤ E

(
x(t0)

)
+ Mt0︸ ︷︷ ︸

constant

− Mt︸︷︷︸
→−∞

.

for all t. This is a contradiction as E
(
x(t)

)
> 0. Therefore, E

(
x(t)

)
eventually gets less than any c, i.e.,

lim
t→∞

E
(
x(t)

)
= 0 =⇒ x(t) → 0. �

Theorem 2.9. Let 0 be an equilibrium point of System (2.3). Suppose there exists a function E with

the following properties:

(1) E(x, y) > 0 for some (x, y) in every neighbourhood of the origin and E(0, 0) = 0.

(2) E is differentiable.

(3) For any solution
(
x(t), y(t)

)
of System (2.3), there exists an r such that ∇E · V > 0 whenever

0 < x2 + y2 < r.

Then 0 is an unstable equilibrium point of System (2.3).∗

Proof. Using ideas similar to previous proofs, one can show that this is true. �

Corollary 2.10. An equilibrium point is asymptotically stable if the real parts of both eigenvalues of

the corresponding linearized system are negative. It is unstable if the real part of at least one eigenvalue is

positive.∗∗

∗Note that
d

dt
E

`
x(t), y(t)

´
=

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
= ∇E ·

„
dx

dt
,
dy

dt

«
| {z }

V

= ∇E ·V.

∗∗There is no conclusion if λ1 = 0 while λ2 ≤ 0, e.g., if the linearized system has a centre at p, p may or may not be stable.
If there exists an E > 0 with E(0, 0) = 0 such that ∇E ·V > 0, then the origin is not stable.
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Proof (sketch). Suppose that the real parts of both eigenvalues are negative. Let x = [x, y]. Write
dx

dt
= F (x, y) = Ax + By + f(x, y),

dy

dt
= G(x, y) = Cx + Dy + g(x, y),

where f and g are continuous with f(0, 0) = 0 = g(0, 0), and there exist constants k1 and k2 such that

|f(x, y)| ≤ k1 ‖x‖ and |g(x, y)| ≤ k2 ‖x‖ whenever ‖x‖ is sufficiently small. Let

A =

[
A B

C D

]
, V =

[
F

G

]
= Ax +

[
f

g

]
.

Let p = tr(A) = A+D and q = det(A) = AD−BC. The characteristic equation then becomes λ2−pλ+q = 0.

If the roots are real, then, by the hypothesis, they are negative, so their sum p is negative and their product

q is positive. If the roots are complex, say u ± iv, then, by the hypothesis, u < 0 and so again p = −2u is

negative and q = u2 + v2 is positive. Let

Q = (Ax + By)2 + (Cx + Dy)2 = Ax ·Ax.

and set E = Q + q
(
x2 + y2

)
. Clearly, E > 0 for x 6= (0, 0) and E(0, 0) = 0. Why is ∇E ·V < 0 for small

‖x‖?
To see this, note that

∇E = ∇Q + q∇
(
x2 + y2

)
= ∇Q + 2q (x, y) = ∇Q + 2qx

and

∇Q =

[
2 (Ax + By) A + 2 (Cx + Dy) C

2 (Ax + By) B + 2 (Cx + Dy) D

]

= 2

[
A C

B D

][
Ax + By

Cx + Dy

]
= 2AtAx.

Therefore,

∇E ·V =
(
2AtAx + 2qx

)
·
(
Ax + [f, g]

)
= 2

(
XtAtAtAx + qxtAx

)
+ 2

(
AtAx + qx

)
· [f, g] . (∗)

Note that by the Cayley-Hamilton Theorem, we have

A2 − tr(A)A + det(A)I = 0.

That is,

A2 − pA + qI = 0.

Taking the transpose gives (
At
)2 − pAt + qI = 0,(

At
)2 + qI = pAt.
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Therefore, Equation (∗) now becomes

∇E ·V = 2
(
xt
((

At
)2 + qI

)
Ax
)

+ 2
(
AtAx + qx

)
· [f, g]

= 2pxtAtAx + 2
(
AtA + qx

)
· [f, g]

= 2pAx ·Ax + 2
(
AtA + qx

)
· [f, g]

= 2pQ︸︷︷︸
<0

+2
(
AtA + qx

)
· [f, g] .

We have 2pQ < 0 since p < 0 and Q > 0. Using the fact that
∥∥[f, g]

∥∥ ≤ √k2
1 + k2

2 ‖x‖, we can show that

the second term is less than or equal to |p|Q for small ‖x‖.
Therefore, it is not big enough to affect the sign of ∇E ·V, i.e., ∇E ·V < 0 for small nonzero ‖x‖. �

Example 2.11. Consider V =
(
−2xy, x2 − y3

)
. Is the origin stable? �

Solution. First note that the only equilibrium point is (x, y) = (0, 0). Suppose we try E(x, y) =

ax2 + by2 for suitable a, b > 0. Then

∇E ·V = [2ax, 2by] ·
[
−2xy, x2 − y3

]
= −4ax2y + 2bx2y − 2by4.

Choose a = 1 and b = 2 (so that the x2y term will cancel). Then ∇E · V = −4y4 ≤ 0. Therefore, by

Liapunov, the origin is stable. Figure 2.15 shows the phase portrait of V. �

- 1
x

-1

1

y

Figure 2.15: The phase portrait of
(
−2xy, x2 − y3

)
of Example 2.11, showing that the origin is stable.
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6. Periodic Solutions

Theorem 2.12 (Poincaré-Bendixson). Let R be a closed bounded region in R2. Suppose
dx

dt
= F (x, y),

dy

dt
= G(x, y)

(2.4)

has a solution
(
x(t), y(t)

)
which lies in R for all t ≥ t0. If System (2.4) has no equilibrium points in R, then

either

(1)
(
x(t), y(t)

)
is a periodic solution (i.e., a closed curve or loop), as shown in Figure 2.16a or

(2)
(
x(t), y(t)

)
spirals towards a periodic solution, as shown in Figure 2.16b.

(a) A periodic solution. (b) Spirals towards a periodic solution.

Figure 2.16:

Proof (idea). Let C =
(
x(t), y(t)

)
be our given solution curve. Let pn =

(
x(tn + n) , y(t0 + n)

)
.

Unless C is a periodic solution, the points {pn} are distinct, so by the Bolzano-Weierstrass Theorem, there

exists an accumulation point p of {pn} lying in R (since R is compact).

Let C0 be the solution curve passing through p. Note that since we assumed no equilibrium points in

R, p is not an equilibrium point, so C0 is a curve, not just the point p. Intuitively, since the solution curves

cannot cross and C has points on it that approach p as a limit, C must spiral towards C0. More precisely,

we have the following.

Lemma 2.13. Let C =
(
x(t), y(t)

)
be a solution curve to System (2.4), let pn =

(
x(tn + n) , y(t0 + n)

)
,

let p be an accumulation point of {pn} lying in R, and let C0 be the solution curve passing through p. Then

there exists a short line segment ` through p having the following properties:

(1) The curves C and C0 cross ` infinitely often in every neighbourhood of p.

(2) Every solution crossing ` does so in the same direction.

Proof. Proof is omitted, but it uses continuity and the Jordan Curve Theorem (Theorem 2.14). �

Let q be the next point at which C0 crosses `. We show that q = p so that C0 is a periodic solution.

The curve C crosses ` near p (say, at p′), so by continuity, it must cross again near q (say, at q′). This is

illustrated in Figure 2.17. But then every subsequent crossing of ` by C must be farther away from p than
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C

`

p

p

q

q 

Figure 2.17: The curve C crossing `.

from q′, since C cannot cross itself and it cannot cross ` in the wrong direction. But this contradicts C

crossing ` infinitely often in every neighbourhood of p. Therefore, p = q, so C is a closed curve.

The point is this. If p′ is farther from p than from q′, then the next crossing would be ever farther away.

But if p = q, then q′ can be closer to p than p′ was, so everything is okay.

Thus, q′ is closer to p than p′ was and subsequent crossings are even closer. Applying this argument

now to other points on C0 and other lines, we can see that C must be approaching C0. �

Theorem 2.14 (Jordan Curve Theorem). Let C be a closed curve in R2 which does not cross itself.

Then C divides R2 into two disjoint non-empty connected open subsets, having C as their common boundary,

namely, R2 \ C = I ∪O. One of these open sets is bounded and the other is unbounded.∗

Example 2.15. Consider 
x′ = x− y − x

(
x2 +

3
2
y2

)
,

y′ = x + y − y

(
x2 +

1
2
y2

)
.

�

Let 
F (x, y) = x− y − x

(
x2 +

3
2
y2

)
,

G(x, y) = x + y − y

(
x2 +

1
2
y2

)
.

Find equilibrium points. Setting F = 0 gives

x

(
1− x2 − 3

2
y2

)
= y (∗)

and setting G = 0 gives

−y

(
1− x2 − 1

2
y2

)
= x. (∗∗)

Therefore, (
1− x2 − 3

2
y2

)(
1− x2 − 1

2
y2

)
=

y

x

(
−x

y

)
= −1

∗They are called, respectively, the inside and outside of C.
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unless x = 0 or y = 0. If x = 0, then Equation (∗) implies that y = 0. If y = 0, then Equation (∗∗) implies

that x = 0. Therefore, (0, 0) is one solution.

Let a = 1− x2 − (1/2) y2. Then
(
a− y2

)
a = −1. Therefore, one factor is positive and one is negative,

which implies that a > 0 and a− y2 < 0.

a2 − ay2 = −1,

a2 − ay2 + 1 = 0.

To have real solutions for a, we need

y4 − 4 ≥ 0 =⇒ y2 ≥ 2.

But then

a > 0 =⇒ x2 +
1
2
y2 < 1 =⇒ y2 < 2,

which is a contradiction. Therefore, no solution exists other than (0, 0).

Let V = (F,G). Consider the behaviour of V on circles x2 + y2 = c2, as shown in Figure 2.18.

n

V

x

y

Figure 2.18: The vector V on a circle x2 + y2 = c2.

To determine if V points into the circle or out of the circle, we look at V · n. Then

• V · n > 0 implies that V is pointing out.

• V · n = 0 implies that V is tangent to the circle.

• V · n < 0 implies that V is pointing in.

To find out which condition it satisfies, we compute

V · n = (F,G) · (x, y) = Fx + Gy

= x2 −��xy − x2

(
x2 +

3
2
y2

)
+��xy + y2 − y2

(
x2 +

1
2
y2

)
= x2 − x4 − 3

2
x2y2 + y2 − x2y2 − 1

2
y4

= x2 + y2 − x4 − 1
2
y4 − 5

2
x2y2

= r2 − x4 − 2x2y2 − y4 +
1
2
y4 − 1

2
x2y2
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= r2 −
(
x2 + y2

)2
+

1
2
y2
(
y2 − x2

)
= r2 − r4 − 1

2
y2
(
x2 − y2

)
= r2 − r4 − 1

2
r2 sin2(θ)

(
r2 cos2(θ)− r2 sin2(θ)

)
= r2 − r4 − 1

2
r4 sin2(θ) cos(2θ)

= r2 − r4

(
1 +

1
2

sin2(θ) cos(2θ)
)

= r2

(
1− r2

(
1 +

1
2

sin2(θ) cos(2θ)
))

.

Note that

−1
2
≤ 1

2
sin2(θ) cos(2θ) ≤ 1

2
=⇒ 1

2
≤ 1 +

1
2

sin2(θ) cos(2θ) ≤ 3
2
.

If r = 2, then r2 = 4, so

r2

(
1 +

1
2

sin2(θ) cos(2θ)
)
≥ 2 =⇒ 1− r2

(
1 +

1
2

sin2(θ) cos(2θ)
)

< 0

=⇒ V · n < 0.

If r = 1/2, then r2 = 1/4, so

r2

(
1 +

1
2

sin2(θ) cos(2θ)
)
≤ 3

8
=⇒ 1− r2

(
1 +

1
2

sin2(θ) cos(2θ)
)

> 0

=⇒ V · n > 0.

This situation is illustrated in Figure 2.19. So once a solution comes within r = 2, it stays within r = 2, but

a solution outside r = 1/2 stays outside r = 1/2. Therefore, let R be the region between r = 1/2 and r = 2.

This region contains no equilibrium points, but any solution which enters it stays within it.

So applying the Poincaré-Bendixson Theorem (Theorem 2.12, p. 38) shows that any solution within R

spirals towards a periodic solution within R, as shown in Figure 2.19. Figure 2.20 shows the phase portrait

x

y

R

1

2
=r

=2r

V

V

Figure 2.19: If r = 2, then V points out. If r = 1/2, then it points in.
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of the system.

-2 -1 1 2
x

-2

-1

1

2

y

Figure 2.20: The phase portrait of Example 2.15, showing that the origin is the only equilibrium point.

Example 2.16. Consider 
x′ = −y +

x√
x2 + y2

(
1−

(
x2 + y2

))
,

y′ = x +
y√

x2 + y2

(
1−

(
x2 + y2

))
.

�

Immediately, note that (x, y) 6= (0, 0) as we must enforce
√

x2 + y2 6= 0. To find equilibrium points,

solve

−y +
x√

x2 + y2

(
1−

(
x2 + y2

))
= 0, (∗)

x +
y√

x2 + y2

(
1−

(
x2 + y2

))
= 0. (∗∗)

It follows that

y2 =︸︷︷︸
Eq. (∗)

xy√
x2 + y2

(
1−

(
x2 + y2

))
=︸︷︷︸

Eq. (∗∗)

−x2.

Therefore, there is no solution in the domain of V, which is R2 \ {0}.
Consider V · n on the circle x2 + y2 = c2. Then

V · n = Fx + Gy

= −��xy +
x2√

x2 + y2

(
1−

(
x2 + y2

))
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+��xy +
y2√

x2 + y2

(
1−

(
x2 + y2

))
=
√

x2 + y2
(
1−

(
x2 + y2

))
= r

(
1− r2

)
.

Therefore, if r > 1, then V · n < 0, while if r < 1, then V · n > 0. So the solutions entering the annulus

1/2 ≤ r ≤ 3/2 stay there. Since there are no equilibrium points in this annulus, by the Poincaré-Bendixson

Theorem (Theorem 2.12, p. 38), it has a periodic solution.

In fact, let r2 = x2 + y2. Then

2rr′ = 2xx′ + 2yy′,

rr′ = xx′ + yy′

= xF + yG

= r
(
1− r2

)
,

r′ = 1− r2,

where r 6= 0. Now, we have

dr

dt
= 1− r2,

dr

1− r2
= dt,∫ (

1/2

1− r
+

1/2

1 + r

)
dr =

∫
dt,∫ (

1
1− r

+
1

1 + r

)
dr = 2

∫
dt,

ln

(∣∣∣∣1 + r

1− r

∣∣∣∣
)

= 2t + C,

1 + r

1− r
= ke2t,

r =
ke2t − 1
ke2t + 1

.

Therefore, limt→∞ r = k/k = 1, i.e., all solutions spiral towards r = 1 as t →∞, as Figure 2.21 shows.

Example 2.17 (van der Pol Equation). Consider

x′′ + µ
(
x2 − 1

)
x′ + x = 0, µ > 0. (2.5)

�

Let x′ = y = F,

y′ = x′′ = −µ
(
x2 − 1

)
y − x = G.

To find equilibrium points, we let

y = 0,
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-2 -1 2
x

-2

-1

1

2

Figure 2.21: The phase portrait of Example 2.16, showing that all solutions spiral towards r = 1 as t →∞.

−µ
(
x2 − 1

)
y − x = 0.

Since y = 0, immediately x = 0. Therefore, (0, 0) is the only equilibrium point.

Consider the linearized system {
x′ = y,

y′ = −x + µy.

Then the matrix of the system is [
0 1

−1 µ

]
.

The characteristic equation is λ2 − µλ + 1 = 0. The solutions of this are

λ =
µ±

√
µ2 − 4
2

.

Note that

• µ > 2 gives us an unstable node (distinct real roots).

• µ = 2 gives us an unstable node (repeated real positive roots).

• µ < 2 gives us an unstable spiral (complex roots).

Does it have any periodic solutions? We can attempt to find out with

V · n = Fx + Gx

= xy − µ
(
x2 − 1

)
y2 − xy

= −µ
(
x2 − 1

)
y2.

But this indicates nothing. Thus, we need to try a different-looking region R (not an annulus). To carry on

with this solution, we need a new tool: Liénard’s Theorem.
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Theorem 2.18 (Liénard’s Theorem). Let f, h : R → R and let g(x) =
∫ x

0
f(t) dt. Suppose that

(1) f is continuous.

(2) f is even.

(3) there exists an a > 0 such that

• g(a) < 0 for 0 < x < a.

• g(x) > 0 for x > a.

• f(x) > 0 for x > a.

(4) limx→∞ g(x) = ∞.

(5) h is odd and h(x) > 0 for x > 0.

Then x′′ + f(x)x′ + h(x) = 0 has a unique periodic solution and every other solution spirals towards it.

Proof. We convert x′′ + f(x)x′ + h(x) = 0 to a system. Let y = x′ + g(x). Therefore,

y′ = x′′ +
dg

dx
x′ = −f(x)x′ − h(x) + f(x)x′ = −h(x).

So the system is {
x′ = y − g(x),

y′ = −h(x).
Note that f is even implies that g is odd. Therefore, replacing x by −x and y by −y leaves the equations

unchanged, so the solutions are symmetric about the origin. Hence, if we know the solutions for x ≥ 0, we

can get those with x ≤ 0 by reflection about the origin.

So assume that x ≥ 0. Let γ be the graph of y = g(x) with x ≥ 0. Let (x0, y0) lie on γ and let Cx0 be

the solution which passes through (x0, y0) at t = 0.

x

y

γ

 0 0,x y

a

2A

1A

0x
C

Figure 2.22: The solution Cx0 reaching the y-axis at both ends.

Lemma 2.19. As t increases from 0, x decreases and y decreases until eventually the y-axis is reached.

As t decreases from 0, x decreases and y increases until eventually the y-axis is reached.

Proof. Since y′ = −h(x) < 0, y always decreases as t increases. On γ, V = (0,−h(x)), so Cx0 leaves

γ heading straight down, and after passing (x0, y0) can never get above γ.
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So x′ = y − g(x) < 0 when t ≥ 0. Therefore, x decreases as t increases from 0. Similarly, Cx0 enters γ

heading straight down, so it was never below γ for t ≤ 0.

So x′ = y − g(x) > 0 when t ≤ 0. Therefore, x decreases as t decreases from 0. It remains to be shown

that Cx0 actually reaches the y-axis on both ends. From what we have shown so far, it might look like the

situation illustrated in Figure 2.23.

x

y

γ

 0 0,x y

0x
C

Figure 2.23:

Let

k(x) = 2
∫ x

0

h(x) dx

so that k(x) ≥ 0 for x ≥ 0. Given a constant b, let

r2
b = k(x) + (y − b)2 .

Then differentiating with respect to t gives

2rbr
′
b =

dk

dx
x′ + 2 (y − b) y′

= 2h(x)
(
y − g(x)

)
+ 2 (y − b)

(
−h(x)

)
= 2h(x)

(
b− g(x)

)
.

Therefore, rbr
′
b = h(x)

(
b− g(x)

)
.

Since g is continuous and [0, x0] is compact, g has both a minimum m and a maximum M on [0, x0].

Choosing b = m gives g(x) − b ≥ 0 for all x ∈ [0, x0], so rmr′m < 0. Therefore, rm < 0, so rm decreases

with t. But rm ≥ (y −m)2, so (y −m)2 does not go to ∞ as in the diagram we wish to rule out.

Similarly, choosing b = M gives g(x) − b ≤ 0, so rm increases with increasing t. Equivalently, rm

decreases with decreasing t, so the distance from Cx0 to (0,M) decreases as t → −∞, and in particular does

not go to ∞. Thus, the y-axis is reached on this side also. �

Given x0, let y1(x0) and y2(x0) be the values of y where Cx0 crosses the y-axis. Reflection about the

origin gives another section of the solution curve Cx0 as shown in Figure 2.24. We wish to show that there

is a value of x0 for which y2(x0) = −y1(x0) so that the two halves piece together to give a periodic solution.
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 0 0,x y

0x
C

  1 1 00,A y x

  2 2 00,A y x

 2A

 1A

x

y

Figure 2.24: The solution curve Cx0 crosses y at y1(x0) and y2(x0).

Lemma 2.20. There exists a unique x∗ such that

x0 < x∗ =⇒ y2(x0) < −y1(x0),

x0 = x∗ =⇒ y2(x0) = −y1(x0),

x0 > x∗ =⇒ y2(x0) > −y1(x0).

Proof. Recall that

k(x) := 2
∫ x

0

h(x) dx

and that given a constant b,

r2
b := k(x) + (y − b)2 .

We choose b = 0 to obtain r2 = k(x) + y2. Therefore,

rr′ = −h(x)g(x) = g(x)
dy

dt

holds on any solution curve. Let ω = g(x) dy, a first order differential form. Let

I(x0) :=
∫

Cx0

ω

with Cx0 directed “backwards” from A1 to A2. Let t1 and t2 be the values of t at A1 and A2, respectively.

Then

I(x0) =
∫

Cx0

ω =
∫

Cx0

g(x) dy =
∫ t2

t1

g(x)
dy

dt
dt

=
∫ t2

t1

r
dr

dt
dt =

r2

2

∣∣∣∣t=t2

t=t1

=
1
2
(
r(t2)2 − r(t1)2

)
=

y2
2 + k(0)− y2

1 − k(0)
2

=
y2
2 − y2

1

2
.

We now need to show the following:
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(1) I(x0) < 0 if x < a.

(2) I(x0) strictly increases with increasing x0 for x0 > a.

(3) limx0→∞ I(x0) = ∞.

To show (1), if x0 < a, then g(x) < 0 for all x on Cx0 , and dy/dt is increasing in the direction of Cx0 we

are following. So

I(x0) =
∫

Cx0

g(x) dy < 0

for x0 < a.

To show (2), consider a < x0 < x̃0. Let

Cx0 = C1 ∪ C2 ∪ C3,

Cx̃0 = C̃1 ∪ C̃2 ∪ C̃3

as shown in Figure 2.25. Then

x

y

 =y g x

a

2A

1A


1A


2A

 0 0,x y

  
0 0,x y


1C

1C

3C


3C

2C


2C


1D


2D

b

τ

end of τ

  ,b g b

σ

Figure 2.25:

∫
C1

ω =
∫

C1

g(x) dy =
∫ a

0

g(x)
dy

dx
dx =

∫ a

0

g(x)
dy/dt

dx/dt
dx

=
∫ a

0

g(x)
−h(x)

y − g(x)
dx =

∫ a

0

g(x)
h(x)

g(x)− y
dx.
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On C̃1, g(x) − y is larger than it is on C1, so
(
g(x) − y

)−1 is smaller. But g(x) ≤ 0 when x ∈ [0, a], so

g(x)h(x)
(
g(x)− y

)−1 is larger (less negative) on C̃1 than it is on C1. Therefore∫
C1

ω ≤
∫

C̃1

ω.

Similarly, ∫
C3

ω =
∫ 0

a

g(x)
dy

dx
dx = −

∫ a

0

g(x)
−h(x)

y − g(x)
dx =

∫ a

0

g(x)
h(x)

y − g(x)
dx.

On C̃3, y− g(x) is larger than it is on C3, so
(
y− g(x)

)−1 is smaller. But g(x) ≤ 0, so g(x)h(x)
(
y− g(x)

)−1

is larger (less negative) on C̃3 than on C3. Therefore,∫
C3

ω <

∫
C̃3

ω.

Finally, let σ be the portion of C̃2 between D̃1 and D̃2. Since f(x) = dg/dx > 0 when x > a, each point

on σ has a larger value of g(x) than the corresponding point (the one with the same y-coordinate) on C2.

Therefore, ∫
C2

ω <

∫
σ

ω <

∫
C̃2

ω,

where the second inequality comes from the fact that since g(x) > 0 on x > a, the integral over C̃2 − σ is

positive. Therefore ∫
C1

ω +
∫

C2

ω +
∫

C3

ω︸ ︷︷ ︸
I(x0)

<

∫
C̃1

ω +
∫

C̃2

ω +
∫

C̃3

ω︸ ︷︷ ︸
I(x̃0)

,

i.e., I(x0) strictly increases with increasing x0 when x0 > a.

To show (3), select b so that a < b and b is less than the x-coordinate of the point where Cx0 crosses the

x-axis. Let τ be the vertical line segment through b as shown in Figure 2.25. Then∫
τ

ω <

∫
C2

ω

by the argument we used to show
∫

C2
ω <

∫
C̃2

ω. Note that∫
τ

ω =
∫

τ

g(x) dy = g(b)
∫

τ

dy

= g(b) (length of τ)

= g(b)y0 = g(b)g(x0).

Since limx→∞ g(x) = ∞, we have
∫

C2
ω →∞ as x0 →∞. Therefore,

lim
x0→∞

I(x0) = ∞.

It follows from (1), (2), (3), and from continuity that there exists a unique x∗ such that

I(x∗) = 0,

I(x0) < 0, x0 < x∗,

I(x∗0) > 0, x0 > x∗.

So Cx∗ pieces together with its reflection about the origin to form a periodic solution, as shown in Figure 2.26.

Also, x0 < x∗ ⇒ −y1 > y2. Therefore, the solutions inside C∗ spiral out to C∗. Similarly, solutions outside
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C 

1y

2y

2y

1y

Figure 2.26:

C∗ spiral in towards C∗. Therefore, C∗ is the unique periodic solution. �

In van der Pol’s Equation, i.e., Equation (2.5), we have

f(x) = µ
(
x2 − 1

)
,

g(x) = µ

(
x3

3
− x

)
,

h(x) = x.

Let a =
√

3. Therefore, by Liénard’s Theorem (Theorem 2.18, p. 44), we know that Equation (2.5) has a

unique solution and that every other solution spiral towards it. �

7. Index Theory

Let V : R2 → R2 be a vector field V = (F,G), where (x, y) 7→ (u, v) with u = F (x, y) and v = G(x, y).

Let γ ⊂ R2 be a simple closed curve oriented counterclockwise with no critical points of V on γ, i.e.,

V(X) 6= 0 for X ∈ γ. This is shown in Figure 2.27a.

Definition 2.21 (Index). Define IV(γ) to be the winding number of V(γ) about 0. We call IV(γ)

the index of γ for V. Unless considering more than one V, we usually write I(γ), where V is understood

implicitly. ♦

The geometric interpretation of IV(γ) is a follows.

Proposition 2.22. At each point X ∈ γ, there is an associated vector V(X) which makes an angle φ

with the horizontal, as shown in Figure 2.28. Start with φ0 at X0. As X moves around the curve, φ gradually

changes, returning to φ0 + 2πn when we get back to X0. Then I(γ) = n.

Proof. We have

n =
1
2π

(
φend of V(γ) − φstart of V(γ)

)
=

1
2π

∫
V(γ)

dφ.

Note that

φ = tan−1

(
G

F

)
= tan−1

( v

u

)
.
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x

y

γ

(a) The curve γ is a simple closed curve
oriented counterclockwise.

u

v

γ

(b) The winding number of γ is 2 because it
encircles the origin twice.

Figure 2.27:

 XV

φ

Figure 2.28: The vector V(X) makes an angle φ with the horizontal.

Strictly speaking, this holds only when F 6= 0. Thus

dφ =
1

1 +
(

v
u

)2 u dv − v du

u2
=
−v du + u dv

u2 + v2
.

But by continuity, the following conclusion holds even for u = 0 (provided that v 6= 0 also). Therefore, we

have

n =
1
2π

∫
V(γ)

−v du + u dv

u2 + v2
,

which is the winding number of V(γ) about 0. �

Proposition 2.23. If V is never zero on the annular region between the curves γ1 and γ2, then IV(γ1) =

IV(γ2).

Proof. By applying a homotopy argument, IV(γ) changes continuously, so it cannot jump from one

integer to another. �

Let P be a critical point of V. Define IV(P ) = IV(γ), where γ is any simple closed curve circling P once

counterclockwise (i.e., having the winding number 1 about P ) but not containing any other critical points
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of V, e.g., γ could be a small circle about P . Proposition 2.23 implies that the answer is independent of the

choice of γ.

Proposition 2.24. If V and W never have opposite directions on γ, then IV(γ) = IW(γ).

Proof. Suppose that V and W never have opposite directions on γ. Consider Hs = sV + (1− s)W

so that H0 = V and H1 = W. Since V and W never have opposite directions on γ, it follows that Hs 6= 0

on γ. However, IHs(γ) changes continuously with s, so being an integer, it must be constant. �

Corollary 2.25. Suppose P is a critical point of V. Let W be the linear approximation of V at P ,

that is, W = A (X− P ), where

A =

[
Fx(P ) Fy(P )

Gx(P ) Gy(P )

]
.

Assume that det(A) 6= 0. Then IV(P ) = IW(P ).

Proof. By translation, we may assume that P = 0. Let V = Ax + h, where

lim
‖x‖→0

h(x)
‖x‖

= 0.

Pick γ to be a circle x2 + y2 = r2 small enough to contain no other critical points of V (W doesn’t have

any other critical points). Suppose that sW + V = 0 at someplace on γ, i.e., W and V are in opposite

directions. Note that

sW + V = sW + W + h =⇒ (1 + s)W = −h

=⇒ (1 + s)2 ‖W‖2 = ‖h‖2 .

But

(1 + s)2 m2r2 ≤ (1 + s)2 ‖W‖2 ,

where

m := min
‖x‖=1

(∥∥A(x)
∥∥) > 0

since det(A) 6= 0. This implies that
‖h‖2

r2
≥ (1 + s)2 m2,

contradicting limr→0

(
‖h‖ /r

)
= 0. Therefore, W and V never have opposite signs on γ once r is sufficiently

small. Thus, IV(0) = IW(0). �

Theorem 2.26. We have

IV(γ) =
∑
P∈S

IV(P ) ,

where S is the set of the critical points of V lying inside γ.

Proof. Subdivide the interior of γ into regions each containing only one critical point, as shown in

Figure 2.29. The extra curves added cancel out when doing the sum of integrals to get the winding numbers.

�
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1P

2P

3P

Figure 2.29: The interior of γ is subdivided into regions, each containing only one critical point.

Theorem 2.27. Suppose that γ is a counterclockwise-oriented periodic solution∗ to the systemx′ = F (x, y),

y′ = G(x, y).
(2.6)

Set V = (F,G). Then IV(γ) = 1.

Proof. Suppose that γ is a counterclockwise-oriented periodic solution to System (2.6). Since γ is a

solution curve, we have V = (x′, y′). Then

IV(γ) =
1
2π

∫
V(γ)

d tan−1
( v

u

)
,

where u = F (x, y) and v = G(x, y). Then

1
2π

∫
V(γ)

d tan−1
( v

u

)
=

1
2π

∫ b

a

d

dt
tan−1

(
G
(
x(t), y(t)

)
F
(
x(t), y(t)

)) dt

and it follows that

IV(γ) =
1
2π

∫
γ

d tan−1

(
G

F

)
=

1
2π

∫
γ

d tan−1

(
y′

x′

)
=

1
2π

∫
γ

dθ =
1
2π

(θγend − θγstart)

=
1

��2π
(��2π) = 1,

where θ is the angle between the tangent to γ and the x-axis, as shown in Figure 2.30. �

Corollary 2.28. If γ (counterclockwise) is a periodic solution to X′ = V, then∑
P∈S

IV(P ) = 1,

where S is the set of the critical points of V lying inside γ.

Corollary 2.29. Any periodic solution encloses at least one critical point.

∗Solutions to differential equations cannot intersect themselves, i.e., γ is a simple closed curve.
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x

y

θ

γ

Figure 2.30: The angle θ is the angle between the tangent to γ and the x-axis.

Corollary 2.30. Let X′ = V(X). Suppose R is a closed bounded simply connected region without

critical points. Then any solution entering R must leave again. (It can later come back, but then must leave

again.)

Proof. Let X′ = V(X). Suppose R is a closed bounded simply connected region without critical

points. If a solution X(t) stayed in R, then by the Poincaré-Bendixson Theorem (Theorem 2.12, p. 38), it

would either be periodic or spiral towards a periodic solution. In either case, R would contain a periodic

solution, which must therefore surround a critical point. This is a contradiction to our hypothesis. �

Corollary 2.31. Let X(t) be a solution of X′ = V(X). If limt→∞X(t) exists, then it is a critical

point.∗

Proof. Let P = limt→∞X(t). If P is not a critical point, then there exists a small closed disk D

around P with no critical points. To say that limt→∞X(t) = P is to say that X(t) eventually enters D and

never leaves. This is a contradiction. Therefore, P is a critical point. �

Figure 2.31 shows some possible types of solution curves.

Example 2.32.

(1) Unstable node. By changing variables (which rotates and stretches curves, but doesn’t change their

index), we have

A =

[
1 0

0 1

]
.

Pick γ to be a counterclockwise circle about 0. Therefore, V(γ) = γ and IV(γ) = 1, i.e., IV(0) = 1.

(2) Stable node. We may assume that

A =

[
−1 0

0 −1

]
.

This rotates γ by 180◦. Therefore, γ is still oriented counterclockwise, so IV(0) = 1.

(3) Saddle. We may assume that

A =

[
1 0

0 −1

]
,

∗By a symmetrical argument, by replacing t by −t, the same holds for limt→−∞X(t).
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(a) Goes to ∞. (b) Curve is a critical point.

(c) Approaches a critical point. (d) Periodic.

(e) Spirals towards a periodic solution. (f) Spirals around some critical points.

Figure 2.31: Some possible types of solution curves.

which is a reflection about the x-axis. Therefore, A(γ) is oriented clockwise, so IV(0) = −1.

(4) Spiral. We may assume that

A =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
,

which is a rotation by θ, so IV(0) = 1. Note that θ < 0 indicates a clockwise spiral of the solutions

to the differential equation, but V itself rotates by θ, which preserves orientation.

Note that in all cases, IV(0) = sgn
(
det(A)

)
. �

Example 2.33 (Example 2.6, p. 29). Consider the Predator-Prey equations{
x′ = ax− bxy,

y′ = −cy + dxy

�



56 2. PHASE PORTRAITS

The critical points are (0, 0) and (c/d, a/b), which are a saddle (IV(0) = −1) and centre (IV(P ) = 1),

respectively, as shown in Figure 2.32. There cannot be any periodic solutions containing the origin since we

0,0

P

-1 1 2
x

-1

1

2

y

Figure 2.32: The phase portrait of Example 2.33, where P = (c/d, a/b).

can’t make a total index sum of +1 if we include the origin. Hence, by Theorem 2.27, there cannot be a

periodic solution.

Figure 2.33 shows a critical point with index 2.

D A

C

E

B

γ    
(not solution curve)

(a) A critical point with index 2.

 V B

   V A V D   V C V E

(b) Image under V .

Figure 2.33:



CHAPTER 3

Boundary Value Problems

1. Boundary Value Problems

Consider 
y′′ + P (x)y′ + Q(x)y = R(x),

αy(a) + βy′(a) = r1,

γy(b) + δy′(b) = r2.

In MATB44, we considered the special case where a = b and β = 0 = γ, which gives an intermediate value

problem (ivp) as shown in Figure 3.1. Unlike ivps, there is no existence and uniqueness theorem in the

general case.

x

y

A

B

 y a

 y b

a b

Figure 3.1: The ivp case when β = δ.

If we look at the solutions throughout A (with various slopes), are there any which pass though B? In

other words, can we hit the target?

1.1. Sample Application Leading to BVPs.

Consider an insulated wire of length L as shown in Figure 3.2. Let u(x, t) be the temperature of the

0 L

Figure 3.2: An insulated wire of length L.

57



58 3. BOUNDARY VALUE PROBLEMS

50 cm

0 C 0 C
20 C at = 0t

Figure 3.3: An insulated wire with both ends touching material mantained at 0◦ C.

wire at x at time t. Then we naturally have 0 ≤ x ≤ L and 0 ≤ t < ∞. Suppose heat may flow within the

wire but may not enter or leave anywhere except at the ends. If we know

• u(x, 0), the starting temperature at all points,

• u(0, t), the temperature at the left end at all times (which also determines the heat gain/loss at

this end at all times), and

• u(L, t), the temperature at the right end at all times (which also determines the heat gain/loss at

this end at all times),

then, intuitively, this should determine u(x, t).

Newton’s Law of Cooling states that

Given an object A at temperature T1 and a neighbourhood B at a distance d away at a

higher temperature T2, A gains heat from B at a rate proportional to (T2 − T1) /d.

So at any time t, the rate H(x) of heat transfer from the left end to the right end at x is proportional

to −ux(x, t), e.g., if u is decreasing at x (with ux being negative), then it is hotter to the left of x than it is

to the right of x, so the heat flow from the left to the right is positive. Therefore

H(x) = −kux(x, t).

For a segment [x, x + ∆x], the heat entering in time ∆t is(
H(x, t)−H(x + ∆x, t)

)
∆t = k∆t

(
ux(x + ∆t, t)− ux(x, t)

)
.

The difference is absorbed, producing a change in the temperature near x, i.e.,

k∆t
(
ux(x + ∆t, t)

)
− ux(x, t) =︸︷︷︸

change in heat content causes a change in temperature

specific heat of metal︷︸︸︷
c m∆u = cρ∆x∆u.

where ρ is the density (mass per unit length). Therefore,

∆u

∆t
= K

ux(x + ∆x, t)− ux(x, t)
∆x

,

where K = k/(cρ), and so we have the Heat Equation

ut = Kuxx, (3.1)

where K depends only on the properties of the wire and the units used.

Example 3.1 (Insulated wire). An insulated wire of length 50 cm is placed with its ends touching

a material maintained at 0◦ C. This is shown in Figure 3.3. Suppose the wire is made of material for

which K = 1. Initially, the wire had uniform temperature 20◦ C. Find u(x, t). �
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Solution. Expressing this problem as a boundary value problem (bvp) gives

ut = uxx,

u(0, t) = 0, ∀t,

u(50, t) = 0, ∀t,

u(x, 0) = 20 for 0 < x < 50.

Trial and error suggests looking for solutions of the form

u(x, t) = X(x)T (t).

The partial differential equation (see §4) itself has many other solutions (it is not possible to write down the

general solution), e.g., u(x, t) = x2 + 2t is a solution of uxx = ut not having the form X(x)T (t) (but it does

not satisfy our conditions). Substituting into uxx = ut gives

X ′′(x)T (t) = X(x)T ′(t),

X ′′(x)
X(x)

=
T ′(t)
T (t)

.

Now the left side of the equation depends only on x and the right depends only on t. For equality to hold,

they must be constant. It is convenient to call this constant −σ (it turns out to be negative). Therefore

X ′′

X
= −σ =

T ′

T
,

and from this we obtain

X ′′ + σX = 0, (3.2a)

T ′ + σT = 0. (3.2b)

Also,

u(0, t) = 0 =⇒ X(0)T (t) = 0, for all t, (B1)

u(50, t) = 0 =⇒ X(50)T (t) = 0, for all t, (B2)

u(x, 0) = 20 =⇒ X(x)T (0) = 20, for 0 < x < 50. (B3)

Equation (B3) implies that T (0) 6= 0, so setting t = 0 in Equation (B1) and (B2) gives X(0) = 0 and

X(50) = 0, respectively.

Considering Equation (3.2a), we have 
X ′′ + σX = 0,

X(0) = 0,

X(50) = 0.

(∗)

One solution of the bvp (∗) is X ≡ 0, but this will not satisfy Equation (B3). We need a nonzero solution.

The general solution of Equation (3.2a) has the form

X = c1X1 + c2X2.

Can we choose c1 and c2 to obtain X(0) = 0 and X(50) = 0? We must consider the three cases, namely,
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(1) σ < 0.

(2) σ = 0.

(3) σ > 0.

Case 1: σ < 0

Let σ = −a2. Then the solution of X ′′ − a2X = 0 is

X = c1e
ax + c2e

−ax.

For X(0) = 0, we have

c1e
0 + c2e

0 = 0 =⇒ c1 + c2 = 0.

For X(50) = 0, we have

c1e
50a + c2e

−50a = 0.

One solution is c1 = 0 = c2, but this implies that X ≡ 0, which is a contradiction to Equation (B3)

as previously noted. Therefore, this solution is no good. For a nonzero solution, we require

∣∣∣∣∣ 1 1

e50a e−50a

∣∣∣∣∣ = 0 =⇒


e−50a − e50a = 0,

e−50a = e50a.

e100a = 1.

But this means that a = 0, and so σ = 0, which contradicts our original supposition that σ < 0.

Therefore a = 0 is also no good, which means that σ 6< 0.

Case 2: σ = 0

Then X ′′ = 0 and the solution is X = c1 + c2x. Using the fact that X(0) = 0 = X(50), we

have

c1 + 0 = 0,

c1 + 50c2 = 0,

and so c1 = c2 = 0, meaning that X ≡ 0, which is a contradiction as before.

Case 3: σ > 0

Then X ′′+a2X = 0 and the general solution is x = c1 cos(ax)+ c2 sin(bx). Using the fact that

X(0) = 0 = X(50), we have,

c1 + 0 = 0,

c1 cos(50a) + c2 sin(50a) = 0.

For a nonzero solution, ∣∣∣∣∣ 1 0

cos(50a) sin(50a)

∣∣∣∣∣ = 0,

giving sin(50a) = 0. Therefore 50a = nπ and we have a = nπ/50 for some n. Correspondingly,

σ = a2 =
n2π2

502

for some n, i.e., the nonzero solutions of System (∗) have the form

X(x) = c sin
(nπ

50
x
)
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for some n and some c.

Considering u(x, t) = X(x)T (t), now that we have the solution X(x), what is the corresponding T (t)?

Equation (3.2b) becomes
dT

dt
+

n2π2

502
T = 0 =⇒ T = Ae−

n2π2

502
t.

Therefore, for any n,

u(x, t) = B︸︷︷︸
Ac

e−
n2π2

502
t sin

(nπ

50
x
)

satisfies ut = uxx with u(0, t) = 0 and u(50, t) = 0.

What about the condition u(x, 0) = 20? Write

un(x, t) = e−
n2π2

502
t sin

(nπ

50
x
)

.

Notice that for any constants bn, u(x, t) =
∑∞

n=1 bnun also satisfies ut = uxx with u(0, t) = 0 = u(50, t).

Can we choose {bn} so that u(x, 20) = 20? Note that

un(x, 0) = sin
(nπ

50
x
)

.

Therefore, we need
∞∑

n=1

bn sin
(nπ

50
x
)
≡ 20,

i.e., the Fourier series expansion of the function f(x) ≡ 20 on (0, 50). Since we have only sine terms, extend

f(x) to an odd function by

f(x) ≡

 20, 0 < x < 50,

−20, −50 < x < 0,

where the period is P = 100, one period of which is shown in Figure 3.4. Therefore,

-50 -40 -30 -20 -10 10 20 30 40 50
x

-20

-10

10

20

Figure 3.4: An odd function with P = 100.

bn =
2
P

∫ 50

−50

f(x) sin
(

2πn

P
x

)
dx

=
1
50

∫ 50

−50

f(x) sin
(πn

50
x
)

dx︸ ︷︷ ︸
use symmetry

=
2
50

∫ 50

0

20
(

sin
(πn

50
x
))

dx
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0

5

10

15

20

x

0

5

10

15

20

t

0

50

100

150

Figure 3.5: The plot of u(x, t) of Example 3.1.

=
4
5

(
− 50

πn
cos
(πn

50
x
))∣∣∣∣50

0

=
40
πn

(
− cos(nπ) + 1

)
=

 80
πn , n is odd,

0, n is even.

Therefore,

u(x, t) =
∞∑

n=1

bnun =
∑

n odd

80
πn

e−
n2π2

502
t sin

(nπ

50
x
)

,

i.e., n takes on odd values, or put in a more self-contained way, we have

u(x, t) =
∞∑

n=0

80
π (2n + 1)

e−
(2n+1)2π2

502
t sin

(
(2n + 1) π

50
x

)
.

Figure 3.5 shows the plot of u(x, t). �

The preceding method in Example 3.1 depended upon the fact that u(0, t) = 0 and u(50, t) = 0, namely,

they equal zero. This is because for solutions f and g of
X ′′ + σX = 0,

X(0) = 0,

X(50) = 0,

it implies that c1f1 + c2f2 are solutions. What if u(0, t) 6= 0 and u(50, t) 6= 0?
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Example 3.2 (Insulated wire, nonzero ends). Solve Example 3.1 with u(0, t) = 5 and u(50, t) = 15.

�

Solution. Let

v(x, t) = 5 + x
15− 5

50
= 5 +

x

5
.

Then we consider vxx = 0 = vt with v(0, t) = 5 and v(50, t) = 15. Let w = u−v. Thus, we have transformed

our problem into 

wxx = wt,

w(0, t) = 0,

w(50, t) = 0,

w(x, 0) = 15− x

5
,

which is the same type of problem as in Example 3.1, and so it is solvable the same way. Solving it, we

obtain

w(x, t) =
∞∑

n=1

bne−
n2π2

502
t sin

(nπ

50
x
)

,

where {bn} are the Fourier coefficients in the series for 15− x/5. Finding bn, we have

bn =
2

100

∫ 50

−50

f(x) sin
(

2πn

100
x

)
dx

=
2
50

∫ 50

0

(
15− x

5

)
sin
(πn

50
x
)

dx

=
1
25

 15·502−10
nπ , n is odd,

− 502

nπ , n is even.

Then u = w + v, with w and v as above, is the solution. �

2. Homogeneous Boundary Value Problems

2.1. Introduction.

Definition 3.3 (Homogeneous bvp). A bvp of the form

y′′ + P (x)y′ + Q(x)y = 0, (3.3a)

αy(a) + βy′(a) = 0, (3.3b)

γy(b) + δy′(b) = 0 (3.3c)

is called homogeneous. ♦

If u(x) and v(x) satisfy the above system, then so do c1u(x)+ c2v(x), i.e., solutions to the system form a

vector space. Let y1 and y2 be linearly independent solutions of Equation (3.3a). Then the general solution

is y = c1y1 + c2y2. We wish to choose c1 and c2 (if possible) so that y satisfies the boundary conditions given

in Equations (3.3b) and (3.3c). One solution is when c1 = 0 and c2 = 0, in which case y = 0. Are there any

other solutions? By Equation (3.3b), we have

αc1y1(a) + αc2y2(a) + βc1y
′
1(a) + βc2y

′
2(a) = 0,
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and by Equation (3.3c), we have

γc1y1(b) + γc2y2(b) + δc1y
′
1(b) + δc2y

′
2(b) = 0.

Therefore,

c1

Ba(y1)︷ ︸︸ ︷(
αy1(a) + βy′1(a)

)
+c2

Ba(y2)︷ ︸︸ ︷(
αc2y2(a) + βy′2(a)

)
= 0,

c1

(
γy1(b) + δy′1(b)

)
+ c2

(
γc2y2(b) + δy′2(b)

)
= 0,

where for notational simplicity we define

Ba(u) := αu(a) + βu′(a), (3.4a)

Bb(u) := γu(b) + δu′(b). (3.4b)

Then [
Ba(y1) Ba(y2)

Bb(y1) Bb(y2)

][
c1

c2

]
=

[
0

0

]
.

There exist nonzero solutions for c1 and c2 if and only if∣∣∣∣∣ Ba(y1) Ba(y2)

Bb(y1) Bb(y2)

∣∣∣∣∣︸ ︷︷ ︸
4

= 0.

If the differential equation involves a parameter λ, then 4 = 0 is an equation that can be solved to give the

λ’s for which there are nonzero solutions (this is reminiscent of finding eigenvalues).

Theorem 3.4. If u(x) is a nonzero solution of
y′′ + P (x)y′ + Q(x)y = 0,

αy(a) + βy′(a) = 0,

γy(b) + δy′(b) = 0,

(H)

then all solutions to the system are given by y = cu(x) for some constant c.

Proof. Let v(x) be a solution of System (H). Then[
u(a) u′(a)

v(a) v′(a)

][
α

β

]
=

[
0

0

]
.

So ∣∣∣∣∣ u(a) u′(a)

v(a) v′(a)

∣∣∣∣∣︸ ︷︷ ︸
W (u,v)(a)

= 0.

But if a Wronskian is 0 at one point, it is zero everywhere. Therefore, u and v are linearly dependent, i.e.,

v(x) = cu(x) for some constant c. �

2.2. Eigenvalue Problems (Sturm-Liouville).
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The heat equation leads to bvp 
y′′ = λy,

y(0) = 0,

y(1) = 1

for some unknown constant λ. This is an example of what we call an eigenvalue problem.

Definition 3.5 (Differential operator). An operator formed as a combination of differentiation and

multiplication operators is called a differential operator. ♦

For example, a second order differential operator L has the the form

L(y) = −
(
y′′ + P (x)y′ + Q(x)y

)
.

The explanation for the convention of including the minus sign is given below.

A second order differential operator can be regarded as a linear transformation on the vector space of

twice differentiable functions.

If the boundary conditions are homogeneous, namely,αy(a) + βy′(a) = 0,

γy(b) + δy′(b) = 0,
(B)

then the set of twice differentiable functions satisfying them forms a vector space VB . Given such a set of

boundary conditions and a differential operator L, a value of λ for which there exists a nonzero f satisfying

Lf = λf and conditions (B) (i.e., a nonzero solution to the bvp) is called an eigenvalue for Lf = λf (relative

to the conditions (B)), and f is called an eigenvector or eigenfunction. The negative sign convention was

introduced because with it the eigenvalues usually come out to be positive.

Example 3.6. We have shown that if Ly = −y′′, then, relative to the conditions y(0) = y(50) = 0, the

eigenvalues of Ly = λy are

λn =
n2π2

502

for n = 1, 2, 3, . . . , and an eigenfunction for the eigenvalue λ = n2π2/502 is

y = sin
(nπx

50

)
.

�

Example 3.7. Consider 
L(y) = − (y′′ + 2y′) ,

y′(0) = 0,

y(1) = 0.

Find real eigenvalues of Ly = λy and the eigenfunctions. �

Solution. Since y′′ + 2y′ + λy = 0, we have

m2 + 2m + λ = 0,

m2 + 2m + 1− 1 + λ = 0,

(m + 1)2 − 1 + λ = 0.
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Therefore, m = ±
√

1− λ− 1. We divide into three cases.

Case 1: λ < 1.

Let − (1− λ) = k2 for k > 0 so that m = k − 1 or m = −k − 1.

y1 = e(k−1)x, y2 = e(−k−1)x,

y′1 = (k − 1) e(k−1)x, y′2 = (−k − 1) e(−k−1)x,

y′1(0) = k − 1, y′2(0) = −k − 1,

y1(1) = ek−1, y2(1) = e−k−1.

Thus,

4 =

∣∣∣∣∣ k − 1 −k − 1

ek−1 e−k−1

∣∣∣∣∣ = (k − 1) e−k−1 + (k + 1) ek−1.

Note that 4 = 0 implies that

(1− k) e−k−1 = (k + 1) ek−1,(
1− k

1 + k

)
︸ ︷︷ ︸

<1

= ek−1+k+1 = e2k︸︷︷︸
> 1 (since k > 0)

.

which is a contradiction. Therefore, there are no solutions for λ < 1.

Case 2: λ = 1.

Then m = −1 is a double root and we have

y1 = e−x, y2 = xe−x,

y′1 = −e−x, y′2 = e−x − xe−x,

y′1(0) = −1, y′2(0) = 1,

y1(1) = e−1, y2(1) = e−1.

Thus,

4 =

∣∣∣∣∣ −1 1

e−1 e−1

∣∣∣∣∣ = −2
e
6= 0.

Therefore, λ = 1 is not an eigenvalue.

Case 3: λ > 1.

Set λ− 1 = k2 for k > 0. Then m = −1± ki and we have

y1 = e−x cos(kx), y2 = e−x sin(kx),

y′1 = −e−x cos(kx)− ke−x sin(kx), y′2 = −e−x sin(kx) + ke−x cos(kx),

y′1(0) = −1, y′2(0) = k,

y1(1) =
1
e

cos(k), y2(1) =
1
e

sin(k).

Thus,

4 =

∣∣∣∣∣ −1 k
1
e cos(k) 1

e sin(k)

∣∣∣∣∣ = −1
e

(
sin(k) + k cos(k)

)
.
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Note that 4 = 0 ⇒ k = − tan(k). Figure 3.6 shows where y = − tan(k) and y = k intersect.

Therefore, the eigenvalues are the λ’s satisfying λ = k2+1, where k > 0 is a solution to k = − tan(k).

p

2
p 3 p

2
2 p 5 p

2
3 p

k

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Figure 3.6: The plot of y = − tan(k) and y = k, showing that they intersect at k2 + 1.

We have[
−1 k

1
e cos(k) 1

e sin(k)

][
c1

c2

]
=

[
0

0

]
=⇒ −c1 + kc2 = 0 =⇒ −c1 = kc2.

Therefore, the eigenfunction for λ = k2 + 1 is ke−x cos(kx) + e−x sin(kx). �

Definition 3.8 (Inner product). An inner product on a real vector space V is a function 〈 , 〉 : V×V → R
satisfying

(1) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

(2) 〈αv,w〉 = α 〈v, w〉 = 〈v, αw〉 for all α ∈ R and v, w ∈ V .

(3) 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉 and 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉 for all u, v, w ∈ V .

(4) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0 for all v ∈ V .

♦

Example 3.9. Given w : [a, b] → R, set

〈f, g〉w :=
∫ b

a

w(x)f(x)g(x) dx.

This defines an inner product if w(x) > 0 for all x and, in fact, we can allow w = 0 at finitely many points.

�
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Definition 3.10 (Orthogonality). Elements v, w ∈ V are called orthogonal with respect to 〈 , 〉 if

〈v, w〉 = 0. ♦

Example 3.11. Let [a, b] = [0, 1] and w(x) = 1. Then the solutions of
−y′′ = λy,

y(a) = 0,

y(b) = 0

are sin(nπx), which are orthogonal with respect to 〈 , 〉w on [a, b]. �

Proposition 3.12. If V ⊂ C(X), w is continuous, and 〈f, f〉w = 0, then f ≡ 0.

Proof. If 0 = 〈f, f〉w =
∫ b

a
f2(x)w(x) dx, then, since f is continuous and w > 0, we have f ≡ 0. �

Given 
Ly = λy,

αy(a) + βy′(a) = 0,

γy(b) + δy′(b) = 0,

we want to find w such that the solutions to the bvp are orthogonal with respect to 〈 , 〉w on [a, b].

Definition 3.13 (Self-adjoint). Given an inner product 〈 , 〉, an operator T is called self-adjoint (with

respect to the inner product) if 〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ V . ♦

Theorem 3.14. If T is self-adjoint with respect to 〈 , 〉, then the eigenvectors corresponding to distinct

eigenvalues of T are orthogonal with respect to 〈 , 〉.

Proof. Suppose Tv = λ1v and Tw = λ2w, where λ1 6= λ2. Then

λ1 〈v, w〉 = 〈λ1v, w〉 = 〈Tv,w〉 = 〈v, Tw〉 = 〈v, λ2w〉 = λ2 〈v, w〉 (3.5)

Therefore, λ1 6= λ2 ⇒ 〈v, w〉 = 0. �

Corollary 3.15. If L is self-adjoint with respect to 〈 , 〉w, then the solutions to the eigenvalue problem

Ly = λy with boundary conditions αy(a) + βy′(a) = 0,

γy(b) + δy′(b) = 0

are mutually orthogonal with respect to 〈 , 〉w.

Note that by Theorem 3.4, eigenspaces are one-dimensional.

By convention, to say that L is self-adjoint implicitly means that L is self-adjoint with respect to 〈 , 〉1.
Given w : [a, b] → (0,∞) and a differential operator L, define a new operator Lw by Lw := w(x)Ly. If

y is a solution to Ly = λy, then

Lwy = w(x)Ly = λw(x)y,

so the equation Lwy = λw(x)y is equivalent to the eigenvalue problem Ly = λy.

Definition 3.16 (Sturm-Liouville problem). A problem of the form Ly = λw(x)y, where L is self-adjoint

with respect to 〈 , 〉1, is called a Sturm-Liouville problem. ♦
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Proposition 3.17. The differential operator L is self-adjoint with respect to 〈 , 〉w if and only if Lw is

self-adjoint with respect to 〈 , 〉1.

Proof. Observe that

〈f, g〉w :=
∫ b

a

w(x)f(x)g(x) dx = 〈wf, g〉 ,

(where we write 〈 , 〉 for 〈 , 〉1). Therefore

〈Lwf, g〉 = 〈wLf, g〉 = 〈Lf, g〉w ,

〈f, Lwg〉 = 〈f, Lg〉w ,

so 〈Lwf, g〉 = 〈f, Lwg〉, or equivalently, 〈Lf, g〉w = 〈f, Lg〉w. �

Corollary 3.18. If L is self-adjoint (with respect to 〈 , 〉1), then the solutions to Ly = λwy are

orthogonal with respect to 〈 , 〉w.∗

Proof. Ignoring a finite set of points on which w is zero, consider L1/w and let L =
(
L1/w

)
w
. Then

solutions to Ly = λwy are solutions to L1/wy = λy. It also follows that if L is self-adjoint, then L1/w is

self-adjoint with respect to 〈 , 〉w. The solutions to Ly = λwy are the solutions to L1/wy = λy, and so are

mutually orthogonal with respect to 〈 , 〉w.

Now suppose that w(x) = 0 for some values of x. Subdivide [a, b] into subintervals on which w(x) 6= 0.

Then the proof follows, as in the above, for each of these subintervals. �

Given homogeneous boundary conditionsαy(a) + βy′(a) = 0,

γy(b) + δy′(b) = 0
(B)

and a continuous function w : [a, b] → (0,∞), we wish to find conditions on L such that L is self-adjoint

with respect to 〈 , 〉w on VB , where VB is the set of all f satisfying conditions (B).

Lemma 3.19. (Lagrange formula) For every f, g ∈ VB, we have

〈f ′′, g〉w − 〈f, g′′〉w = −〈f ′, g〉w′ + 〈f, g′〉w′ . (3.6)

Proof. First note that 〈f ′′, g〉w =
∫ b

a
wf ′′g dx. Integrating by parts, let

u = wg, dv = f ′′ dx,

du = (w′g + wg′) dx, v = f ′.

Then

〈f ′′, g〉w = wgf ′
∣∣∣b
a
−
∫ b

a

w′f ′g dx−
∫ b

a

wf ′g′ dx.

Therefore,

〈f ′′, g〉w − 〈f, g′′〉w = wgf ′
∣∣∣b
a
−
∫ b

a

w′f ′g dx−
���

���∫ b

a

wf ′g′ dx

− wfg′
∣∣∣b
a

+
∫ b

a

w′fg′ dx +
���

���∫ b

a

wf ′g′ dx = w (f ′g − fg′)
∣∣∣b
a
− 〈f ′, g〉w′ + 〈f, g′〉w′ .

∗Phrased differently, solutions to Sturm-Liouville problems are mutually orthogonal with respect to 〈 , 〉w.



70 3. BOUNDARY VALUE PROBLEMS

But

f ′(b)g(b)− f(b)g′(b) = −γ

δ
f(b)g(b) +

γ

δ
f(b)g(b) = 0, δ 6= 0,

while if δ = 0, then f(b) = g(b) = 0, so f ′(b)g(b)−f(b)g′(b)−f(b)g′(b) = 0. Similarly, f ′(a)g(a)−f(a)g′(a) =

0. �

Lemma 3.20. If p : [a, b] → R is continuous and
∫ b

a
p(x) (f ′g − g′f) dx = 0 for all f, g ∈ VB, then p ≡ 0.

Proof. By changing variables, we may assume that a = 0 and b = 1, i.e., x = a + (b− a) x̄, where

x̄ = (x− a) / (b− a). We will also assume that γ, δ 6= 0. The argument needs slight modification otherwise.

Now f and g must satisfy

f ′(0)
f(0)

=
β

α
=

g′(0)
g(0)

,

f ′(1)
f(1)

=
δ

γ
=

g′(1)
g(1)

.

Suppose we try f := emx2+nx. Then

f ′

f
=

(2mx + b) emx2+nx

emx2+bx
= 2mx + n.

Therefore, choose n = β/α and 2m + n = δ
γ so that m =

σ/γ−β/γ

2 to make f ∈ VB .

Choose g so that f ′g − fg′ = p sin(x) as follows:

f ′g − fg′ = p sin(πx) ⇐⇒ f ′g − fg′

f2︸ ︷︷ ︸
d( g

f )/dx

=
p sin(πx)

f2
.

So we want
g

f
=
∫ x

0

p sin(πt)
f2

dt =⇒ g = f

∫ x

0

p sin(πt)
f2

dt.

Define g by

g(x) := f

∫ x

0

p sin(πt)
f2

dt,

so that it will satisfy f ′g − fg′ = p sin(πx). But then

sin(0) = 0 =⇒ f ′(0)g(0)− f(0)g′(0) = 0,

so
g(0)
g′(0)

=
f(0)
f ′(0)

=
β

α
.

Similarly, sin(π) = 0, so
g(1)
g′(1)

=
f(1)
f ′(1)

=
δ

γ
.

Therefore, g ∈ VB also. Note that∫ 1

0

p(x) (f ′g − g′f) dx =
∫ 1

0

p(x)2 sin(πx) dx

by construction, and so the hypothesis that
∫ b

a
p(x) (f ′g − g′f) dx = 0 gives∫ 1

0

p(x)2 sin(πx) dx = 0.
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But p(x)2 sin(πx) ≥ 0 for all x ∈ [0, 1], so∫ 1

0

p(x)2 sin(πx) dx = 0 =⇒︸︷︷︸
continuity of integrand

p(x)2 sin(πx) = 0

for all x ∈ [0, 1]. But sin(πx) 6= 0 for x ∈ (0, 1). Therefore, p(x)2 = 0 for all x ∈ (0, 1) ⇒ p(x) = 0 for all

x ∈ (0, 1). Therefore by continuity, p(x) = 0 for all x ∈ [0, 1]. �

Theorem 3.21. Let Ly := − (a0(x)y′′ + a1(x)y′ + a2y). Then L is self-adjoint with respect to 〈 , 〉1 on

VB if and only if a1(x) = a′0(x).

Proof. Let Ly := − (a0(x)y′′ + a1(x)y′ + a2y) and suppose that L is self-adjoint with respect to 〈 , 〉1
on VB . Then for all f, g ∈ VB , we have

0 = −〈Lf, g〉+ 〈g, Lf〉

= 〈a0f
′′, g〉+ 〈a1f

′, g〉+ 〈a2f, g〉 − 〈f, a0g
′′〉 − 〈f, a1g

′〉 − 〈f, a2g〉

= 〈f ′′, g〉a0
− 〈f, g′′〉a0

+ 〈a1f
′, g〉 − 〈f, a1g

′〉+����〈f, g〉a2
−����〈f, g〉a2

= −〈f ′, g〉a′0 + 〈f, g′〉a′0 + 〈a1f
′, g〉 − 〈f, a1g

′〉

=
∫ b

a

(−a′0f
′g + a′0fg′ + a1f

′g − a1fg′) dx

=
∫ b

a

(a1 − a′0) (f ′g − fg′) dx.

So by Lemma 3.20 applied to p = a1 − a′0, we have a1 = a′0.

Conversely, if a1 = a′0, then the same calculation shows that 〈Lf, g〉 = 〈g, Lf〉 for all f, g ∈ VB . �

Corollary 3.22. The differential operator L is self-adjoint with respect to 〈 , 〉w if and only if Lw is

self-adjoint with respect to 〈 , 〉1 if and only if a1w = (a0w)′.

So given L and conditions (B) (p. 69), we can now choose w such that Lw is self-adjoint on VB as follows.

We need a1w = (a0w)′, so it follows that

a1w =

(a0w)′︷ ︸︸ ︷
a′0w + a0w

′,

a0w
′ = (a1 − a′0) w,

w′

w
=

a1 − a′0
a0

,

resulting in

w = Ae
R a1−a′0

a0
dx. (3.7)

This is summarized in the following theorem.

Theorem 3.23. If Ly = − (a0y
′′ + a1y

′ + a2y), then the solution to the eigenvalue problem Ly = λy

satisfying the boundary conditions (B) are orthogonal with respect to 〈 , 〉w, where

w = e
R a1−a′0

a0
dx.

Example 3.24. Suppose a0 = 1 and a1 = 0. Then w = e0 dx = eC . Pick C = 1. �
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Given the eigenvalue problem Ly = λy with conditions (B), we can rephrase it as Lwy = λwy for any w

we choose. By choosing w as in Equation (3.7), it becomes Lwy = λwy with Lw self-adjoint, and thus the

solutions are orthogonal with respect to w.

Example 3.25. Consider (
1− x2

)
y′′ − xy′ + (λ + 1) y = 0,

where |x| < 1. �

Write the equation as Ly = λy, where

Ly = −
((

1− x2
)
y′′ − xy′ + y

)
.

Let a0 := 1 − x2, so a′0 = −2x. But a1 := −x 6= a′0. Therefore, L is not self-adjoint with respect to 〈 , 〉1.
By Equation (3.7), we have

w = e
R a1−a′0

a0
dx = e

R −x+2x

1−x2 dx = e
R

x
1−x2 dx

= e− ln(1−x2)/2 =
1√

1− x2
.

Now L is self-adjoint with respect to 〈 , 〉w. Multiplying by w gives√
1− x2y′′ − x√

1− x2
y′ +

1√
1− x2

y︸ ︷︷ ︸
self-adjoint with respect to 〈 , 〉1

=
1√

1− x2
λy.

For any boundary conditions∗ Ba(y) and Bb(y) with a, b ∈ (−1, 1), the eigenfunctions of
(
1− x2

)
y′′ − xy′ + (λ + 1) y = 0,

Ba(y) = 0,

Bb(y) = 0

are orthogonal with respect to

〈f, g〉 :=
∫ b

a

1√
1− x2

fg dx.

Note that changing Ba and Bb changes the eigenvalues and the eigenfunctions, but it doesn’t change the

inner product with respect to which they are orthogonal, i.e., w is determined entirely by(
1− x2

)
y′′ − xy′ + (λ + 1) y

and the inner product is determined by w, a, and b.

Theorem 3.26 (Properties of Sturm-Liouville problems). Let L = − (a0y
′′ + a1y

′ + a2y). Consider the

Sturm-Liouville problem Ly = λw(x)y, along with boundary conditions Ba(y) = 0 and Bb(y) = 0, where L is

self-adjoint with respect to 〈 , 〉1 and a0(x) > 0 on [a, b]. Assume w0 ≥ 0 on [a, b]. Then the following hold:

(1) The eigenvalues {λn} of Ly = λw(x)y are real and form a countably infinite sequence λ1 < λ2 <

· · · < λn < · · · with limn→∞ λn = ∞.

(2) For each eigenvalue λn, there is (up to scalar multiples), a unique eigenfunction φn. The eigen-

functions φn has exactly n− 1 zeros on (a, b).

(3) The eigenfunctions form an orthogonal basis with respect to the inner product 〈 , 〉w.

∗Recall the definition of this notation in Equations (3.4a) and (3.4b) on page 64.



2. HOMOGENEOUS BOUNDARY VALUE PROBLEMS 73

(4) If g is twice differentiable on[a, b], then

g(x) =
∞∑

n=1

cnφn,

where

cn :=
〈g, φn〉w
〈φn, φn〉w

is called the nth generalized Fourier coefficient of g.

Example 3.27. In our earlier Example 3.6 (p. 65), where w(x) = 1 with conditions y(0) = 1 and

y(0) = 50, we had λn = π2n2/502 and φn = sin
(

nπx
50

)
. Note that φn = 0 for

x ∈
{

0,
50
n

,
2 · 50

n
, . . . ,

n · 50
n

= 50
}

,

so it has n + 1 zeros. �

Proof of Theorem 3.26 (idea).

(1) Showing that the eigenvalues are real is essentially the same as the proof that the eigenvalues of

a symmetric matrix are real. It is much harder to show that there exists a smallest eigenvalue λ1

and that they form a sequence going to ∞.

(2) We already proved this. See Theorem 3.4.

(3) We already showed that 〈φi, φj〉w = 0, but this says more. It claims that {φn} is a maximal

orthogonal set, i.e., there does not exist a nonzero g such that 〈g, φn〉 = 0 for all n. This is harder

to prove.

(4) This is analogous to Dirichlet’s Theorem for (standard) Fourier series and the proof is comparable

(we will not prove this).

We postpone the formal proof until §6. �

Example 3.28. Solve 

uxx = xut,

u(0, t) = 0,

u(1, t) = 0,

u(x, 0) = x for x ∈ (0, 1).
�

Solution. We try finding solutions of the form u(x, t) = X(x)T (t). Then

uxx = X ′′T,

ut = xXT ′

 =⇒ X ′′

xX
= −λ =

T ′

T

for some constant λ. Therefore,

X ′′ = −λxX, (∗)

T ′ = −λT, (∗∗)

X(0)T (t) = 0 ∀t, (B1)

X(1)T (t) = 0 ∀t, (B2)
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X(x)T (0) = x for x ∈ (0, 1). (B3)

To have T (0) = 0 would contradict Equation (B3), so T (0) 6= 0 and therefore Equation (B1) implies that

X(0) = 0, and Equation (B2) implies that X(1) = 0. Therefore, consider
y′′ = −λxy,

y(0) = 0,

y(1) = 0.

Letting

y =
∞∑

n=0

anxn =⇒ y′′ =
∞∑

n=0

(n + 2) (n + 1) an+2x
n

=⇒ an+2 = −λ
an−1

(n + 2) (n + 1)︸ ︷︷ ︸
recurrence relation

.

Suppose y = c1y1 + c2y2. Then y1 has a0 = 1 and a1 = 0 while y2 has a0 = 0 and a1 = 1. Thus,

y(0) = 0 ⇒ c1 = 0 and so

y = cy2.

In y2, we have

a1 = 1, a4 = −λ
1

3 · 4
, a7 = λ2 1

3 · 4 · 6 · 7
, a10 = −λ3 1

3 · 4 · 6 · 7 · 9 · 10
, . . . .

In general, we have

a3n+1 = (−1)n
λn 1

3 · 4 · 6 · 7 · · · (3n) (3n + 1)
with all other terms equal to zero. Therefore,

y2 = x− λ
x4

3 · 4
+ λ2 x7

3 · 4 · 6 · 7
− λ3 x10

3 · 4 · 6 · 7 · 9 · 10
+ · · · .

Note that

0 = 4 =

∣∣∣∣∣ y1(0) y2(0)

y1(1) y2(1)

∣∣∣∣∣ =
∣∣∣∣∣ 1 y2(0)

0 y2(1)

∣∣∣∣∣ = y2(1)

= 1− λ

3 · 4
+

λ2

3 · 4 · 6 · 7
− λ3

3 · 4 · 6 · 7 · 9 · 10
+ · · · .

Clearly λ ≤ 0 ⇒ 4 > 0, so all eigenvalues are positive. With the aid of a computer program, we find that

the first few eigenvalue approximations are

λ1 ≈ 18.956, λ2 ≈ 81.887, λ3 ≈ 189.217, λ4 ≈ 340.967, . . . .

The eigenfunctions are y2 with these values of λ. The eigenfunctions should be orthogonal with respect to

〈f, g〉 :=
∫ 1

0

xf(x)g(x) dx.

Thus,

〈φk, φn〉x =
∫ 1

0

xφk(x)φn(x) dx,
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=
∫ 1

0

(
x− λk

x4

3 · 4
+ λ2

k

x7

3 · 4 · 6 · 7

)(
x− λn

x4

3 · 4
+ λ2

n

x7

3 · 4 · 6 · 7
+ · · ·

)
dx

=
∫ 1

0

x

(
x2 − (λk + λn)

x5

3 · 4
+
(
λ2

k + λ2
n

) x8

3 · 4 · 6 · 7
+ λkλn

x8

(3 · 4)2
− · · ·

)
dx

=
1
4
− λk

84
− λn

84
+

λkλn

1440
+

λ2
k + λ2

n

5040
+ · · · .

Expand f(x) = x in eigenfunctions φ1, φ2, . . . . Then

x =
∞∑

n=1

bnφn,

where

bn =
〈x, φn〉x
〈φn, φn〉x

.

The first few approximations are

b1 ≈ 1.859, b2 ≈ −0.0156, b3 ≈ −0.0031.

Note that T ′ = −λT , and so T = Ae−λt. Therefore, the solution is given by

u(x, t) =
∞∑

n=0

bneλnt

(
x− λn

x4

3 · 4
+ λ2

n

x7

3 · 4 · 6 · 7
− λ3

n

x10

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

)
,

where

b1 ≈ 1.859, b2 ≈ −0.0156, b3 ≈ −0.0031, . . .

and

λ1 ≈ 18.956, λ2 ≈ 81.817, λ3 ≈ 189.217, . . . .

�

Consider

− (a0y
′′ + a0y

′ + a2y) = λwy,

where a1 = a′0. Until now, we required that a0(x) > 0 on [a, b]. Suppose that a0(b) = 0. Consider
a0y

′′ + a1y
′ + a2y + λwy = 0,

Ba(y) = 0,∣∣Bb(y)
∣∣ < ∞.

This is not our standard form for boundary conditions, but VB :=
{

f : Ba(f) = 0 and
∣∣Bb(f)

∣∣ < ∞
}

is

nevertheless a vector space. Our theory applies equally well to this situation. It also applies to the conditions
∣∣Ba(y)

∣∣ < ∞,∣∣Bb(y)
∣∣ < ∞.

Example 3.29. Solve Legendre’s equation given by
(
1− x2

)
y′′ − 2xy′ + λy = 0,∣∣y(−1)

∣∣ < ∞,∣∣y(1)
∣∣ < ∞.
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�

Solution. Since
(
1− x2

)′ = −2x, the Legendre operator is self-adjoint with respect to 〈 , 〉1. By

inspection, we see that

• λ = 0 is an eigenvalue with eigenfunction y = 1, so let φ0(x) ≡ 1.

• λ = 2 is an eigenvalue with eigenfunction y = x, so let φ1(x) := x.

Observe that ∫ 1

−1

φ0(x)φ1(x) dx =
∫ 1

−1

x dx =
x2

2

∣∣∣∣1
−1

= 0,

which is consistent with our theorems that the eigenfunctions should be orthogonal with respect to 〈 , 〉w.

Let’s try to guess another eigenfunction. Since φ0 and φ1 were polynomials of degree 0 and 1, respectively,

let’s look for a quadratic eigenfunction φ2. Thus, we now wish to find a quadratic φ2 such that∫ 1

−1

φ0(x)φ2(x) dx = 0,

∫ 1

−1

φ1(x)φ2(x) dx = 0.

Note that being a polynomial automatically makes φ2(−1) and φ2(1) bounded. Let φ2(x) := x2 + Cx + D.

Then ∫ 1

−1

φ0(x)φ1(x) dx =
(

x3

3
+ C

x2

2
+ Dx

)∣∣∣∣1
−1

=
2
3

+ 2D =⇒ D = −1
3

and ∫ 1

−1

φ1(x)φ2(x) dx =
∫ 1

−1

(
x3 + Cx2 + Dx

)
dx

=
(

x4

4
+ C

x3

3
+ D

x2

2

)∣∣∣∣1
−1

=
2C

3
=⇒ C = 0.

Therefore,

φ2(x) = x2 − 1
3
.

A more systematic way of finding φ2 is through the Gram-Schmidt process. Given a vector x, the

component of x perpendicular to u is found by subtracting the projection of x onto u. The projection of x

onto u is (
x · u

‖u‖2

)
u =

〈x, u〉
〈u, u〉

u.

To check for orthogonality, set

y = x− 〈x, u〉
〈u, u〉

u.

Then

〈y, u〉 = 〈x, u〉 − 〈x, u〉
〈u, u〉

〈u, u〉 = 0.

To get φ2, we start with x2 and remove projections onto φ0 and φ1, i.e., the Gram-Schmidt process. Therefore

φ2(x) = x2 −
〈
x2, φ0

〉
〈φ0, φ0〉

φ0 −
〈
x2, φ1

〉
〈φ1, φ1〉

φ1
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= x2 −


∫ 1

−1

x2 dx∫ 1

−1

dx

 1−


∫ 1

−1

x2x dx∫ 1

−1

x2 dx

x

= x2 −
2
∫ 1

0

x2 dx

2
1− 0x

= x2 − 1
3
,

as before. Because of its orthogonality with the eigenfunctions φ1 and φ2, we might conjecture that φ2 is also

an eigenfunction. To determine whether φ2 is an eigenfunction, we need to see if φ2(x) solves the differential

equation for some λ. To find out, we have(
1− x2

)
φ′′2(x)− 2xφ′2(x) + λφ2(x) =

(
1− x2

)
2− 2x · 2x + λ

(
x2 − 1

3

)
= 2− 2x2 − 4x2 + λx2 − λ

3

= (λ− 6) x2 +
(

2− λ

3

)
.

Since

(λ− 6) x2 +
(

2− λ

3

)
= 0

when λ = 6, we conclude that λ = 6 is an eigenvalue with φ2 as an eigenfunction. We know that λ = 6

appears no earlier than third on the list of eigenvalues because we already found two eigenvalues less than

it. But have we missed some other eigenvalue less than 6? To decide, we apply Theorem 3.26 (p. 72), which

tells us that the nth eigenfunction has n− 1 zeros on (−1, 1). Since φ2(x) = x2− 1/3 has 2 zeros on (−1, 1),

we conclude that λ = 6 is the third eigenvalue.

It turns out that the eigenvalues are λ = n (n + 1) for n = 0, 1, 2, 3, . . . . Since φn turns out to be a degree

n polynomial, it has at most n zeros on (−1, 1), so the eigenvalue n (n + 1) is no later than (n + 1)st on the

list of eigenvalues. So it is exactly number n + 1 since we know of n preceding it. Therefore,
{
n (n + 1)

}
is

the complete list of eigenvalues, and all zeros of φn occur on (−1, 1).

The polynomials {φn} are called the Legendre polynomials and can be found inductively by Gram-

Schmidt as above, or by the power series methods of MATB44. �

Example 3.30. Give the first three terms in the expansion of f(x) := ex in Legendre polynomials. �

Solution. Note that f(−1) and f(1) are bounded since f(x) is continuous on [−1, 1]. Therefore, such

an expansion is possible. Let

ex =
∞∑

n=0

cnφn,

where cn = 〈f, φn〉 / 〈φn, φn〉. To find c0, we have

c0 =

∫ 1

−1

ex dx∫ 1

−1

dx

=
e− e−1

2
.
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To find c1, we have

c1 =

∫ 1

−1

xex dx∫ 1

−1

x2 dx

=
(xex − ex)

∣∣1
−1

x3/3
∣∣1
−1

=
2e−1

2/3
=

3
e
.

To find c2, we have

c2 =

∫ 1

−1

(
x2 − 1

3

)
ex dx∫ 1

−1

(
x2 − 1

3

)2

dx

=

(
x2ex − 2xex + 5

3ex
)∣∣1
−1(

x5

5 − 2x3

9 + x
9

)∣∣1
−1

=
2
3e− 14

3 e−1

8/45

=
15
4

e− 105
4

e−1.

Therefore,

ex ≈ e− e−1

2
+ 3e−1x +

15e− 105e−1

4

(
x2 − 1

3

)
+ · · · .

�

3. Nonhomogeneous Boundary Value Problems

Consider 
Ly = f(x),

Bay = 0,

Bby = 0,

(3.8)

(3.9)

(3.10)

where Ly = py′′ + qy′ + ry. Until now, we have only considered f(x) ≡ 0. The solution of Ly = f(x) is

y = c1y1 + c2y2 + yp,

where y1 and y2 are linearly independent solutions of Ly = 0 and yp is a solution of Ly = f(x). We have

yp = v1y1 + v2y2, (3.11)

where

v′1 = −fy2

pW
, v′2 =

fy1

pW
,

v1 =
∫ x

a

− f(t)y2(t)
p(t)W

(
y1(t), y2(t)

) dt, v2 =
∫ x

a

f(t)y1(t)
p(t)W

(
y1(t), y2(t)

) dt.

Note that using a different lower limit of integration changes the solution only by the addition of k1y1 +k2y2,

which can be incorporated into the homogeneous term of the solution. It is convenient to choose a as the

lower limit. Therefore,

yp(x) = y1(x)
∫ x

a

− f(t)y2(t)
p(t)W

(
y1(t), y2(t)

) dt + y2(x)
∫ x

a

f(t)y1(t)
p(t)W

(
y1(t), y2(t)

) dt
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=
∫ x

a

y1(t)y2(x)− y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt.

Then yp(a) = 0. We have

y′p(x) =
�������������
y1(x)y2(x)− y1(x)y2(x)

p(x)W
(
y1(x), y2(x)

) f(x) +
∫ x

a

y1(t)y′2(x)− y′1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) dt

=
∫ x

a

y1(t)y′2(x)− y′1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) dt.

Therefore, y′p(a) = 0 + 0 = 0.

Hence,

Ba(yp) = αyp(a) + βy′p(a) = 0 + 0 = 0

and

Bb(yp) = γyp(b) + δy′p(b)

= γ

∫ b

a

y1(t)y2(b)− y1(b)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt + δ

∫ b

a

y1(t)y′2(b)− y′1(b)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt

=
∫ b

a

y1(t)Bb(y2)−Bb(y1)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt. (3.12)

Also, W = e−
R q

p dx. If L is self-adjoint, then q = p′, so

W = e−
R p

q dx = e
−

R p
p′ dx =

A

p(x)
.

Therefore, pW is a constant in this case.

We need Ba(y) = c1Ba(y1) + c2Ba(y2) + Ba(yp) = 0,

Bb(y) = c1Bb(y1) + c2Bb(y2) + Bb(yp) = 0,∣∣∣∣∣ Ba(y1) Ba(y2)

Bb(y1) Bb(y2)

∣∣∣∣∣︸ ︷︷ ︸
4

6= 0,

(3.13)

Then System (3.13) can be solved (uniquely) for c1 and c2. But if 4 = 0, then System (3.13) has either no

solution (equations inconsistent) or many solutions (the second equation is redundant). Now, 4 = 0 if and

only if the corresponding homogeneous problem
Ly = f(x),

Ba(y) = 0,

Bb(y) = 0

has nontrivial solutions.

Theorem 3.31. Consider 
Ly = f(x),

Ba(y) = 0,

Bb(y) = 0

(3.14)
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and let

4 =

∣∣∣∣∣ Ba(y1) Ba(y2)

Bb(y1) Bb(y2)

∣∣∣∣∣ .
If 4 6= 0, then System (3.14) has a unique solution. If 4 = 0, then System (3.14) either has no solution or

many solutions.

We divide into the two possible cases: 4 6= 0 and 4 = 0.

3.1. Determinant Cases.

3.1.1. The Case When 4 6= 0. Suppose that 4 6= 0. Then by Theorem 3.31, we know that a unique

solution exists. To find it, we proceed as follows. Since4 6= 0, we cannot find a y 6≡ 0 satisfying System (3.14)

with f(x) ≡ 0. But we can find a

• y1 such that Ly1 = 0 and Ba(y1) = 0 with Bb(y1) 6= 0.

• y2 such that Ly1 = 0 and Bb(y2) = 0 with Ba(y2) 6= 0.

Therefore, System (3.13) becomes

c2Ba(y2) = 0,

c1Bb(y1) + Bb(yp) = 0.

So choose c2 = 0 and

c1 = −Bb(yp)
Bb(y1)

= − 1
Bb(y1)

∫ b

a

����: 0
Bb(y2)y1(t)−Bb(y1)y2(t)

p(t)W
(
y1(t), y2(t)

) f(t) dt

=
∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt.

Therefore,

y = c1y1 + c2y2 + yp

=
∫ b

a

y2(t)y1(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ x

a

y1(t)y2(x)− y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt

=
∫ x

a

y2(t)y1(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ b

x

y2(t)y1(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ x

a

y1(t)y2(x)− y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt

=
∫ b

x

y2(t)y1(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ x

a

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt.

Let

g(x, t) :=


y2(t)y1(x)

p(t)W
(
y1(t), y2(t)

) , x ≤ t,

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

) , t ≤ x,

(3.15)

This is called the Green’s Function for L (see §3.2 below). Note that it depends only on L and B and not

on f .

Theorem 3.32. The solution of (??) in the case ∆ 6= 0 is

y =
∫ b

a

g(x, t)f(t) dt, (3.16)
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where g is as above with y1 and y2 being independent solutions of Ly = 0 such that y1 satisfies Ba(y1) = 0

and y2 satisfies Bb(y2) = 0.

Example 3.33. Solve 
y′′ = f(x),

y(0) = 0,

y(1) = 0.

�

Solution. We have a = 0, b = 1, and 
Ly = y′′,

Ba(y) = y(0),

Bb(y) = y(1).

The solutions of Ly = 0 are in the form y = mx + b. Using y1 = 1 and y2 = x, we get

4 =

∣∣∣∣∣ 1 1

0 1

∣∣∣∣∣ ,
so we are indeed in the case 4 6= 0. However, we want

• y1 such that Ly1 = 0 with B0(y1) = 0,

• y2 such that Ly2 = 0 with B1(y1) = 0,

so although any y1 and y2 is acceptable for computing 4 (which is independent of the choice), y1 = 1 and

y2 = x is not the choice required to proceed with the method. Instead, pick

y1 = x, y2 = x− 1.

Note that p(t) ≡ 1 and

W (y1, y2) =

∣∣∣∣∣ x x− 1

1 1

∣∣∣∣∣ = x− (x− 1) = x− x + 1 = 1.

Therefore,

g(x, t) =

(t− 1) x, x ≤ t,

t (x− 1) , t ≤ x

and so

y(x) =
∫ 1

0

g(x, t)f(t) dt

=
∫ x

0

g(x, t)f(t) dt +
∫ 1

x

g(x, t)f(t) dt

=
∫ x

0

t (x− 1) f(t) dt +
∫ 1

x

x (t− 1) f(t) dt.

For example, if f(x) := x2, we get

y(x) =
∫ x

0

(x− 1) t3 dt +
∫ 1

x

x
(
t3 − t2

)
dt
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= (x− 1)
t4

4

∣∣∣∣x
0

+ x

(
t4

4
− t3

3

)∣∣∣∣1
x

= (x− 1)
x4

4
+ x

(
1
4
− 1

3

)
− x

(
x4

4
− x3

3

)
=

�
��x5

4
− x4

4
− x

12
−

�
��x5

4
+

x4

3

=
x4

12
− x

12
,

which, in this simple case, could have easily been found by other methods. To check, note that y′′ = x2 and

y(0) = 0− 0 = 0 and y(1) = 1/12− 1/12 = 0. �

3.1.2. The Case When 4 = 0.

In this case, there exists a y1(x) satisfying Ly = 0 and both boundary conditions. Having chosen yp(x)

as in Equation (3.11), we have yp = 0, so System (3.13) becomes

c2Ba(y2) = 0, (3.17a)

c2Bb(y2) + Bb(yp) = 0, (3.17b)

and we have [
y1(a) y′1(a)

y2(a) y′2(a)

]
︸ ︷︷ ︸

M

[
α

β

]
=

[
αy1(a) + βy′1(a)

αy2(a) + βy′2(a)

][
Ba(y1)

Ba(y2)

]
=

[
0

Ba(y2)

]
.

Since det(M) = W (y1, y2) 6= 0 (since y1 and y2 are linearly independent), we have

M

[
α

β

]
6=

[
0

0

]
.

Therefore, Ba(y2) 6= 0, so Equation (3.17a) implies that c2 = 0. Similarly, Bb(y2) 6= 0. Equation (3.17b)

becomes Bb(yp) = 0, i.e., a solution exists if and only if Bp(yp) = 0.

If Bb(yp) = 0, then a solution is found as follows. We need

0 = Bb(yp)

=
∫ b

a

y1(t)Bb(y2)−������
Bb(y1)y2(t)

p(t)W
(
y1(t), y2(t)

) f(t) dt︸ ︷︷ ︸
Eq. (3.12)

by (3.12)

= Bb(y2)
∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt.

Since Bb(y2) 6= 0, we must have ∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt = 0.

The general solution is

y = c1y1 +���c2y2 + yp
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= c1y1(x) +
∫ x

a

y′1(t)y2(x)− y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt

= cy1(x) +

(∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt

)
︸ ︷︷ ︸

c̃

y1(x) +
∫ x

a

y1(t)y2(x)− y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) f(t) dt,

= cy1(x) +
∫ b

x

y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

) dt +
∫ x

a

y1(t)y1(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt

= cy1(x) +
∫ b

a

g(x, t)f(t) dt,

where c = c1 − c̃, and

g(x, t) =


y2(t)y1(x)

p(t)W
(
y1(t), y2(t)

) , x ≤ t,

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

) , t ≤ x,

as is defined in Equation (3.15).

Theorem 3.34. The solution of (??) in the case ∆ = 0 is

y = cy1(x) +
∫ b

a

g(x, t)f(t) dt, (3.18)

where g is as defined in Equation (3.15), y1 and y2 are linearly independent solutions of Ly = 0, and y1

satisfies both Ba(y1) = 0 and Bb(y1) = 0.

However, to actually be a solution, the condition∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt = 0

must be satisfied. Otherwise, there is no solution. Note that in the case that L is self-adjoint, pW is a

constant, so the condition simplifies to ∫ b

a

y1(t)f(t) dt = 0

in this case.

Example 3.35. Solve 
y′′ = f(x),

y(0) = 0,

y(1)− y′(1) = 0.

�

Solution. The solutions of y′′ = 0 are y = mx + b. Using y1 = 1 and y2 = x gives

4 =

∣∣∣∣∣ 1 1

0 0

∣∣∣∣∣ = 0,
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so we see that we are in the case 4 = 0. Now choose a new y1 satisfying both Ba(y1) = 0 and Bb(y1) = 0,

namely, y1 = x. Choose any linearly independent solution for y2, so let y2 = 1. Then p ≡ 1 and

W =

∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣ =
∣∣∣∣∣ x 1

1 0

∣∣∣∣∣ = −1.

We need

0 =
∫ b

a

y1(t)f(t)
p(t)W (t)

dt = −
∫ 1

0

y1(t)f(t) dt = −
∫ 1

0

tf(t) dt.

If this is satisfied, then

g(x, t) =

−1x, x ≤ t,

−1t, x ≥ t,
=

−x, x ≤ t,

−t, x ≥ t.

Therefore,

y = cx +
∫ 1

0

g(x, t)f(t) dt = cx−
∫ x

0

tf(t) dt−
∫ 1

x

xf(t) dt.

For example, if f(x) := x2 − 1/2, we see that∫ 1

0

y1(t)f(t) dt =
∫ 1

0

t

(
t2 − 1

2

)
dt =

(
t4

4
− t2

4

)∣∣∣∣1
0

= 0,

so the condition is satisfied. Therefore,

y = cx−
∫ x

0

t

(
t2 − 1

2

)
dt−

∫ 1

x

x

(
t2 − 1

2

)
dt

= cx−
(

t4

4
− t4

4

)∣∣∣∣x
0

− x

(
t3

3
− t

2

)∣∣∣∣1
x

= cx− x4

4
+

x2

4
− x

(
1
3
− 1

2

)
+ x

(
x3

3
− x

2

)
= cx− x4

4
+

x2

4
+

x

6
+

x4

3
− x2

2

=
(

c +
1
6

)
x− x2

4
+

x4

12

= c̃x− x2

4
+

x4

12
.

To check, note that

y′ = c̃− x

2
+

x3

3
, y′′ = −1

2
+ x2.

Then y(0) = 0 and

y(1)− y′(1) =
(

c̃− 1
4

+
1
12

)
−
(

c̃− 1
2

+
1
3

)
= c̃− 1

6
− c̃ +

1
6

= 0,

showing that we indeed have the correct y. �
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3.2. Green’s Functions. Given a second order differential operator L, we can select two linearly

independent solutions y1(x) and y2(x) of Ly = 0 and use them to define a Green’s function

g(x, t) :=


y2(t)y1(x)

p(t)W
(
y1(t), y2(t)

) , x ≤ t,

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

) , t ≤ x,

as previously defined in Equation (3.15) on page 80. The function g(x, t) depends on the choice of y1 and y2,

not just on L. Note that the formulas agree when x = t, and so g(x, t) is a well-defined continuous function.

Having chosen g (by choosing y1 and y2), for f : [a, b] → R, define

Gf(x) :=
∫ b

a

g(x, t)f(t) dt

=
∫ x

a

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ b

x

y1(x)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt.

Then it follows that

(Gf)′(x) =
������������

y1(x)y2(x)
p(x)W

(
y1(x), y2(x)

)f(x)−
������������

y1(x)y2(x)
p(x)W

(
y1(x), y2(x)

)f(x)

+
∫ x

a

y1(t)y′2(x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ b

x

y′1(x)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt,

and differentiating a second time gives

(Gf)′′(x) =
y1(x)y′2(x)

p(x)W
(
y1(x), y2(x)

)f(x)− y′1(x)y2(x)
p(x)W

(
y1(x), y2(x)

)f(x)

+
∫ x

a

y1(t)y′′2 (x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ b

x

y′′1 (x)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt

=
f(x)
p(x)

+
∫ x

a

y1(t)y′′2 (x)
p(t)W

(
y1(t), y2(t)

)f(t) dt +
∫ b

x

y′′1 (t)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt.

Therefore,

L(Gf) = p(x)
f(x)
p(x)

+
∫ x

a

y1(t)L(y2)
p(t)W

(
y1(t), y2(t)

) dt +
∫ b

x

L(y1)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt

= f(x) + 0 + 0 = f(x)

regardless of the choice of y1 and y2. What about the boundary conditions?

We have

Gf(a) = 0 +
∫ b

a

y1(a)y2(t)
p(t)W

(
y1(t), y2(t)

)f(t) dt = y1(a)
∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt

and

Gf(b) = y2(b)
∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt,

so it follows that

(Gf)′(a) = y′1(a)
∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt,
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(Gf)′(b) = y′2(b)
∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt.

So given boundary conditions Ba and Bb, we have

Ba(Gf) = Ba(y1)
∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt,

Bb(Gf) = Bb(y2)
∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt.

Therefore, Ba(Gf) and Bb(Gf) do depend on the choice of y1 and y2.

If 4 6= 0 (thereby giving us a unique solution to the system 3.31 by Theorem 3.31, p. 79), by choosing a

y1 such that Ba(y1) = 0 and a y2 such that Bb(y2) = 0, we obtain Gf satisfying both boundary conditions.

If 4 = 0, then we can choose y1 such that Ba(y1) = 0 and then we can solve the system 3.31 only if∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt = 0.

4. Partial Differential Equations

Most partial differential equations (pdes) have so many solutions that computing the general solutions

is impossible. Usually, we are satisfied to find a family of solutions, perhaps with a view to find one one

satisfying particular conditions.

Consider the wave equation yxx = kytt. Earlier, in Example 3.1 (p. 58), we considered how to find

solutions of the form y = u(x)v(t). We found a solution of this form satisfying our conditions. But the

equation also has many other solutions, e.g., y = x + t is a solution which does not have the form u(x)v(t).

Finding solutions of the form u(x)v(t) is relatively tractable. We have

y = u(x)v(t) =⇒

 yxx = uxxv,

ytt = uvtt.

Therefore, uxxv = kuvtt, so
uxx

u
= k

vtt

v
.

Since u is a function only of x, and v is a function only of t, for equality to hold, both sides must be constant.

Therefore,

uxx = Au, (∗)

vtt =
A

k
v. (∗∗)

For given boundary conditions, there will be only certain values of A for which Equation (∗) can be solved

for u: those where A is an eigenvalue. With A known, one can then determine k so that A/k is an eigenvalue

of Equation (∗∗). For example,

u(0) = 0 = u(L) =⇒ u = cn sin
(nπ

L
x
)

for n = 1, 2, . . . , i.e., A = n2π2/L2. Therefore,

v = b1 cos
(

nπ

L
√

k
x

)
+ b2 sin

(
nπ

L
√

k
x

)
.
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4.1. Vibrating String. A string lies on the x-axis fastened at 0 and 1. It is displaced slightly in the

y-direction so that, at time t = 0, it has the equation y = X(x) and it is then released. This is shown in

Figure 3.7a. We wish to find the equation of motion.

 y X x

0 1

(a) A vibrating string with equation y = X(x).

0 1x

∆x

 θ x

 ∆θ x x

T

T

(b) A vibrating string with tension T .

Figure 3.7:

Let y(x, t) be the y-coordinate at time t of the point whose x-coordinate is x. See Figure 3.7b. The

main force acting is the tension T in the string. For simplicity, we will ignore the other forces. At time t,

θ(x) will be the angle between the tangent to the string at x and the horizontal. The vertical component of

T on the segment between x and x + ∆x is

−T sin
(
θ(x)

)
+ T sin

(
θ(x + ∆x)

)
on the segment between x and x + ∆x. The mass of the segment between x and x + ∆x is ρ∆x, where ρ is

the density of the string, i.e., mass divided by length. Therefore,

T
(
sin
(
θ(x + ∆x)

)
− sin

(
θ(x)

))
≈ ρ∆x

∂2y

∂t2
,

∂2y

∂t2
≈ T

ρ

sin
(
θ(x + ∆x)

)
− sin

(
θ(x)

)
∆x

.

We will assume that the displacement is small so that dy/dx is small. Then

sin(θ) =
dy

ds
=

dy

dx

1√
1 +

(
dy
dx

)2
≈ dy

dx
,

and it follows that
∂2y

∂t2
≈ T

ρ

∂y
∂x (x + ∆x)− ∂y

∂x (x)
∆x

.
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s

x

y

Figure 3.8: A small segment of the string.

So taking the limit gives
∂2y

∂t2
= lim

∆x→0

T

ρ

∂y
∂x (x + ∆x)− ∂y

∂x (x)
∆x

= a
∂2y

∂x2
,

where a = T/P .

Since the endpoints are fixed, we have y(0, t) = 0 = y(1, t) for all t. Also since the string is released from

rest, we have

y(x, 0) = X(x)

and
∂

∂y
y(x, 0) = 0,

We look for the solutions of the form y = X(x)T (t), i.e., the general shape of the initial displacement is

maintained, but the amplitude varies with time. Then

ytt = ayxx,

X(x)
d2T

dt2︸ ︷︷ ︸
=ytt

= aT (t)
d2X

dx2︸ ︷︷ ︸
=ayxx

,

i.e.,
X ′′

X
=

1
a

=
T ′′

T
.

Since the left function depends only on x and the right function only on t, to be equal, they must both be

identically equal to a constant. Therefore,

X ′′

X
= k,

1
a

T ′′

T
= k.

This gives us two boundary value problems
X ′′ − kX = 0,

X(0) = 0,

X(1) = 0,

T ′′ − akT = 0,

T ′(0) = 0.

To proceed, we need to know the solution to the following bvp,

Example 3.36. Solve 
y′′ − ky = 0,

y(0) = 0,

y(1) = 0,

where k is a constant. �
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Solution. Consider its three cases.

Case 1: k > 0

Then

y1 = e
√

kx, y2 = e−
√

kx,

and we have

B0(y1) = y1(0) = 1,

B0(y2) = y2(0) = 1,

B1(y1) = y1(1) = e
√

k,

B1(y2) = y2(1) = e−
√

k.

Therefore,

4 =

∣∣∣∣∣ 1 1

e
√

k e−
√

k

∣∣∣∣∣ = e−
√

k − e
√

k.

If e−
√

k = e
√

k, then e2
√

k = 1 ⇒ k = 0, contradicting our assumption that k > 0. Therefore,

4 6= 0 and there is no solution for k > 0.

Case 2: k = 0

Then

y1 ≡ 1, y2 = x,

and we have

B0(y1) = y1(0) = 1,

B0(y2) = y2(0) = 0,

B1(y1) = y1(1) = 1,

B1(y2) = y2(1) = 1.

Hence,

4 =

∣∣∣∣∣ 1 0

1 1

∣∣∣∣∣ = 1 6= 0.

Therefore, there is no solution, and therefore k 6= 0.

Case 3: k < 0

Let λ = −k. Then

y1 = cos
(√

λx
)

, y2 = sin
(√

λx
)

,

and we have

B0(y1) = y1(0) = 1,

B0(y2) = y2(0) = 0,

B1(y1) = y1(1) = cos
(√

λ
)

,

B1(y2) = y2(1) = sin
(√

λ
)
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and

4 =

∣∣∣∣∣∣ 1 0

cos
(√

λ
)

sin
(√

λ
) ∣∣∣∣∣∣ = sin

(√
λ
)

.

Note that

sin
(√

λ
)

= 0 ⇐⇒
√

λ = nπ ⇐⇒ λ = n2π2.

Therefore, there is no solution unless λ = n2π2 for some integer n > 0. If λ = n2π2, then[
1 0

(−1)n 0

][
c1

c2

]
=

[
0

0

]
=⇒ c1 = 0.

Therefore [
c1

c2

]
= c

[
0

1

]
.

To summarize: there is no nonzero solution unless k = −n2π2 for some integer n > 0. In this case, the

solution is

y = c sin(nπx).

�

Returning to the string, in order to be able to solve for X, we must have k = −n2π2 for some n =

1, 2, 3, . . . . Therefore,

T ′′ + an2π2T = 0, T ′(0)

gives us

T = cn cos
(√

anπt
)
.

So we have the solutions y1, y2, . . . , where

yn(x, t) = sin(nπx) cos
(√

anπt
)

satisfying all conditions except y(x, 0) = f(x). Observe that the sum of solutions is also a solution, so we

want to choose the right cn’s so that

y(x, t) = c1y1 + c2y2 + · · ·

satisfies y(x, 0) = f(x) as well. Since yn(x, 0) = sin(nπx), we want

f(x) = c1 sin(πx) + c2 sin(2πx) + · · · .

To find cn, extend f to an odd function (Figure 3.9) and take the Fourier series of that function.

4.2. The Laplace Equation. The differential operator

∇2 :=
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
is called the Laplace operator or Laplacian. In two variables, the Laplace equation is given by

yxx + yyy = 0.

Suppose that y = uv. As in previous examples, we have

−uxx

u
=

vtt

v
= A,
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 f x

0 1

Figure 3.9: Extension of f(x) to an odd function.

from which we obtain

uxx + Au = 0, vtt −Av = 0.

Note that u(0) = 0 = u(π) ⇒ A = n2 for some n = 1, 2, . . . . Therefore, u = sin(nx).

Solving vtt − n2v = 0 gives us v = c1e
nx + c2e

−nx. But there are lots of other interesting solutions.

4.3. The Heat Equation. Recall that the heat equation in one dimension is given by

yxx =
1
k

yt.

Suppose that y = u(x)v(t) (although there are other solutions as well). Then

yxx = uxxv, yt = uvt.

Therefore,

uxxv =
1
k

uvt

and it follows that
uxx

u
=

1
k

vt

v
= A.

The equation together with the boundary conditions determines the possible values for A. Note that uxx =

Au implies that there are possible values for A. Then vt = Akv determines v. For example,

u(0) = 0 = u(L) =⇒ u = cn sin
(nπ

L
x
)

for n = 1, 2, . . . , i.e., A = n2π2/L2. Therefore

v = be−
n2π2

L2 kt.

Generalizing to three dimensions we have the following.

Example 3.37 (Heat equation). The heat equation is given by ut = kuxx, where u is a function of x

and t. In three dimensions, the function is u(x, y, z, t), and satisfies

ut = k (uxx + uyy + uzz) = k∇2u,

where ∇2 is the Laplacian as defined in Section 4.2
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Switching to spherical coordinates, we have

x = r cos(θ) sin(φ),

y = r sin(θ) sin(φ),

z = r cos(θ).

Therefore,

ut = k

(
urr +

2
r
ur +

1
r2 sin2(φ)

uθθ +
1
r2

uφφ +
cos(φ)

r2 sin(φ)
uφ

)
.

We look for solutions of the form

u(r, θ, φ, t) = T (t) R(r)P (θ)Φ(φ)︸ ︷︷ ︸
Z(r,θ,φ)

.

Then T ′Z = kT∇2Z. Therefore,
1
k

T ′

T
= A =

∇2Z

Z
.

Hence, A is a constant. Substituting

Z = R PΦ︸︷︷︸
Y

.

into ∇2Z = AZ gives

R′′Y +
2
r
R′Y +

R

r2 sin2(φ)
Yθθ +

R

r2
Yθθ +

R cos(φ)
r2 sin(φ)

Yφ = ARY,

(
r2R′′ + 2rR′ −Ar2R

)
Y = −R

(
1

sin2(φ)
Yθθ + Yφφ +

cos(φ)
sin(φ)

Yφ

)
,

r2R′′ + 2rR′ −Ar2R

R
= λ = − 1

Y

(
1

sin2(φ)
Yθθ + Yφφ +

cos(φ)
sin(φ)

Yφ

)
,

1
sin2(φ)

Yθθ + Yφφ +
cos(φ)
sin(φ)

Yφ = −λY,

1
sin2(φ)

P ′′Φ + Φ′′P +
cos(φ)
sin(φ)

Φ′P = −λPΦ,

1
sin2(φ)

P ′′Φ = −P

(
Φ′′ +

cos(φ)
sin(φ)

Φ′ + λΦ
)

,

P ′′

P
= B = − sin2(φ)

Φ

(
Φ′′ +

cos(φ)
sin(φ)

Φ′ + λΦ
)

.

Hence, B is a constant.

Consider the special case B = 0. Then

Φ′′ +
cos(φ)
sin(φ)

Φ′ + λΦ = 0,

i.e.,
d2Φ
dφ2

+
cos(φ)
sin(φ)

dΦ
dφ

+ λΦ = 0.

Let w = cos(φ). Then 0 ≤ φ ≤ π ⇒ −1 ≤ w ≤ 1. Then

dΦ
dφ

=
dΦ
dw

dw

dφ
=

dΦ
dw

(
− sin(φ)

)
.
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Therefore

d2Φ
dφ2

=
d2Φ
dw2

dw

dφ

(
− sin(φ)

)
+

dΦ
dw

(
− cos(φ)

)
=

d2Φ
dw2

sin2(φ)− dΦ
dw

cos(φ)

and it follows that

d2Φ
dw2

sin2(φ)− dΦ
dw

cos(φ) +
cos(φ)
sin(φ)

dΦ
dw

(
− sin(φ)

)
+ λΦ = 0,

d2Φ
dw2

(
1− cos2(φ)

)
− 2 cos(φ)

dΦ
dw

+ λΦ = 0,

finally resulting in (
1− w2

) d2Φ
dw2

− 2w
dΦ
dw

+ λΦ = 0,

which is a Legendre equation. �

4.4. The Schrödinger Equation. The Schrödinger equation is given by

iΨt = − ~
2m

Ψxx,

where ~ is the Reduced Planck’s constant defined by ~ = h/2π with h being Planck’s constant, and m is

mass. The function Φ(x, y) is complex-valued.

For a given time t, ∫ b

a

∣∣Ψ(x, t)
∣∣2dx∫ ∞

−∞

∣∣Ψ(x, t)
∣∣2dx

is the probability of finding the particle in [a, b] at that time.

In three dimensions, the Schrödinger equation is

iΨt = − ~
2m

(Ψxx + Ψyy + Ψzz) = − ~
2m

∇2Ψ,

where ∇2 is the Laplacian as defined in Example 4.2. For B ⊂ R3,∫
B

∣∣Ψ(x, y, z, t)
∣∣2dv∫

R3

∣∣Ψ(x, y, z, t)
∣∣2dv

is the probability of finding the particle within B at time t.

Adding an external force 1
~V (x, y, z, t), the Schrödinger equation becomes

iΨt = − ~
2m

∇2Ψ +
1
~
V (x, y, z, t)Ψ.

Switching to spherical coordinates, we have

x = r sin(θ) cos(φ),

y = r sin(θ) sin(φ),

z = r cos(φ).
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We assume that V (x, y, z, t) depends only on r, i.e., independent of t, θ, and φ. We then look for solutions

of the form

Ψ(r, θ, φ, t) = R(r)Θ(θ)Φ(φ)︸ ︷︷ ︸
u(x,y,z)

T (t).

Then the equation becomes

iuT ′ = − ~
2m

T∇2u +
1
~
V Tu.

Therefore,
i~
T

T ′ = E =
1
u

(
− ~2

2m
∇2u + V u

)
.

Hence, E is constant. It then follows that

i~T ′ = Et, − ~2

2m
∇2u + V u = Eu,

and from these we have

T (t) = Ce−iEt/~, − ~2

2m
∇2u + V u = Eu.

Therefore,

− ~
2m

(
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1
r2 sin2(θ)

∂2

∂φ2

)
u + V u = Eu.

With

u = R(r) Θ(θ)Φ(φ)︸ ︷︷ ︸
Y (θ,φ)

,

we have

1
R

d

dr

(
r2 dR

dr

)
+

2mr2

~2
(E − V ) = λ = − 1

Y

(
1

sin(θ)
∂

∂θ

(
sin(θ)

∂Y

∂θ

)
+

1
sin2(θ)

∂2Y

∂φ2

)
.

The second equation is then

1
sin(θ)

∂

∂θ

(
sin(θ)

∂Y

∂θ

)
+

1
sin2(θ)

∂2Y

∂φ2
+ λY = 0.

Separating again, there exists a constant v such that

d2Φ
dφ2

+ vΦ = 0,

1
sin(θ)

d

dθ

(
sin(θ)

dΘ
dθ

)
+
(

λ− v

sin2(θ)

)
Θ = 0. (∗)

For Equation (∗), we have

1
sin(θ)

(
cos(θ)

dΘ
dθ

+ sin(θ)
d2Θ
dθ2

)
+
(

λ− v

sin2(θ)

)
Θ = 0.

Let w = cos(θ). Then

Θ(θ) ≡ Θ
(
cos−1(w)︸ ︷︷ ︸

P (w)

)
and 0 ≤ θ ≤ 2π ⇔ −1 ≤ w ≤ 1. Therefore,

cos(θ)
sin(θ)

dP

dw

dw

dθ
+

d

dθ

(
dP

dw

dw

dθ

)
+
(

λ− v

1− w2

)
P = 0,
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cos(θ)
sin(θ)

dP

dw

(
− sin(θ)

)
− d

dθ

(
dP

dw
sin(θ)

)
+
(

λ− v

1− w2

)
P = 0,

−w
dP

dw
−
(

d2P

dw2

dw

dθ
sin(θ) +

dP

dw
cos(θ)

)
+
(

λ− v

1− w2

)
P = 0,

−w
dP

dw
+

d2P

dw2
sin2(θ)− w

dP

dw
+
(

λ− v

1− w2

)
P = 0.

Therefore, (
1− w2

) d2P

dw2
− 2w

dP

dw
+
(

λ− v

1− w2

)
P = 0.

When v = 0, this becomes Legendre’s equation.

5. Zeros of Solutions of Second Order Linear Differential Equations

Proposition 3.38. A nontrivial solution of y′′ + P (x)y′ + Q(x)y = 0 can have only finitely many zeros

on a bounded interval.

Proof. The proof is given in MATB44 using the Bolzano-Weierstrass Theorem. �

Let

I := e−
R P (x)

2 dx

so that

I ′ = −P (x)
2

I.

Let y = Iu. Then

y′ = I ′u + Iu′ = −P

2
Iu + u′

and

y′′ = −P ′

2
Iu− P

2
I ′u− P

2
Iu′ + I ′u′ + Iu′′

= −P ′

2
Iu +

P 2

4
Iu− P

2
Iu′ − P

2
Iu′ + Iu′′

= −P ′

2
Iu +

P 2

4
Iu− PIu′ + Iu′′.

Therefore,

y′′ + P (x)y′ + Q(x)y = 0,

becomes

−P ′

2
Iu +

P 2

4
Iu−���PIu′ + Iu′′︸ ︷︷ ︸
y′′

−P 2

2
Iu +���PIu′︸ ︷︷ ︸
P (x)y′

+QIu︸︷︷︸
Q(x)y

= 0,

so

u′′ +
(

Q− P ′

2
+

P 2

4

)
︸ ︷︷ ︸

α(x)

u = 0,

since I 6= 0. Also, y = Iu with I 6= 0, so y = 0 ⇔ u = 0. So the properties of the zeros of the solutions to

the equation of the form u′′ + αu = 0 hold for the general cases as well. Using y instead of u, let us consider

y′′ + αy = 0.
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Lemma 3.39 (Comparison lemma). Suppose that α(x) ≥ β(x) for all x ∈ [a, b] but α(x) 6≡ β(x). Suppose

that

y′′(x) + α(x)y = 0,

z′′(x) + β(x)z = 0.

Then (strictly) between any two zeros of z, there exists a zero of y.

Proof. By Proposition 3.38, z can have only finitely many zeros on [a, b]. Let s0 and s1 be consecutive

zeros of z. Then z does not change sign in (s0, s1), as shown in Figure 3.10.

0s 1s

 z x

Figure 3.10: Two consecutive zeros of z between which z does not change sign.

Suppose that y has no zero in (s0, s1). Then y also does not change sign in (s0, s1). Replacing y by −y

and z by −z does not change equations or the location of zeros. So assume that z ≥ 0 and y ≥ 0. Then

z ≥ 0 =⇒

 z′(s0) ≥ 0,

z′(s1) ≤ 0,

and we have

d

dx
(yz′ − y′z) = y′z′ + yz′′ − y′′z − y′z′

= yz′′ − zy′′

= −βyz + αyz

= (α− β) yz

≥ 0.

Therefore, yz′ − y′z is increasing. But

α 6= β =⇒ (yz′ − zy′) (s0)︸ ︷︷ ︸
y(s0)︸ ︷︷ ︸
≥0

z′(s0)︸ ︷︷ ︸
≥0︸ ︷︷ ︸

≥0

< (yz′ − y′z) (s1)︸ ︷︷ ︸
y(s1)︸ ︷︷ ︸
≥0

z′(s1)︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≤0

.

This is a contradiction. Therefore, y has a zero in (s0, s1). �

Corollary 3.40. Let α, β, y, and z be defined as in Lemma 3.39. Let #D(f) be defined as the number

of zeros of f on D. Then

#[a,b](z) ≤ #[a,b](y) + 1.
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Corollary 3.41. Let α, β, y, and z be defined as in Lemma 3.39. In addition, suppose that y(a) = z(a)

and y′(a) = z′(a). Let #D(f) be defined as the number of zeros of f on D and let Zk
[a,b](f) be defined as the

kth zero of f on [a, b]. Then

#[a,b](y) ≥ #[a,b](z),

Zk
[a,b](y) ≤ Zk

[a,b](z)

for k = 1, 2, . . . ,#[a,b](z).

Proof. If z is never zero on (a, b], then there is nothing to prove. Therefore, let x1 be the first zero

of z. We now show that y = 0 some place on (a, x1).

Replacing z by −z if necessary, assume that z ≥ 0 on (a, x1). Then z′(x1) < 0. If y 6= 0 on (a, x1),

assume that y > 0 on (a, x1). Then∫ x1

a

(α− β) yz dx =
∫ 1

a

d

dx
(yz′ − y′z) dx

= (yz′ − y′z)
∣∣∣x1

a

= y(x1)z′(x1)− y′(x1)z(x1)− y(a)z′(a) + y′(a)z(a)

= y(x1)z′(x1).

Note that y(x1) ≥ 0 but z′(x1) ≤ 0, so y(x1)z′(x1) ≤ 0. But we integrated a positive function, so the integral

is positive. This is a contradiction.

Therefore, y = 0 someplace to the left of x1. If the second zero of z is at x2, then y has another zero on

(x1, x2), so the second zero of y is to the left of x2, and so on. �

Suppose that y′′ + α(x)y = 0, where α(x) > 0 for all x ∈ [a, b]. Let

L = min
({

α(x) : x ∈ [a, b]
})

,

U = max
({

α(x) : x ∈ [a, b]
})

.

Therefore, L ≤ α(x) ≤ U . Suppose c and d are consecutive zeros of y on [a, b]. We will compute a lower and

upper bound on d− c.

We compare first with z′′+Lz = 0. Note that y has a zero between any two zeros of a solution of z. One

solution is z = sin
(√

L (x− c)
)
. Since z(c) = 0, we also have z

(
c + π/

√
L
)

= 0. Therefore, d ∈
(
c, π/

√
L
)
,

i.e., y(c) = 0 and the next zero of y occurs before c + π/
√

L. Therefore, d− c < π/
√

L.

We now compare with z′′ + Uz = 0. Any solution of z has a zero between any two solutions of y, i.e.,

any solution of z has a zero in (c, d). One solution is z = sin
(√

U (x− c)
)
. Since z(c) = 0, we also have

z
(
c + π/

√
U
)

= 0. Therefore, c + π/
√

U ∈ (c, d), and so d− c > π/
√

U .

Theorem 3.42. Suppose that L ≤ α(x) ≤ U on some interval [a, b] (with α(x) 6≡ L and α(x) 6≡ U) and

let c and d be any two zeros of y on [a, b]. Then within [a, b], we have

π√
U

< |d− c| < π√
L

. (3.19)

Corollary 3.43. We have

(b− a)
√

L

π
− 1 < #[a,b](y) <

(b− a)
√

U

π
+ 1. (3.20)
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Proof. Let m be the minimum distance between zeros. There are #[a,b](y) − 1 subintervals formed

between the zeros, so

#[a,b](y)− 1 ≤ b− a

m
.

(Even if we use the minimum distance, we cannot fit in more intervals than this.) But

b− a

m
≤ (b− a)

√
U

π
,

so it follows that

#[a,b](y) <
(b− a)

√
U

π
+ 1.

On the other hand, even spreading out the solutions as much as possible and leaving a gap of size

(almost) π/
√

L on each side, we need at least that(
#[a,b](y) + 1

) π√
L

> b− a.

Therefore,

#[a,b](y) >
(b− a)

√
L

π
− 1. �

Corollary 3.44. If y(a) = 0, then

(b− a)
√

L

π
− 1 < #(a,b](y) <

(b− a)
√

U

π
. (3.21)

Proof. Since one zero of [a, b] is used up at a, there is room for less than (b− a)
√

U/π on (a, b]. The

argument on the other bound is the same. �

Example 3.45. Give a lower and upper bound on the number of zeros of a solution of y′′+
(
2 sin(x)

)
y = 0

on [0, 2π]. �

Solution. Note that 1 ≤ 2 + sin(x) ≤ 3. Therefore, L = 1 and U = 3. By Equation (3.20), we have

2π
√

1
π

− 1 <#[0,2π](y) <
2π
√

3
π

+ 1,

1 <#[0,2π](y) < 2
√

3 + 1︸ ︷︷ ︸
≈4.4641

.

So y has at least 2 but no more than 4 zeros on [0, 2π]. �

Example 3.46. Suppose α(x) < 0 on [a, b]. Give a lower and upper bound on the number of zeros of a

solution of y′′ + α(x)y = 0. �

Solution. We compare with the solution of z′′ = 0. Then we know that z = mx + b. We use the

solution z ≡ 1. Clearly, it has no zeros. Therefore,

#[a,b](y) ≤ #[a,b](z) + 1,

#[a,b](y) ≤ 0 + 1,

#[a,b](y) ≤ 1.

Therefore, y has at most one zero. �

Example 3.47. Suppose that y′′ + (xe−x + 1) y = 0 with y(0) = 0. Show that y has infinitely many

zeros on (0,∞) and give lower and upper bounds on the position of the nth zero. �
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Solution. Let f(x) := xe−x + 1. Then we know that f(x) ≥ 0 for all x ∈ [0,∞). Since f ′(x) =

e−x − xe−x, the maximum occurs at x = 1. Therefore,

f(x) ≤ 1
e

+ 1

for all x ∈ [0,∞). Comparing with z′′ + z = 0, we know that y has a zero between each zero of sin(x).

Therefore, z has infinitely many zeros. Let z1 and z2 be two zeros of z. Then

π√
1
e + 1

< |z1 − z2| < π.

Therefore, the nth zero occurs after nπ/
√

1/e + 1 but before nπ. �

Example 3.48. Find an upper and lower bound to the eigenvalues of
y′′ = −λ (x + 1) y,

y(0) = 0,

y(1) = 0,

which is a Sturm-Liouville problem. �

Solution. Rearranging, we have y′′ +λ (x + 1) y = 0 with a = 1 and b = 1. Consider first λ = 0. Then

the solution of y′′ = 0 with y(0) = 0 is y = cx, which has no zeros on (0, 1). Therefore, λ = 0 is before the

first eigenvalue, and so all eigenvalues are positive.

Hence, suppose λ > 0. On [0, 1], we have λ ≤ λ (x + 1) ≤ 2λ. Therefore, L = λ and U = 2λ. Let yλ be

a solution of y′′ = −λ (x + 1) y with y(0) = 0. Then

(1− 0)
√

λ

π
− 1 <#(0,1)(y) <

(1− 0)
√

2λ

π
,

√
λ

π
− 1 <#(0,1)(y) <

√
2λ

π
.

Consider λ = π2/2. Then

1√
2
− 1 < #(0,1)(y) < 1 =⇒ #(0,1)(yλ) = 0 =⇒ λ1 ≥

π2

2
,

where λ1 is the first eigenvalue.

Now consider λ = π2. Then

0 = 1− 1 < #(0,1)(yλ) <
√

2 =⇒ #(0,1)(y) = 1.

Therefore,
π2

2
≤ λ1 < π2 ≤ λ2,

where λ2 is the second eigenvalue. �

6. Proof of the Properties of Sturm-Liouville Problems

We now consider the proof of Theorem 3.26 (p. 72).
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Proof of Theorem 3.26. We have 
Ly = −λw(x)y,

Ba(y) = 0,

Bb(y) = 0.

Let L = a0y
′′ + a′0y

′ + a2y be self-adjoint and w(x), a0(x) never zero on [a, b]. For simplicity, consider the

special case where the conditions Ba(y) = 0 = Bb(y) are y(a) = 0 = y(b). Recall that for y′′ + P (x)y′ +

Q(x)y = 0, we can eliminate the y′ term by substituting y = uI, where I = e−
R P (x)

2 dx. This yields

u′′ +
(

Q− P ′

2
+

P 2

4

)
u

and the equation becomes

u′′ +

(
a2

a0
−
(

a′0
2a0

)′
+

1
4

(
a′0
a0

)2
)

︸ ︷︷ ︸
≡q(x)

u = −λ
W

a0
I︸︷︷︸

≡v(x)

u,

where the zeros of u are precisely the zeros of y since I is never zero. Also, y(a) = 0 ⇒ u(0) = 0 and

y(b) = 0 ⇒ u(b) = 0 and v(x) 6= 0 on [a, b]. Therefore, consider our new Sturm-Liouville problem
y′′ + q(x)u = −λv(x)u,

u(a) = 0,

u(b) = 0.

It is still self-adjoint since 1′ = 0. We will consider v(x) > 0 (if v(x) < 0, then the properties we derive hold

for −λ). Consider the solutions of

u′′ + q(x) + λv(x)u = 0,

u(a) = 0,

ignoring for the moment whether or not they satisfy u(b) = 0. Let uλ be a solution to this.

If λ > λ̃, then

q(x) + λv(x) > q(x) + λ̃v(x),

so by Lemma 3.39, we have

#[a,b]

(
uλ̃

)
≤ #[a,b](uλ),

Zk
[a,b](uλ) ≤ Zk

[a,b]

(
uλ̃

)
,

i.e., as λ increases, #[a,b](uλ) is a non-decreasing function, and the kth zero moves leftward (decreasing)

with increasing λ.

Claim 3.49. If there exists an L (which may always be chosen so that L < 0) such that λ < L, then its

corresponding bvp has no solution.

Proof. Find M > 0 such that
∣∣q(x)/v(x)

∣∣ ≤ M for all x ∈ [a, b] and find K > 0 such that v(x) ≥ K

for all x ∈ [a, b]. Then

−M ≤ q(x)
v(x)

≤ M =⇒ −M + λ ≤ q(x)
v(x)

+ λ ≤ M + λ
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=⇒ (λ−M) v(x) ≤ q(x) + λv(x) ≤ (M + λ) v(x).

For λ < L, we have M + λ < 0, so

v(x) (M + λ) ≤ k (M + λ)

for such λ, i.e.,

q(x) + λv(x) ≤ k (M + λ) ,

so

#[a,b](uλ) ≤ #[a,b](z),

where z any solution of z′′ + (M + λ) kz = 0 with z(a) = 0. Let −τ2 = (M + λ) k. Then

z = c1e
τx + c2e

−τx

and

z = 0 =⇒ c1e
2τx + c2 = 0 =⇒ e2τx = −c2

c1
.

This has at most one solution for x (when c2/c1 < 0), which must be at a. Therefore, uλ also has no zeros

other than a, and in particular uλ(b) 6= 0. Therefore, λ is not an eigenvalue if λ < L. �

Therefore, by Claim 3.49, there is a smallest eigenvalue.

Suppose that λ > M . Then λ−M > 0, so

q(x) + λv(x) ≥ (λ−M) v(x) ≥ (λ−M) K.

Therefore, #[a,b](uλ) ≥ #[a,b](zλ), where zλ is any solution of z′′ + (λ−M) kz = 0 with z(a) = 0. We have

zλ = C sin
(√

λ−M
√

Kx
)

.

We see that limλ→∞ #[a,b](zλ) = ∞. Therefore, limλ→∞#[a,b](uλ) = ∞.

As λ increases, the (m + 1)st zero of uλ moves to the left, and when it reaches b, we have found the mth

eigenvalue. Therefore, the eigenvalues form as a sequence

λ1 < λ2 < · · · < λm < · · ·

with the eigenfunction for λm having m− 1 zeros on (a, b), and limm→∞ λm = ∞. �





CHAPTER 4

Midterm Review

1. Laplace Transforms

Assume that

f ∈ ξα =
{

f :
∣∣f(x)

∣∣ ≤ Ceαx for sufficiently large x
}

.

Then

L
(
f(x)

)
(s) = f̂(s) :=

∫ ∞

0

e−stf(t) dt.

Property (Laplace transform).

(1) lims→∞ f̂(s) = 0.

(2) L(f ′) = sf̂ − f(0).

(3) L
(
eaxf(x)

)
= f̂(s− a).

(4) L(xf) = − d
ds f̂(s).

(5) L(xn) = Γ(n + 1)/sn+1, where n ≥ 0 and

Γ(n) :=
∫ ∞

0

xn−1e−x dx.

(6) L(f ∗ g) = f̂(s)ĝ(s), where

(f ∗ g)(x) :=
∫ x

0

f(x− t)g(t) dt.

(7) (a) L
(
u(x− a)f(x− a)

)
= e−asf̂(s).

(b) L
(
u(x− a)f(x)

)
= e−asL

(
f(x + a)

)
, where

u(t) :=

0, t < 0,

1, t ≥ 0.

(8) L(δ) = 1, where δ is the Dirac delta “function”. More precisely, limε→0 L(fε) = 1, where

fε :=

1, 0 ≤ x ≤ 1
ε ,

0, otherwise.

2. Phase Portraits

Let x′ = F (x, y) and y′ = G(x, y) and let V = (F,G).

(1) A critical/equilibrium/singular point is one at which x′ = 0 and y′ = 0.

(2) An equilibrium point P is stable if, for all ε > 0, there exists a δ > 0 such that any solution which

comes within a distance of δ of P never thereafter gets farther than ε from P .

(3) An equilibrium point P is asymptotically stable if there exists an r such that limt→∞ x(t) = P for

every solution x(t) which comes within a distance of r of P .

103
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2.1. Linear Systems. Consider the linear system

x′ = Ax (∗)

with det(A) 6= 0 and suppose that 0 is the only equilibrium point.

(1) Real eigenvalues

• Same sign

– Positive values indicate an unstable node.

– Negative values indicate an asymptotically stable node.

• Opposite signs indicate an unstable saddle.

(2) Complex eigenvalues a± bi

• a < 0 indicates an asymptotically stable spiral.

• a = 0 indicates a centre (stable).

• a > 0 indicates an unstable spiral.

2.2. Nonlinear Systems. Consider System (∗) with

A(x, y) =

[
Fx Fy

Gx Gy

]
of which P is a critical point. The linear approximation of A at P = (p, q) is A(p, q).

Definition (Liapunov function). The function E(x, y) is a Liapunov function for the critical point at

0 if

(1) E(x, y) > 0 for (x, y) 6= (0, 0) and E(0, 0) = 0.

(2) E is differentiable.

(3) for any solution x(t), there exists an r > 0 such that ∇E ·V whenever ‖x‖ < r.

♦

Theorem.

(a) If a Liapunov function exists, then 0 is stable.

(b) If there exists a Liapunov function such that

(2 ′) E is differentiable with continuous derivatives,

(3 ′) for all x(t) there exists an r > 0 such that ∇E ·V < 0 whenever 0 ≤ |x‖ < r,

then 0 is asymptotically stable. Furthermore, if there exists a Liapunov function such that

(3 ′′) for all x(t) there exists an r > 0 such that ∇E ·V whenever 0 < ‖x‖ < r,

then 0 is unstable.

Corollary. Suppose that P is a critical point of System (∗). Then

(1) If the real part of both eigenvalues of the corresponding linearized system is negative, then P is

asymptotically stable.

(2) If the real part of at least one eigenvalue of the corresponding linearized system is positive, then P

is unstable.

Theorem (Poincaré-Bendixon). Let x′ = V(x) and V = (F,G). Let R be a closed bounded region in

R2 with no critical points of V. If x(t) is a solution which lies in R for all t ≥ t0, then either
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(1) x(t) is a periodic solution, or

(2) x(t) spirals toward a periodic solution.

To determine if the solutions never leave R, try computing V · n, where n is the outward normal to R,

around the boundary of R. If V ·n ≤ 0 around the boundary, then the solution in R can’t get out (V points

into the region). The region R will always have an annular shape, since index theory implies that a periodic

solution surrounds at least one critical point.

3. Index Theory

Definition (Winding number). Let V : R2 → R2 be a vector field and let γ be a simple closed

counterclockwise curve. Suppose that there are no critical points on V on γ. Then IV(γ) is the winding

number of V(γ) around 0. It represents 2πth the change in angle that V(x) makes with the horizontal after

x moves around γ. ♦

Suppose that P is a critical point of System (∗). Then

IV(P ) := IV(γ)

for any γ encircling P once counterclockwise but containing no other critical points of V.

Theorem. We have

IV(P ) = IW(P ) =

 1, det(A) > 0 (non-saddle),

−1, det(A) < 0 (saddle),

where W is the linear approximation to V of P , provided that det(A) 6= 0, where

A(x, y) =

[
Fx Fy

Gx Gy

]
.

Theorem. For any closed curve γ, we have

IV(γ) =
∑
P∈S

IV(P ) ,

where S is the set of the critical points of V lying inside γ.

Theorem. If γ is a counterclockwise periodic solution, then IV(γ) = 1.

Corollary. If γ is a counterclockwise periodic solution, then∑
P∈S

IV(P ) = 1,

where S is the set of the critical points of V lying inside γ. In particular, γ encloses at least one critical

point.

Theorem. If limt→±∞ x(t) exists, then it is an equilibrium point.





CHAPTER 5

Review

Review Item 1. Consider 
Ly = 0,

Ba(y) = 0,

Bb(y) = 0,

(∗)

where y1 and y2 are linearly independent solutions to Ly = 0. Let

4 :=

∣∣∣∣∣ Ba(y1) Bb(y1)

Ba(y2) Bb(y2)

∣∣∣∣∣ .
Then System (∗) has a nontrivial solution if and only if 4 = 0. ♦

Review Item 2. Suppose that 
Ly = λy,

Ba(y) = 0,

Bb(y) = 0,

(∗∗)

if and only if (L− λI) y = 0, where y1(λ) and y2(λ) are independent solutions to (L− λI) y = 0 and let

4(λ) =

∣∣∣∣∣ Ba

(
y1(λ)

)
Bb

(
y1(λ)

)
Ba

(
y2(λ)

)
Bb

(
y2(λ)

) ∣∣∣∣∣ .
Then System (∗∗) has a nontrivial solution if and only if 4(λ) = 0. The various λ satisfying 4(λ) = 0 are

called eigenvalues and the nontrivial solution ρλ is called an eigenfunction.

We might not be able to solve 4(λ) = 0 explicitly, but, regardless of that, we can find ρλ by

y = c1y1(λ) + c2y2(λ).

We solve Ba(y) = 0 to get c2 = gc1, so

y1 = c1

(
y1(λ) + gy2(λ)︸ ︷︷ ︸

ρλ

)
.

Note that the solution of Bb(y) = 0 should be equivalent if λ does indeed satisfy 4(λ) = 0. ♦

Review Item 3. Let VB =
{
f : Ba(f) = 0 = Bb(f)

}
, let w ≥ 0, and let

〈f, g〉w :=
∫ b

a

w(x)f(x)g(x) dx.

Definition: The differential operator L is self-adjoint with respect to 〈 , 〉w if and only if 〈Lf, g〉w =

〈f, Lg〉w for all f, g ∈ VB .

107
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Theorem: The expression a0y
′′ + a1y

′ + a2y is self adjoint (with respect to 1) if and only if a1 = a′0.

If

Ly = a0y
′′ + a1y

′ + a2y

and

w = e
R a1−a′0

a0
dx,

then wL is self-adjoint.

♦

Review Item 4. Consider 
Ly = λwy,

Ba(y) = 0,

Bb(y) = 0
with L being self-adjoint (Sturm-Liouville). Then

(1) The eigenvalues form a sequence λ1 > λ2 > · · · > λn > · · · with limn→∞ λn = −∞.

(2) For each eigenvalue λn, there is an eigenfunction ρn that has exactly n zeros on (a, b).

(3) The eigenfunctions form an orthogonal basis with respect to the inner product 〈 , 〉w.

(4) The function g can be written as a (generalized) Fourier series

g(x) =
∞∑

n=1

anρn,

where

an :=
〈g, ρn〉w
〈ρn, ρn〉w

.

♦

Review Item 5. Consider 
Ly = f,

Ba(y) = 0,

Bb(y) = 0,

where y1 and y2 are linearly independent solutions to Ly = 0. Let

4 :=

∣∣∣∣∣ Ba(y1) Bb(y1)

Ba(y2) Bb(y2)

∣∣∣∣∣ .
Case 1: 4 6= 0: We rechoose y1 and y2 such that Ba(y1) = 0 = Bb(y2).

Case 2: 4 = 0: We rechoose y1 such that Ba(y1) = 0 = Bb(y1).

Green’s function is given by

g(x, t) :=


y2(t)y1(x)

p(t)W
(
y1(t), y2(t)

) , x ≤ t,

y1(t)y2(x)
p(t)W

(
y1(t), y2(t)

) , t ≤ x.

Note that if L is self-adjoint, then p(t)W
(
y1(t), y2(t)

)
is a constant. Let

Gh :=
∫ b

a

g(x, t)f(t) dt.
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Then LGh = g, so y = Gf solves the equation Ly = f , where

Ba(Gf) = Ba(y1)
∫ b

a

y2(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt,

Bb(Gf) = Bb(y2)
∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt.

Therefore, y = Gf also satisfies Ba(y) = 0 = Bb(y) in System (∗). In System (∗∗), it satisfies Ba(y) = 0,

but Bb(y) = 0 requires ∫ b

a

y1(t)f(t)
p(t)W

(
y1(t), y2(t)

) dt = 0,

in which case the general solution is

y = cy1(x) +
∫ b

a

g(x, t)f(t) dt.

♦

Review Item 6. Consider y′′ + P (x)y′ + Q(x)y = 0. Let y = Iu, where

I := e−
R P (x)

2 dx.

We get u′′ + α(x)u = 0, where

α(x) = Q− P ′

2
− P 2

4
.

Comparison lemma: Suppose that α(x) ≥ β(x) for all x ∈ [a, b], with α(x) 6= β(x). Further

suppose that

y′′ + α(x)y = 0,

z′′ + β(x)z = 0.

Then between any two zeros of z, there exists a zero of y. If, in addition, y(a) = z(a) and

y′(a) = z′(a), then Zk
[a,b](y) ≤ Zk

[a,b](z).

Theorem: If L ≤ α(x) ≤ U for all x ∈ [a, b] and α(x) is not identically equal to a constant, then

(1) π/
√

U < |zk − zk+1| < π/
√

L, where zk is the kth zero of y.

(2) (b−a)
√

L
π − 1 < #(a,b)(y) < (b−a)

√
U

π − 1.

If, in addition, y(a) = 0, then

#(a,b)(y) <
(b− a)

√
U

π
.

♦

Review Item 7. We have

f̂(s) = L(f) :=
∫ ∞

0

e−stf(t) dt.

(1) L
(
f ′(x)

)
= sL

(
f(x)

)
− f(0)

(2) If f and g are constants, then L(f) = L(g) ⇔ f = g.

(3) L
(
eaxf(x)

)
= L(f) (s− a)

(4) (a) L
(
xf(x)

)
= − d

ds f̂(s)

(b) L
(
xnf(x)

)
= (−1)n dn

dsn f̂(s)
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(c) L
(

f(x)
x

)
= −

∫ s

0
f̂(u) du

(5) L(f ∗ g) = L(f)L(g), where

(f ∗ g) (x) :=
∫ x

0

f(t)g(x− t) dt.

(a) f ∗ g = g ∗ f

(b) (f ∗ g) ∗ h = f ∗ (g ∗ h)

(6) If f has exponential order, then lims→∞ f(s) = 0.

(7) Let

u(x) :=

1, x ≥ 0,

0, x < 0.

Then L
(
u(x− x0)f(x− x0)

)
= e−sx0 f̂(s).

♦

Review Item 8. Consider X′ = AX, where λ1 and λ2 are eigenvalues of A.

(1) (a) If λ1 < λ2 < 0 (i.e., det(A) > 0 and tr(A) < 0), then the system has a stable node and the

curves are tangent to the eigenvector corresponding to the eigenvalue of the smaller value.

(b) If 0 < λ1 < λ2 (i.e., det(A) > 0 and tr(A) > 0), then the system has an unstable node, and

the curves approach asymptotically to the eigenvector corresponding to the eigenvalue of the

larger absolute value.

(2) If λ1 < 0 < λ2 (i.e., det(A) < 0), then the system has a saddle point.

(3) If λ1 and λ2 are complex with λ = a + ib, then

• a < 0 indicates a stable spiral.

• a > 0 indicates an unstable spiral.

• a = 0 indicates a centre.

♦

Review Item 9. Consider 
dx

dt
= F (x, y),

dy

dt
= G(x, y)

and let V = (F,G). Then a point p is an equilibrium point if (and only if)

dx

dt

∣∣∣∣
p

= 0,
dy

dt

∣∣∣∣
p

= 0.

The point p is called stable if for all ε > 0, there exists a δ > 0 such that any solution which comes within δ

of p never thereafter gets farther than ε from p. The point p is called asymptotically stable if there exists an

r such that every solution which comes within r of p approaches p as t →∞.

Theorem (Liapunov’s Second Method). Suppose that (0, 0) is an equilibrium point and there exists a

differentiable function E such that

(1) E(x, y) > 0 for (x, y) 6= (0, 0) and E(0, 0) = 0.

(2) If, for any solution
(
x(t), y(t)

)
, there exists an r > 0 such that ∇E ·V ≤ 0 whenever x2 + y2 < r,

then (0, 0) is stable.
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Furthermore, if the stronger condition is satisfied:

(2 ′) If, for any solution
(
x(t), y(t)

)
, there exists an r > 0 and α > 0 such that ∇E · V ≤ −αE for

x2 + y2 < r,

then (0, 0) is asymptotically stable.

Corollary. Let

A =


∂F
∂x

∣∣
p

∂F
∂y

∣∣∣
p

∂G
∂x

∣∣
p

∂G
∂y

∣∣∣
p

 .

If both eigenvalues of A are negative, then p is asymptotically stable. If at least one eigenvalue of A is

positive, then p is unstable.

♦

Review Item 10.

Theorem (Poincaré-Bendixon). Let R be a closed and bounded region and let
(
x(t), y(t)

)
be a solution

which lies in R for all t ≥ t0. if there are no equilibrium points in R, then either
(
x(t), y(t)

)
(1) is a periodic solution or

(2) it spirals towards a periodic solution.

To check that the solution stays in R for t ≥ 0, examine V · n, where n is the outward pointing normal

vector to R. If V · n ≤ 0 everywhere on ∂R, then it cannot get out.

Theorem (Liénard). Let f, h : R → R and let g(x) :=
∫ x

0
f(t) dt. Suppose that

(1) f is continuous and even.

(2) there exists an a > 0 such that

• g(a) < 0, where 0 < x < a.

• g(x) > 0, where x > a.

• f(x) > 0, where x > a.

(3) limx→∞ g(x) = ∞.

(4) h is odd and h(x) > 0 for x > 0.

Then x′′ + f(x)x′ + h(x) = 0 has a unique periodic solution and every other solution spirals towards it.

♦





APPENDIX A

The Gram-Schmidt Process

Given linearly independent vectors e1, e2, . . . , we want to form a new set of vectors f1, f2, . . . in which

all vectors are mutually orthogonal. Let f1 = e1. We obtain f2 by removing the components of e2 in the e2

direction, as show in in Figure A.1. To do this, we have

2e

1e

2f

Figure A.1: The vector f is obtained by removing the component of e2 that is in the e1 direction, which is
shown as a dashed line.

f2 = e2 −
〈e2, e1〉
〈e1, e1〉

e1.

To check that f2 ⊥ e1, we see that we indeed have

〈f2, e1〉 = 〈e2, e1〉 −
〈e2, e1〉
〈e1, e1〉

〈e1, e1〉 = 〈e2, e1〉 − 〈e2, e1〉 = 0.

Similarly, we have

f3 = e3 −
〈e3, e1〉
〈e1, e1〉

e1 −
〈e3, e2〉
〈e2, e2〉

e2.

To check that f3 ⊥ e1, we see that we indeed have

〈f3, e1〉 = 〈e3, e1〉 −
〈e3, e1〉
〈e1, e1〉

〈e1, e1〉 −
〈e3, e2〉
〈e2, e2〉

〈e2, e1〉︸ ︷︷ ︸
0

= 0.

Continuing, we produce a mutually orthogonal set, and we can normalize it later if desired.

Example A.1. Suppose that 〈f, g〉 :=
∫ 1

0
f(x)g(x) dx and let

e1 = 1, e2 = x, e3 = x2.

Find a new set {f1, f2, f3} in which its elements are mutually orthogonal to those of {e1, e2, e3}. �
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Solution. First, we let f1 = e1 = 1. Then

f2 = e2 −
〈e1, e2〉
〈e1, e1〉

= x−

∫ 1

0

x dx∫ 1

0

dx

= x−
1/2

1
· 1 = x− 1

2
.

For f3, we have

f3 =

e3︷︸︸︷
x2 −

〈e3,e1〉
〈e1,e1〉

e1︷ ︸︸ ︷∫ 1

0

x2 dx∫ 1

0

dx

· 1−

〈e3,e2〉
〈e2,e2〉

e2︷ ︸︸ ︷
∫ 1

0

x2

(
x− 1

2

)
dx∫ 1

0

(
x− 1

2

)2

dx


(

x− 1
2

)

= x2 − 1
3
−

1
4 −

1
6

(x− 1
2 )

3

3

∣∣∣∣1
0

(
x− 1

2

)

= x2 − 1
3
− 1

12
1( 1

8+ 1
8

3

) (x− 1
2

)

= x2 − 1
3
− 1

12
3

1/4

(
x− 1

2

)
= x2 − 1

3
− 1

12
(3 · 4)

(
x− 1

2

)
= x2 − 1

3
−
(

x− 1
2

)
= x2 − x +

1
2
− 1

3

= x2 − x +
1
6
.

Therefore, elements in the set {
1, x− 1

2
, x2 − x +

1
6

}
are mutually orthogonal to

{
1, x, x2

}
. �
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