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1 Introduction

The simplest 1-dimensional object that isn’t R is

S1 := {z ∈ C||z| = 1} = [0, 1]/ ∼

where 0 ∼ 1.
Consider the 2-sphere S2 :

S2 = {(x, y, z) : x2 + y2 + z2 = 1}

It can be regarded as

• The level set F−1(1) of F : R3 → R where F (x, y, z) = x2 + y2 + z2

• The Riemann sphere Ĉ := C ∪ {∞} = U
∐

V/ ∼ where U = {z ∈ C} and V = {w ∈ C}
with z ∈ U ∼ w ∈ V ↔ z = w−1 for z 6= 0.

• Stereographic projection defines parametrizations of S2 r {N} and S2 r {S}, where N =
(0, 0, 1) and S = (0, 0,−1). We define π : S2 r {N} → R2 by

(u, v) = π(x, y, z)

where

x =
4u

u2 + v2 + 4

y =
4v

u2 + v2 + 4

z =
2(u2 + v2)

u2 + v2 + 4

•
S2 = D2

+

∐

D2
−/ ∼

where
D2

+ = {(x, y, z)|z ≥ 0, x2 + y2 + z2 = 1}
D2

− = {(x, y, z)|z ≤ 0, x2 + y2 + z2 = 1}
and (x, y, z) ∈ D2

+ ∼ (x′, y′, z′) ∈ D2
− ←→ z = 0, x = x′, y = y′

Examples of 2-manifolds:
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• The torus: We identify the sides of a square as follows

• The Klein bottle: We identify the sides of a square as follows

• The real projective plane: We identify the sides of a square as follows

• genus g oriented 2-manifold: Identify the edges of a 4g-gon as follows. All 4g vertices are
identified to the same point.

Manifolds of dimension n are objects parametrized locally by open sets in Rn. For example, S2

is parametrized locally by open sets in R2.
Themes:

1. Smoothness: Some level sets F−1(a1, . . . , am) (for (a1, . . . , am) ∈ Rm andF : RN → Rm)
are not smooth. We will establish a criterion for when a level set is a smooth manifold.

For example, F : C2 → C defomed bu F (z, w) = z3 − w2. In this case, F−1(0) is not
locally modelled on R2. We see this by examining F−1(0) ∩ R2 = {(x, y) ∈ R2|x3 = y2}.
This is y = ±x3/2 which is not smooth at (0, 0).

2. Tangent space TxM to a manifold M at x ∈M

• If F : Rn → RN and

(dF )ij =
∂Fi
∂xj

(i = 1, . . . , N) and (j = 1, . . . , n)) then Im(dF )x is the tangent space toM := F (Rn)
at F (x).

• If we look at b = F−1(a) for F : Rn → RN , then the tangent space to F−1(a) at y
(where F (y) = a) is the kernel of dF :

{ξ ∈ Rn|(dF )y(ξ) = 0}

We will make sense of manifolds and their tangent spaces in a way that is independent
of their description as subsets of RN .

Remark: In fact all manifolds of dimension n can be written as subsets of R2n (Whitney
embedding theorem)

3. Tangent bundles: The set of points in a manifold M together with their tangent spaces
gives an object called a tangent bundle of M . For example, for S1 ⊂ R2 the tangent
bundle is

(x, ξ) ∈ R2 × R2||x| = 1, < ξ, x >= 0}.
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Tangent bundles of smooth manifolds are also smooth manifolds. The key map is the
projection π : TM → M with π−1(x) = TxM . Locally TM |U ∼= U × Rm but usually we
don’t have TM ∼= M × Rm.

4. Vector bundles over a manifold M generalize the tangent bundle TM of M . These are
objects E with a surjective map π : E →M for which π−1(x) has the structure of a vector
space.

5. Sections: A section of the tangent bundle consists of the specification of a tangent vector
at each x ∈ M , in other words s : TM → M with π ◦ s = id. A section of the tangent
bundle is called a vector field.

Do sections exist, must they have a zero somewhere? We will prove a theorem that on S2

there is no nowhere vanishing section.

6. Integration on manifolds: Recall the change of variables formula

∫

g(U)

f(y)dy =

∫

U

f ◦ g(x)|dg/dx|dx

where g : R→ R, U open in R. More generally y = (y1, . . . , yn), x = (x1, . . . , xn)

∫

g(U)

f(y)dy =

∫

U

f ◦ g(x)|detdgx|dx

Integration of functions on manifolds is not well defined. We must pass to differential
forms, whose description in terms of a local parametrization of the manifold transforms
under change of parametrization so that integration of differential forms is well defined.

7. Orientability: Orientability of a manifoldM is a consistency condition on parametrization
of tangent spaces. It is equivalent to the existence of a nowhere vanishing n-form (if n is
the dimension of M).

The sphere, the torus and the manifolds of dimension 4g obtained by gluing the sides of
a (4g)-gon are orientable. Examples of nonorientable manifolds include the Klein bottle,
the Möbius strip and the real projecctive space (obtained by attaching the boundary of
a disk to the boundary of a Möbius strip). Integration of differential forms can only be
defined on orientable manifolds.

8. Differential calculus of forms: We define the exterior derivative d which takes r-forms to
(r + 1)-forms.
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9. Stokes’ Theorem

10. De Rham cohomology
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2 Smooth functions

Definition 2.1 A function F : Rm → Rn is smooth (or C∞) if its partial derivatives to all
orders exist and are continuous.

Definition 2.2 The Jacobian (dF )x is the matrix

∂Fi
∂xj

(i = 1, . . . , n; j = 1, . . . , m)

Definition 2.3 F is a homeomorphism if it is a continuous bijective map whose inverse is also
continuous.

Definition 2.4 F is a diffeomorphism if it is a smooth homeomorphism whose inverse is also
smooth.

Theorem 2.5 (Chain Rule) Suppose F : Rm → Rn and G : Rp → Rm. Then d(F ◦ G)x =
(dF )G(x) ◦ (dG)x.

Definition 2.6 A topological manifoldM of dimension m is a topological space which is Haus-
dorff and second countable (i.e. there is a countable base of open sets for its topology) and for
which each point has an open neighbourhood homeomorphic to an open subset of Rm.

Definition 2.7 A chart of M is (U, φ) where U is an open subset of M and φ : U → Rm is a
homeomorphism.

Definition 2.8 Let πk : R
m → R be projection onto the k-th coordinate. Let xk = πk ◦φ : U →

R. The xk are coordinate functions of the chart.

Definition 2.9 Let (U1, φ1) and (U2, φ2) be charts of M . They are C∞-compatible if φ1 ◦ φ−1
2

and φ2 ◦ φ−1
1 are C∞-mappings whenever they are defined, in other words whenever φ1 ◦ φ−1

2 is
a bijective map from φ2(U1 ∩ U2) to φ1(U1 ∩ U2)).

Definition 2.10 An atlas for M is a collection {Vα, φα) with ∪αVα =M .

Definition 2.11 A C∞-atlas is an atlas for which all the charts are C∞-compatible.

Definition 2.12 A C∞-structure is a maximal C∞-atlas (every chart which is compatible with
every chart of the atlas is already a member of it).
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Definition 2.13 A C∞-manifold is a topological manifold equipped with a C∞ atlas.

Remark 2.14 There may be inequivalent C∞-structures on a topological manifold – manifolds
homeomorphic but not diffeomorphic – for example R4 (S. Donaldson) and S7 (J. Milnor).

Example 2.15 1. Rn, with the chart φ = identity

2. S1 = {eiθ ∈ C} Take V1 = {eiθ : −ǫ < θ < π + ǫ} and V2 = {eiθ : π < θ < 2π}
φ1 : V1 → (−ǫ, π + ǫ) and φ2 : V2 → (π, 2π) given by φi(e

iθ) = θ for i = 1, 2. Then
φ1(V1 ∩ V2) = (−ǫ, 0)∐(π, π + ǫ). φ2 ◦ φ−1

1 |(−ǫ,0)(θ) = θ+ 2π while φ2 ◦ φ−1
1 |(π,π+ǫ)(θ) = θ.

3. Sn = {(x0, . . . , xn) :
∑

i x
2
i = 1} Charts U±

i = {±xi > 0}(i = 0, . . . , n) Chart maps
φ±
i : U±

i → Rn

φi(x0, . . . , xn) = (x0, . . . , x̂i, . . . , xn)

So

φ+
j ◦ (φ+

i )
−1(z1, . . . , zn) = (z1, . . . , ẑj , . . . ,

√

1−
∑

k

z2k, . . . , zn)

(where the
√

1−∑k z
2
k occurs in the (i− 1)-th place).

4. Stereographic projection on S2: There are two systems of coordinates on S2, (u, v) and
(û, v̂).

û =
u

u2 + v2

and

v̂ =
−v

u2 + v2

and u(x, y, z) = x
1−z

and v(x, y, z) = y
1−z

. The map φN : S2 r {(0, 0, 1)} → R2 (stereo-
graphic projection from N on the plane through the equator) is

φS = (û, v̂)

where
û =

x

1 + z

and
v̂ =

y

1 + z

So
u

u2 + v2
=

x/(1− z)
x2/(1− z)2 + y2/(1− z)2
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=
x(1− z)
x2 + y2

=
x

1 + z
= û.

Likewise −v
u2 + v2

= v̂.

More generally this method in fact works for Sn:

φN(x̄, xn+1) = ȳ

where

ȳ =
x̄

1− xn+1

.

Also, φS(x̄, xn+1) =
x̄

1+xn+1
.

5. Real projective space RP n = Sn/ ∼ where x ∼ −x (x and −x are related by the antipodal
map, which is multiplication by −1). Denote by [x0 : . . . : xn] the equivalence class of
(x0, . . . , xn) under the antipodal map

Uk = {[x] ∈ RP n : xk 6= 0}

and
[x0 : . . . , xn] 7→ sgn(xk)(x0, . . . , x̂k, . . . , xn)

We may check that this endows RP n with the structure of a C∞ atlas.

6. RP 2 = D2/ ∼ where s ∼ −s for s ∈ ∂D2 (the elements in the boundary of D2).

7. Complex projective space CP n

CP n =
(

Cn+1 r {0}
)

/ ∼

where (z0, . . . , zn) ∼ (λz0, . . . , λzn) for λ ∈ C r {0}. The equivalence class is normally
denoted [z0 : . . . : zn]. The sets

Ui = {[z0 : · · · : zn]|zi 6= 0}

form a covering of CP n.

Define

φi : [z0 : . . . zn] 7→ (
z1
zi
, . . . , ẑi, . . . ,

zn
zi
).

φi : Ui → Cn ∼= R2n
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φ−1
i : (w1, . . . , wn) 7→ [w1, . . . , 1, . . . , wn]

so

φj ◦ φ−1
i : (w1, . . . , wn) 7→ (

w1

wj
, . . . ,

1

wj
. . . . , ŵj, . . . , ŵn, . . . , wj).

Remark 2.16 CP 1 = S2

CP 1 = {[z1 : z2]} = {[1 : z]} ∪ {[w : 1]}/ ∼

Here [w : 1] ∼ [1 : 1/w] if w 6= 0.
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3 The inverse function theorem

Theorem 3.1 (Inverse function theorem)
Let A be an open subset of Rn and let F : A→ Rn be C1 in an open neighbourhood containing

ā. Suppose the square matrix dFā is invertible. Then there is an open neighbourhood V of ā
and an open set W containing F (V ) such that F : V → W has an inverse F−1 : W → V which
is continuous and differentiable , and (dFx̄)

−1 = d(F−1
ȳ ) if F (x̄) = ȳ.

Proof: See Apostol, Mathematical Analysis (2nd edition) Chaps. 13.2 and 13.3 or Spivak,
Calculus on Manifolds Thm. 2.11.

Definition 3.2 (Rank of a matrix) Rank (F |a) = dim (Im(dF )a) .

Theorem 3.3 (Constant rank theorem) Suppose U ⊂ Rn, F = (f1, . . . , fn) : U → Rm is C∞

in a neighbourhood of ā, and Rk(F )x = r for all x in a neighbourhood of ā. Then there are
open neighbourhoods U (resp. V ) of ā (resp. F (ā)) and diffeomorphisms φ : U → Rn and
ψ : V → Rm with

U
F

- V

Rn

φ

?

- Rm

ψ

?

such that ψ ◦ F ◦ φ−1(x1, . . . , xn) = (x1, . . . , xr, 0, . . . , 0).

Proof: WLOG ā = 0 and F (ā) = 0 (by composing with translations). WLOG

(dF )ā =

(

1r 0
0 0

)

(by composing with suitable linear transformations of Rn resp. Rm).
Define φ(x1, . . . , xn) = (f1(x), . . . , fr(x), xr+1, . . . , xn) where r is the rank of f . Then

(dφ)0 =











∂f1
∂x1

. . . ∂f1
∂xr

?
...

...
∂fr
∂x1

. . . ∂f1
∂xr

?

0 0 0 1n−r
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So F is invertible if and only if there is a local neighbourhood V of 0 in Rn such that φ|V is a C∞-
diffeomorphism from V to φ(V ). Define g = F ◦ φ−1 : φ(V )→ Rm for z = (z1, . . . , zn) ∈ φ(V ).

g(z) = (z1, . . . , zr, gr+1(z), . . . , gm(z))

since φ and F agree on the first r components. Hence

(dg)z =











1r 0 0 0

? ∂gr+1

∂zr+1
. . . ∂gr+1

∂zm
...

...
...

...

? ∂gm
∂zr+1

. . . ∂gm
∂zm











Since F (and hence also g) has constant rank r on a neighbourhood of 0,

∂(gr+1, . . . , gm)

∂(zr+1, . . . , zm)
= 0. (1)

Hence each of the gr+1, . . . , gm depends only on z1, . . . , zr in a neighbourhood of 0 (by the Mean
Value Theorem applied to the last m − r coordinates). Recall that the Mean Value Theorem
says that if f : U ⊂ Rm → Rn and [a, b] ⊂ U is a line segment then

||(b)− f(a)|| ≤ ||b− a|| sup
x∈[a,b]

||f ′(x)||

In our situation, supx∈[a,b] f
′(x) = 0 for any [a, b] because of (1). Define

Ψ(y1, . . . , ym) = (y1, . . . , yr, yr+1 − gr+1(y1, . . . , yr, 0, . . . , 0) . . . , ym − gm(y1, . . . , yr, 0, . . . , 0).

Hence on a neighbourhood of 0 in Rn,

Ψ ◦ F ◦ φ−1(z1, . . . , zr) = Ψ ◦ g(z̄) = Ψ(z1, . . . , zr, gr+1(z̄), . . . , gm(z̄))

= (z1, . . . , zr, gr+1(z̄)− gr+1(z1, . . . , zr, 0, . . . , 0), . . . , gm(z̄)− gm(z1, . . . , zr, 0, . . . , 0)
= (z1, . . . , zr, 0, . . . , 0)

as gr+1, . . . , gm depend only on z1, . . . , zr.

Lemma 3.4 The rank satisfies
rk(dF )x ≥ rk(dF )a

for all x in a neighbourhood of a.
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This is because the set of points x ∈ Rn where at least one minor of the matrix dfx is nonzero
is an open set.
Special cases:

1. Local submersion theorem: Suppose f : Rn → Rm and (df)a is onto (for a ∈ Rn). This
implies the rank of (df)x is m on a neighbourhood of a. Then there are neighbourhoods
U, V and maps Ψ and φ such that

Ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xm).

2. Local immersion theorem: Suppose f : Rn → Rn+m and (df)a is injective (this implies
the rank of (df)x is n on a neighbourhood of a). Then there are neighbourhoods U, V and
maps Ψ and φ such that

Ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

3. Implicit function theorem: Suppose f : Rn+m → Rm is C∞. If f(x̄, ȳ) = 0 (for x̄ ∈ Rn

and ȳ ∈ Rm) and detM 6= 0 (where M is the m × m matrix Mij =
∂fj
∂yi

) then for some
open neighbourhoods U ⊂ Rn and V ⊂ Rm there is a C∞ function g : U → V such that

f(x̄, ȳ) = 0↔ ȳ = g(x̄)

in other words
{(x̄, ȳ)|f(x̄, ȳ) = 0}

is locally the graph of g.

Proof: (of Implicit Function Theorem) The result follows from the Inverse Function
Theorem. Define F (x̄, ȳ) = (x̄, f(x̄, ȳ)). Then det(dF )x̄,ȳ 6= 0 (here dFx̄,ȳ is an (n+m)×
(n+m) matrix). By the Inverse Function Theorem, F has a C∞ inverse h : W → A×B
for some neighbourhood W of 0 in Rn+m and a neighbourhood A of 0 in Rn together with
a neighbourhood B of 0 in Rm, for which h(x̄, ȳ) = (x̄, k(x̄, ȳ)) for some smooth function
k whose domain is an open neighbourhood of 0 in Rn+m and whose range is an open
neighbourhood of 0 in Rm. Put π : Rn × Rm → Rm with π(x̄, ȳ) = ȳ so π ◦ F = f . Then

f (x̄, k(x̄, ȳ)) = f ◦ h(x̄, ȳ) = π ◦ F ◦ h(x̄, ȳ) = ȳ.

For x̄ ∈ Rn and z̄ ∈ Rm, f(x̄, z̄) = 0 implies z̄ = k(x̄, 0) as (x̄, ȳ) 7→ (x̄, k(x̄, ȳ)) is bijective
and f

(

x̄, k(x̄, ȳ)
)

= 0 implies ȳ = 0.
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4 Smooth maps between smooth manifolds

Definition 4.1 Suppose M and N are smooth manifolds. A map F :M → N is smooth iff for
all charts (U, φ) for M and (V, ψ) for N , we have the following commutative diagram:

U
F

- V

φ(U)

φ

? G
- ψ(V ).

ψ

?

In the above diagram, G := Ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V ))→ Ψ(V ) .
Special case: F :M → R is smooth iff F ◦ φ−1 is smooth.

Remark 4.2 To establish that F is smooth it suffices to check for one choice of charts U, V
with a ∈ U , F (a) ∈ V because composition of C∞ maps is C∞, and

Ψ ◦ F ◦ φ−1 = Ψ ◦ F ◦ (φ′)−1 ◦ (φ′ ◦ φ−1)

if φ◦(φ′)−1 is C∞ (since the charts are C∞-compatible) so Ψ◦F ◦(φ)−1 is smooth iff Ψ◦F ◦(φ′)−1

is smooth. Similarly if one replaces Ψ by Ψ′, Ψ◦F ◦ (φ)−1 is smooth iff Ψ′ ◦F ◦ (φ)−1 is smooth.

Remark 4.3 It is also useful to know that the composition of smooth functions is smooth in
order to prove that specific functions are smooth. We can often reduce to specific examples:

1. linear functions

2. polynomial functions

3. roots x 7→ x1/p

4. trigonometric functions sin, cos

5. exponential functions

Definition 4.4 • F is an immersion at p ∈ M if (dG)(φ) is an injective map Rm → Rn

(since the previous condition implies rank(dG)(φ(x)) = m).

• F is a submersion at p ∈ M if (dG)(φ(p)) is surjective (this implies rank(dG)(φ(x)) =
n)).
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In this situation m ≥ n.
The following two theorems are special cases of the constant rank theorem:

Theorem 4.5 (Local immersion theorem) If F is an immersion at p then there exists a chart
(U, φ) around p and (V,Ψ) around F (p), with φ(p) = 0 and Ψ(F (p)) = 0, for which G is the
immersion i : Rm → Rn given by i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

U
F

- V

φ(U)

φ

? G
- ψ(V )

ψ

?

Theorem 4.6 (Local submersion theorem) If F is a submersion at p then there exist charts
(U, φ) and (V,Ψ) as above for which G is the projection π where π : Rm → Rn given by
π : (x1, . . . , xm) 7→ (x1, . . . , xn).

Methods to construct manifolds

1. An open set of a manifold is also a manifold

2. If M and N are manifolds then so is M ×N
3. The regular value theorem (a consequence of the local submersion theorem) yields many

examples of manifolds

Definition 4.7 If F : Rm → Rn is smooth, then b ∈ Rn is a regular value for F if ∀a ∈ F−1(b),
(dF )a is a surjective map from Rm to Rn.

Definition 4.8 Suppose dim(M) = m and dim(N) = n. Then a point b ∈ N is a regular
value for G if for all a ∈ F−1(b) there are charts (U, φ) near a and (V,Ψ) near F (a) for which
(dG)φ(a) is a surjective linear map from Rm to Rn.

Recall the commutative diagram

U ⊂M
F
- V ⊂ N

φ(U)

φ

? G
- ψ(V )

ψ

?
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for φ and ψ as above.

Theorem 4.9 (Regular value theorem) If b ∈ N is a regular value for F , then F−1(b) is a
manifold of dimension m− n.

Proof: Informally: If G : Rm → Rn and (dG)φ(a) is surjective for all a ∈ G−1(b), then in ap-
propriate coordinates G : (x1, . . . , xm) 7→ (x1, . . . , xn). So G−1(0) = {(0, . . . , 0, xn+1, . . . , xm)}.
The xn+1, . . . , xm define the structure of a manifold of dimension m− n on G−1(0).

More formally: WLOG G(x1, . . . , xm) = (x1, . . . , xn) and φ(b) = 0. Thus φ(F−1(b) ∩ U) =
G−1(0, . . . , 0) ⊂ (0, . . . , xn+1, . . . , xm). Write φ(a) = (φ1(a), φ2(a)) where φ1(a) ∈ Rn (the first
n coordinates) and φ2(a) ∈ Rm−n (the last m− n coordinates). A chart on F−1(b)∩U is given
by (F−1(b) ∩ U, φ2)and φ2 maps F−1(b) ∩ U to an open ball in Rm−n.

We check that these charts form a C∞-compatible atlas: If we have another (Ũ , φ̃), write

φ̃ = (φ̃1, φ̃2) and φ̃2 ◦ φ̃1
−1

= Π ◦ φ̃ ◦ φ−1 ◦ i where Π : Rm → Rm−n is projection on the last
m − n coordinates, while i : Rm−n → Rn is inclusion as the last m − n coordinates. Hence

φ̃2 ◦ φ̃1
−1

is C∞, since φ̃ ◦ φ−1 is.
The proof of the following result is similar to the proof of the regular value theorem:

Theorem 4.10 (Constant rank theorem) If F : Mm → Nn is smooth and F has constant
rank r on a neighbourhood of a for every a ∈ F−1(b), then F−1(b) is a submanifold of M of
dimension m− r.

Example 4.11 F : Rm → R, F (x) =< x, x > .

(dF )x(ξ) = 2 < ξ, x >

So (dF )x is onto R unless x = 0. Hence any b 6= 0 is a regular value of F . The corresponding
F−1(b) are manifolds of dimension m− 1 (they are diffeomorphic to Sm−1).

Example 4.12
O(n) = {A ∈Mn×n : AtA = 1}

Define

F :Mn×n → Sn ∼= Rn+
n(n−1)

2

by
F (A) = AtA

so
(dF )A(ξ) = ξtA+ Atξ
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Claim: The identity matrix I is a regular value of F .
Proof: (of Claim) We want to check that for all symmetric matrices C there exists ξ for which
(dF )A(ξ) = C. Put ξ = AC/2. Then

(dF )A(ξ) =
CtAtA

2
+
AtAC

2
= C.

Theorem 4.13 (Sard’s Theorem) The set of critical values of a C∞ map f : M → N has
Lebesgue measure 0.

Definition 4.14 (Submanifolds) Let M be a manifold of dimension m. The space N ⊂ M
is an embedded submanifold of M of dimension n iff for all x ∈ N there is a coordinate
chart (U, φ) around x in M in which φ(U ⊂ N) = φ(U) ∩ Rn where Rn is identified with
{(z, 0) ∈ Rm : z ∈ Rn}.

Definition 4.15 If a map i : N → M is an injective immersion, i(N) is called an immersed
submanifold of M . If i is also a homeomorphism onto i(N), then i(N) is called an embedded
submanifold.

This is equivalent to the assertion that for all open U ⊂ N there is an open V ⊂ M such that
F (U) = V ∩ F (N) is open in the relative topology on F (N), or equivalently F−1 is continuous
using this topology.

Example 4.16 The figure-eight is an example of an immersion of R into R2 which is not
injective.

F (t) = (2 cos(g(t)− π/2), sin 2(g(t)− π/2))
where limt→−∞ g(t) = 0 and limt→∞ g(t) = 2π, while g(0) = π/2.

Example 4.17 An injective immersion of R into R2 which is not a homeomorphism onto its
range. (Homeomorphism ↔ For all V ⊂M there is U ⊂ N s.t. i(N) ∩ V = i(N ∩ U)).

Example 4.18 The skew line: f : R→ S1 × S1

f(t) = (eit, eiαt).

If α is irrational then the image of f is dense in S1 × S1 so if V is an open neighbourhood of
f(t) in S1 × S1 then

V ∩ f(R) = V

so V ∩ f(R) 6= f(U).
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Proposition 4.19 If F : M → N is an injective immersion and M is compact then F is an
embedding and F (M) is a submanifold.

Proposition 4.20 If F is an injective immersion and F is proper (in other words the inverse
image of a compact set is compact) then F is an embedding and F (M) is a submanifold.

Proposition 4.21 If F : M → N is an immersion, then each p ∈ N has a neighbourhood U
such that F |U is an embedding of U in N .

Definition 4.22 Manifolds with Boundary: A manifold with boundary is a topological
space M with a collection of charts (Vα, φα) with

φα : Vα → Uα ⊂ Hn := {(x1, . . . , xn) ∈ Rn : xn ≥ 0}

and every point has a neighbourhood homeomorphic to an open subset of Hn. The boundary of
M is the set of points which are mapped to ∂Hn := {(x1, . . . , xn−1, 0)}.

Example 4.23 {(x ∈ R2||x| ≤ 1} is a manifold with boundary. The boundary is S1 = {x ∈
R2||x| = 1}.

17



5 Tangent spaces

We have already defined smooth maps F :M → N . Now we define an appropriate domain and
range for dF , without reference to charts.

The tangent space TaM to M at a point a ∈M can be exhibited as follows.

• If M is an embedded submanifold of Rn, the inclusion map U → Rn

U ⊂M
i

- Rn

φ(U) ⊂ Rm

φ

?

- Rn
?

Then TaM = Imd(i ◦ φ−1) ⊂ Rn.

• If M = F−1(0) for F : Rn → Rm, then TaM = (dF )−1
a (0).

We will revisit these two examples.

Example 5.1 Sn is F−1(1) for F : Rn → R given by F (x) =< x, x > . Then (dF )−1
a (0) =

{ξ ∈ Rn| < a, ξ >= 0} (this is the plane orthogonal to a).

Three definitions of the tangent space
First definition of tangent space:

Definition 5.2 (Short Curves) A short curve γ at a is a smooth map γ : (−δ, δ) → M with
γ(0) = a.

Definition 5.3 Two short curves γ1, γ2 at a are tangent to each other if for a chart (U, φ) we
have (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). We can check that this is independent of the choice of charts.

Definition 5.4 A tangent vector is an equivalence class of mutually tangent short curves at
a. The set of such equivalence classes is denoted Sa.

Note one may identify γ1 : (−δ1, δ1)→M and γ2 : (−δ2, δ2)→M even if δ1 6= δ2.

Remark 5.5 Any chart (U, φ) gives a map Tφ : Sa → Rn defined by

Tφ(γ) = (φ ◦ γ)′(0).

This allows the tangent space to be identified with Rn.
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Second definition of tangent space: Suppose (U, φ) is a local chart and xi = πi ◦ φU
(projection on the i-th coordinate).

Likewise yi = πi ◦ φV for another compatible coordinate chart (V, φV ).
Define

TaM := {(x, v)| ∼}
where v = (v1, . . . , vn) ∈ Rn and x = (x1, . . . , xn). (x, v) ∼ (y, w) if

w = d(φV ◦ φ−1
U )φU (a)(v)

Less formally: Tangent vectors are
∑

j

vj
∂

∂xj

with the equivalence relation that

∂

∂xi
=
∑

j

∂yj
∂xi

∂

∂yj

( ∂
∂yj

is a notation for the j-th basis vector in Rn). The vector space structure is as follows:

[x, v] + [x, w] = [x, v + w]

λ[x, v] = [x, λv]

(for λ ∈ R).
The identification between Definition 1 and Definition 2 is as follows: [x, v]a is identified

with the equivalence class of φ−1
u ◦ γ where γ is a curve in Rn with γ′(0) = v.

The vector space structure is transferred from Rn to the space of equivalence classes of
curves:

∑

i ai
∂
∂xi

corresponds to the curve [t 7→ φ−1
u (t

∑

i aiei)]. The basis element ∂
∂xi

is identi-

fied with γi(t) = φ−1
u (tei).

Third definition of tangent space:

TaM = {X : C∞(U)→ R|X(fg) = (Xf)g(a) + f(a)(Xg)

Here X is a derivation.
Claim: TaM is the span of ∂

∂x1
, . . . , ∂

∂xn
.

Lemma 5.6 If f is smooth in a convex neighbourhood of 0 in Rn and f(0) = 0, then there is
gi : U → Rn with

1. f(x1, . . . , xn) =
∑n

i=1 xigi(x1, . . . , xn)
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2. gi(0) =
∂
∂xi
f(0).

Proof: Define hx(t) = f(tx) for 0 ≤ t ≤ 1. Then f(x) = f(x)− f(0) =
∫ 1

0
∂
∂t
hx(t)dt

=

∫ 1

0

∑

i

(
∂

∂xi
f)(tx)w · xidt

(by the chain rule). So set gi(x) =
∫ 1

0
∂
∂xi
f(tx)dt

Proof of Claim:
For any derivation X

X(1) = X(1 · 1) = 1 ·X(1) + 1 ·X(1)

so X(1) = 0. So ∀f defined on a convex domain around 0, where f(0) = 0, Xf = X(f−f(0)) =
X
∑

i xigi =
∑

i(Xxi)gi(0)+ xi(0)(Xgi)) =
∑

i(Xxi)
∂f
∂xi

(0) Hence ∂/∂xi span the vector space.

Stereographic projection of S2 on R2 creates two coordinate systems:

u =
x

1 + z
, v =

y

1 + z

and
û =

x

1− z , v̂ =
y

1− z
Then

u/û = (1− z)/(1 + z) =
1− z2
(1 + z)2

= u2 + v2

so û = u
u2+v2

and v̂ = v
u2+v2

. Likewise

û/u = (1 + z)/(1− z) = 1− z2
(1− z)2

= û2 + v̂2

so u = û
û2+v̂2

and v = v̂
û2+v̂2

So
∂

∂û
=

∂

∂u

∂u

∂û
+

∂

∂v

∂v

∂v̂

=

(

1

û2 + v̂2
− 2

û2

(û2 + v̂2)2

)

∂

∂u
− 2ûv̂

(û2 + v̂2)2
∂

∂v
.

20



Example 5.7 Polar coordinates on R2:

x = r cos(θ), y = r sin(θ)

∂

∂r
=
∂x

∂r

∂

∂x
+
∂y

∂r

∂

∂y

= cos(θ)
∂

∂x
+ sin(θ)

∂

∂y

∂

∂θ
=
∂x

∂θ

∂

∂x
+
∂y

∂θ

∂

∂y

= −r sin(θ) ∂
∂x

+ r cos(θ)
∂

∂y

We can also express the x, y coordinates in terms of the r, θ coordinates: r =
√

x2 + y2, θ =
arctan(y/x) so

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ

=
x

r

∂

∂r
+

1

(y/x)2 + 1

(−y
x2

)

∂

∂θ

and similarly
∂

∂y
=
y

r

∂

∂r
+

1

(y/x)2 + 1

(

1

x

)

∂

∂θ

Transformation properties of tangent spaces under F :M → N

1. Curves: dF [t 7→ γ(t)] = [t 7→ F ◦ γ(t)]

2. Local coordinates: Writing coordinates (z1, . . . , zn) on a chart in N , and zj ◦ F = Fj,

dF (
∂

∂xi
) =

n
∑

j=1

∂Fj
∂xi

∂

∂zj
.

3. Point derivations: dF (X)(g) = X(g ◦ F )

Less formally, if we choose coordinates on chart domains in M and N then dF is given by the
Jacobian matrix

∂Fj

∂xi
.
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Example 5.8 F : R2 → R3 F (x, y) = (u, v, w) where u = xy, v = x+ 3y, w = x2y2

dF (
∂

∂x
) =

∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
+
∂w

∂x

∂

∂w

= y
∂

∂u
+

∂

∂v
+ 2x2y

∂

∂w

dF (
∂

∂y
) =

∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
+
∂w

∂y

∂

∂w

= x
∂

∂u
+ 3

∂

∂v
+ 2x2y

∂

∂w

Of course, a change of coordinates can be viewed as a diffeomorphism.
For example, we can view polar coordinates as a map F : R+× [0, 2π]→ R2r{0} F (r, θ) =

(r cos θ, r sin θ) = (x, y). So dF (∂/∂r) = ∂x
∂r

∂
∂x

+ ∂y
∂r

∂
∂y

= −r sin θ ∂
∂x

+ r cos θ ∂
∂y

Proposition 5.9 d(F ◦G)p = (dF )G(p) ◦ (dG)p for

M
G

- N
F

- P

Proof: This is immediate in terms of the first definition (since a short curve γ in M is sent
to the curve F ◦ G(γ)). In the second definition (using local coordinates), it is a consequence
of the chain rule. After all, dF reduces to the Jacobian matrix d(Ψ ◦ f ◦ φ−1)

5.1 The cotangent space

The space of cotangent vectors T ∗
pM is the dual space of TpM . A basis for T ∗

pM is given by
the differentials dxi corresponding to the coordinate functions xi. These give the dual basis to
the basis { ∂

∂xi
} for TpM . Transformation under a change of coordinates:

dxj =
∑

i

∂xj
∂yi

dyi =
∑

i

Bjidyi

where the matrix B is given by

Bji =
∂xj
∂yi

.

For any smooth function f :M → R, (df)p : TpM → R is a cotangent vector, given by

df =
∑

j

∂f

∂xj
dxj.
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Remark 5.10 We shall see that the matrix B is (T−1)t where Tji = ∂yi
∂xj

. The matrix T

transforms bases of tangent vectors:

∂

∂xj
=
∑

i

Tji
∂

∂yi

To prove this, we observe that
∑

i

∂yi
∂xj

∂xk
∂yi

= δjk

(where δjk = 1 when j = k and 0 otherwise).

dxi =
∑

j

∂xi
∂yj

dyj =
∑

j

Pijdyj

and
∂

∂xi
=
∑

j

∂yj
∂xi

∂

∂yj
=
∑

j

Qij
∂

∂yj

where Pij =
∂xi
∂yj

and Qij =
∂yj
∂xi

. We check that
∑

j PijQkj = δik. Hence P = (Q−1)T .

Example 5.11 On S2, near (0, 0, 1) we can take coordinates x, y. Define z =
√

1− x2 − y2.
Then

dz =
∂z

∂x
dx+

∂z

∂y
dy

=
1

z
(−xdx− ydy)

5.2 Transformation properties under maps:

• Tangent vectors push forward:

f :M → N gives
(df)p : TpM → Tf(p)N

If (z1, . . . , zn) : V → R are coordinates on a chart in N , and (x1, . . . , xm) : U → R in M ,

(df)p(
∂

∂xi
) =

∑

j

∂

∂xi
(zj ◦ f)

∂

∂zj
.

Alternative notation for (df)p is (f∗)p.

23



• Cotangent vectors pull back:

If f : M → N , and dg is a cotangent vector on N (dg)q ∈ T ∗
qN , then f ∗((dg)f(p)) =

d(g ◦ f)p. In particular f ∗dzj = d(zj ◦ f) =
∑

i
∂(zj◦f)

∂xi
dxi

Example 5.12 f : R2 → R3

f(x, y) = (F1(x, y), F2(x, y), F3(x, y)

where F1(x, y) = xy, F2(x, y) = x+ 3y, F3(x, y) = y2x2

f ∗(dF1) = d(F1 ◦ f) = d(xy) = ydx+ xdy
f ∗(dF2) = d(F2 ◦ f) = dx+ 3dy
f ∗(dF3) = d(F3 ◦ f) = d(y2x2) = 2yx2dy + 2xy2dx
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6 Vector bundles

A vector bundle over a manifold B is a triple (E.B, π) where

1. B is a manifold (base space)

2. E is also a manifold (total space)

3. π : E → B is a surjective map (bundle projection) such that for each b ∈ B, π−1(b) is
endowed with the structure of an n-dimensional vector space such that E is locally trivial
(i.e. for each b ∈ B there is a neighbourhood U containing b such that E|U := π−1(U) is
isomorphic to U × Rn

(Bundle isomorphism: A collection of maps

E1

Ψ
- E2

B

π1

?

=
- B

π2

?

The map Ψ is bijective. The restriction of Ψ to each π−1(b) is a linear mapping.
Ψ is called a bundle chart.

6.1 Construction of bundles

All bundles may be constructed by imposing an equivalence relation

E = {U × Rn| ∼}

where (a, ξ) ∼ (a, gV U(a)ξ) if a ∈ U ∩ V . Here the gUV : U ∩ V → GL(n,R) satisfy

• gUU = id

• gUV · gVW = gUW

• gUV · gV U = id
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Example 6.1 The tangent bundle: Suppose U (resp. V ) are coordinate charts with coordinates
{xi} (resp. {yj}). The transition functions

(gUV )ij =
∂yi
∂xj

are the transition functions for the tangent bundle TM .

6.2 Sections

A section s is a smooth map s : B → E such that π ◦ s = id.
A section of the tangent bundle is called a vector field.
One obvious section is the zero section s(b) = 0 ∀b.
A bundle is trivial if E = B × RN

A bundle is trivial iff it has a basis of global nowhere vanishing sections si : B → Rn so that
Ψ : B × Rn → E defined by

Ψ(b, (x1, . . . , xn)) =
∑

i

xisi(b)

is a bundle isomorphism.
In some cases it is impossible to find even one nowhere vanishing section of a vector bundle

(for example the tangent bundle of S2). In terms of transition functions, the sections sU : U →
Rn satisfying gUV sV = sU on U ∩ V

6.3 Complex vector bundles

Analogous definition: but each fibre π−1(b) has the structure of a complex vector space and the
bundle charts are subsets of Cn.
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7 Differential forms

Let M be a manifold with dimM = m. Recall that ΩrM is defined as the smooth sections of
ΛrT ∗M . In coordinates (x1, . . . , xm) on a chart U , an r-form ρ is

∑

I fi(x)dxi1 ∧ . . . dxir for
i1 < . . . < ir If r > m, Ωr(M) = {0}. Ω0(M) = C∞(M). r = m : an r-form ρ defines a
multilinear function on T pM for all p ∈M .

(Y1, . . . , Yr) ∈ TpM 7→ ρ(Y1, . . . , Yr) ∈ R.

This function is linear in each Yi.
Results about exterior algebras:
If ρ ∈ Ωr(M), σ ∈ Ωs(M), then there exists ρ ∧ σ ∈ Ωr+s(M) satisfying

1. ρ ∧ σ = (−1)rsσ ∧ ρ (for example if ρ is an odd-degree form then ρ ∧ ρ = 0: This is not
necessarily the case for even-degree forms)

2. ∧ is bilinear on forms

3. ∧ is associative

4. if f is a smooth function, it may be viewed as a 0-form, so f ∧ (∑I gIdxi1 ∧ . . . ∧ dxir) =
∑

I(fgI)dxi1 ∧ . . . ∧ dxir .

Suppose V is a vector space with a basis {v1, . . . , vm} and the dual basis {φ1, . . . , φm} for
V ∗. Then

φ1 ∧ . . . ∧ φm = m!Alt(φ1 ⊗ . . .⊗ φm) :=
∑

π

(−1)πφπ(1) ⊗ . . .⊗ φπ(m).

Then φ∧. . . φm(v1, . . . , vm) = 1 (only one permutation contributes). In particular for V = TpM ,
V ∗ = T ∗

pM φi = dxi, vi =
∂
∂xi

.

dx1 ∧ . . . ∧ dxn(
∂

∂x1
, . . . ,

∂

∂xn
) = 1.

Assume 1 ≤ i1 < . . . < ir ≤ m, 1 ≤ j1 < . . . < jr ≤ m:

dxi1 ∧ . . . ∧ dxir(
∂

∂xj1
, . . . ,

∂

∂xjr
) = 0

unless {i1, . . . , ir} = {j1, . . . , jr} in which case the result is 1.
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Example 7.1

dx1 ∧ dx2(
∂

∂x1
,
∂

∂x2
) = 1

dx1 ∧ dx2(
∂

∂x2
,
∂

∂x1
) = −1

dx1 ∧ dx2(
∂

∂x1
,
∂

∂x3
) = 0

Example 7.2 ((n− 1)-form on Sn−1 ⊂ Rn)

ω(x1,...,xn) =
n
∑

i=1

(−1)ixidx0 ∧ . . . ∧ dx̂i ∧ . . . ∧ dxn

where xi : R
n → R For example, on S1 ⊂ R2 ω = xdy − ydx. It will turn out that ω is the

natural volume form on Sn−1.

7.1 Exterior differential:

d : Ωr(M) 7→ Ωr+1(M) is defined by

d(aIdxi1 ∧ . . . ∧ dxir) =
∑

ℓ

(
∂aI
∂xℓ

dxℓ ∧ dxi1 ∧ . . . dxir).

Note that

1. dxℓ ∧ dxℓ = 0 so if ℓ appears among {i1, . . . , ir} then the term involving ∂aI
∂xℓ

vanishes.

2. dxi ∧ dxj = −dxj ∧ dxi.

The following Lemma follows from properties of exterior algebras.

Lemma 7.3 F ∗(ω ∧ θ) = F ∗ω ∧ F ∗θ.

We have

Theorem 7.4
dF ∗ = F ∗d.

This is proved as follows.
Proof:
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(1) True if ω = g is a C∞ function, for d(F ∗g) = d(g ◦ F ) = F ∗(dg)

(2) True if ω = dg for F ∗ω = F ∗dg = d(g ◦ F ) and d(F ∗ω) = 0, also F ∗d(dg) = 0.

(3) If F ∗dθ = d(F ∗θ) for θ ∈ Ωr(M), and F ∗(dω) = d(F ∗ω), then d(θ ∧ ω) = (dθ) ∧ ω +
(−1)rθ ∧ dω so F ∗d(θ ∧ ω) = F ∗(dθ) ∧ F ∗ω + (−1)r(F ∗θ) ∧ (F ∗dω) (by the Lemma)
= d(F ∗θ) ∧ F ∗ω + (−1)rF ∗θ ∧ d(F ∗ω) (by hypothesis) = d(F ∗θ) ∧ F ∗ω = d(F ∗(θ ∧ ω))
(by Lemma)

(4) By induction on r: use the fact that all r-forms are of the form

aI(x)dxi1 ∧ . . . ∧ dxir .

Also (1) gives the result for aI while (2) and (3) combine to give the result for dxi1 ∧ . . .∧
dxir .

Example 7.5 F : R2 → R3 F (x, y) = (F1(x, y), F2(x, y), F3(x, y)) where

F1(x, y) = x2 sin(y)

F2(x, y) = y3e2x

F3(x, y) = xy

Then

F ∗dz1 = dF1 =
∂F1

∂x
dx+

∂F1

∂y
dy = 2x sin ydx+ x2 cos ydy

F ∗dz2 =
∂F2

∂x
dx+

∂F2

∂y
dy = 2y3e2xdx+ 3y2e2xdy

F ∗(dz1 ∧ dz2) = F ∗dz1 ∧ F ∗dz2 =
(

(2x sin y)(3y2e2x)− (2y3e2x)(x2 cos y)
)

dx ∧ dy

Very important result:

Theorem 7.6 On Rn, for any smooth map F : Rn → Rn we have

F ∗(dy1 ∧ . . . ∧ dyn) = det(dF )(dx1 ∧ . . . dxn).

This follows by the determinant theorem.
The importance of this will appear when we reach integration on manifolds: if g is a smooth

function on R and F : R→ R, and y = F (x), then
∫

F (A)

g(y)dy =

∫

A

g(F (x))
dF

dx
dx.
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This is best summarized by viewing g(y)dy as a 1-form so

F ∗(g(y)dy) = g(F (x))
dF

dx
dx.

Proof: (of Theorem)
Write F = (F1, . . . , Fn) : R

n → Rn. Then

F ∗(dy1 ∧ . . . ∧ dyn) = dF1 ∧ . . . ∧ dFn =
∑

i1,...,in

∂F1

∂xi1
. . .

∂Fn
∂xin

dxi1 ∧ . . . ∧ dxin

=
∑

π

∂F1

∂xπ(1)
. . .

∂Fn
∂xπ(n)

dxπ(1) ∧ . . . ∧ dxπ(n)

=
∑

π

(−1)π ∂F1

∂xπ(1)
. . .

∂Fn
∂xπ(n)

dx1 ∧ . . . ∧ dxn

= det(dF )dx1 ∧ . . . ∧ dxn
since dF is the n× n matrix whose (i, j) entry is ∂Fi

∂xj
.

7.2 A useful differential form

On Sn ⊂ Rn+1 a nowhere zero differential form is given by

ωx0,...,xn =
∑

j

(−1)jxjdx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn.

For example, on S1 we recover x0dx1 − x1dx0 = r2dθ in polar coordinates.

7.3 The exterior differential

Definition 7.7 The exterior differential d : Ωr(M)→ Ωr+1(M) is defined by

d(
∑

I

aIdxi1 ∧ . . . ∧ dxir) =
∑

ℓ

∑

I

∂aI
∂xℓ

dxℓ ∧ dxi1 ∧ . . . ∧ dxir .

Remark 7.8 1. dxℓ∧dxℓ = 0 so if ℓ appears among {i1, . . . , ir} then the term involving ∂aI
∂xℓ

vanishes.

2. dxi ∧ dxj = −dxj ∧ dxi.
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Properties:

1. d is linear

2. if f is a smooth function, df is a 1-form

3. ρ ∈ Ωr(M), σ ∈ Ωs(M) ⇒ d(ρ ∧ σ) = (dρ) ∧ σ + (−1)rρ ∧ dσ

4. d2 = 0

Proof: (of (3)) d(aIdx
I ∧ bJdxJ) = d(aIbJ) ∧ dxI ∧ dxJ

= (daIbJ + aIdbJ)(dx
I ∧ dxJ)

(by Leibniz)
= (dρ) ∧ σ + ρ ∧ dσ

Proof: (of (4))

d2(aIdx
I) = d(

∑

ℓ

∂aI
∂xℓ

dxℓ ∧ dxI

=
∑

k,ℓ

∂2aI
∂xk∂xℓ

dxk ∧ dxℓ ∧ dxI

But
∂2

∂xk∂xℓ
=

∂2

∂xℓ∂xk

while
dxk ∧ dxℓ = −dxℓ ∧ dxk

The following is proved in Guillemin-Pollack:

Proposition 7.9 d is the unique operator with properties (1)-(4).

Remark 7.10 If dim(M) = m and ω ∈ Ωm(M) then dω = 0.

Definition 7.11 A form α is closed if dα = 0.

Definition 7.12 A form α is exact if α = dβ for some form β.
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An important consequence of the fact that d2 = 0 is that exact forms are closed. We can define
de Rham cohomology as follows:

Definition 7.13 The k-th de Rham cohomology group of a manifold M is

{α ∈ ΩkM |dα = 0}
{α ∈ ΩkM |α = dβ}

Example 7.14 Forms that are closed but not exact:

• do not exist on Rn (Poincaré lemma)

• On Sn−1 ⊂ Rn r {0} the form
∑n

i=1(−1)ixidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn is closed but not
exact. This will follow from Stokes’ theorem.

7.4 Consequences in dimension 3:

Vector fields Forms

F0 function Ω0 = F0 function

F1 = (v1, v2, v3) vector field ω1 = v1dx1 + v2dx2 + v3dx3 1-form

F2 = (f1, f2, f3 vector field ω2 = f1dx2∧dx3+f2dx3∧dx1+f3dx1∧dx2 2-form

F3 function ω3 = F3dx1 ∧ dx2 ∧ dx3
F1 = ∇F0 ω1 = dω0

F2 = ∇× F1 = curlF1 ω2 = dω1

F3 = ∇ · F2 = divF2 ω3 = dω2

Here curlF1 = (h1, h2, h3) where

h1 =
∂v3
∂x2
− ∂v2
∂x3

h2 =
∂v1
∂x3
− ∂v3
∂x1

h1 =
∂v2
∂x1
− ∂v1
∂x2
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in other words

h1ê1 + h2ê2 + h3ê3 = det





ê1 ê2 ê3
∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3





Also

divF2 =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

Hence d ◦ d = 0 translates to
∇× (∇F0) = 0

and
∇ · (∇× F1) = 0
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8 Transversality

Let V1 and V2 be vector subspaces of a vector space V . Then V1 and V2 are transversal if
V = V1 + V2 as subspaces of V . If V1 and V2 are transversal, it follows that

dimV = dimV1 + dimV2 − dim(V1 ∩ V2).
Submanifolds N1 and N2 of a manifold M are said to be transverse if

TxN1 + TxN2 = TxM

for all x ∈ N1 ∩N2.
Whether or not N1 and N2 are transversal in M depends on M as well as on N1 and N2.

For example the x and y axes are transversal in R2 but not in R3. If the sum of the dimensions
of N1 and N2 is less than the dimension of M , then N1 and N2 can only intersect transversally
if their intersection is empty.

Proposition 8.1 If N1 and N2 are transverse submanifolds ofM then N1∩N2 is a submanifold
of M of dimension dimN1 + dimN2 − dimM , or codim(N1 ∩N2) = codim(N1) + codim(N2).

Two maps g1 : N1 →M and g2 : N2 →M are transverse if g1∗(Tx1N1) + g2∗(Tx2N2) = TyM
for all x1, x2, y with g1(x1) = g2(x2) = y.

Let Φ : M → N be a smooth map, and S ⊂ N an embedded submanifold. Then Φ is
transversal to S iff for all p ∈ Φ−1(S), Φ∗TpM and TΦ(p)S span TΦ(p)N .

Theorem 8.2 If f : M → N is transverse to a submanifold L of codimension k (i.e. dimN -
dim L = k) and f−1(L) is not empty, then f−1(L) is a codimension k submanifold of M .

Proof: Let f(p) = q ∈ L. In some neighbourhood V of q, L ∩ V = Rn−k ∩ V ′ (where
Rn−k = {(x1, . . . , xn−k, 0, . . . , 0)}). Define π : Rn → Rk to be the projection on the last k
coordinates π(x1, . . . , xn) = (xn−k+1, . . . , xn). The transversality condition means that 0 ∈ Rk

is a regular value of

U
f→ V ∼= V ′ π→ Rk

Hence for an open neighbourhood U in M , f−1(L)∩U is a codimension k submanifold of U
(by the Regular Value Theorem). It follows that f−1(L) is a codimension k submanifold of M .
If Φ is transversal to S, then Φ−1(S) is an embedded submanifold of M whose codimension is
dim(N)− dim(S).

Sard’s Theorem: Let f :M → N be a smooth map. Then the set of critical values of f has
measure zero in N .

Proof: See Guillemin-Pollack, Appendix 1
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Theorem 8.3 (Whitney embedding theorem) Every k-dimensional manifold admits an embed-
ding in R2k+1.

Proof (from Guillemin and Pollack chap. 1.8):
We first give an argument that shows that if there is an injective immersion from X to RM

then there is an injective immersion from X to R2k+1. The hypothesis that there is an injective
immersion from X to RM (for some M) will be proved in the section ’Partitions of Unity’.

If f : X → RRM is an injective immersion with M > 2k + 1, then there is a ∈ RM

such that π ◦ f is an injective immersion. (Here π is the projection from RM to H, where
H = {b ∈ RM : b ⊥ a} ∼= a} ∼= RM−1. So we have an injective immersion into RM−1. Here
define h : X ×X × R→ RM by

h(x, y, t) = t(f(x)− f(y))

and g : TX → RM by
g(x, v) = dfx(v).

Since dim(M) > 2k+1, Sard’s theorem tells us that there is a ∈ RM which is not in the image
of g or the image of h. (Sard’s theorem tells us that the regular values of g and h in the image
of a smooth map F from an n- manifold to a vector space V of dimension higher than n is
dense. When the dimension of V is higher than n, the regular values are the complement of
the image of F .)

Let π be the projection of RM on H.

Lemma 8.4 π ◦ f : X → H is injective.

Proof: Suppose not. Then π ◦ f(x) = π ◦ f(y) implies f(x)− f(y) = ta for some t. If x 6= y
then t 6= 0 since f is injective. But then h(x, y, t−1) = a contradicting the choice of a. Likewise

Lemma 8.5 π ◦ f : X → H is an immersion.

Proof: Suppose v is a nonzero vector in TxX with d(π ◦ f)x(v) = 0. π is linear, so d(π ◦ f) =
π ◦ df . So π ◦ dfx(v) = 0 implies dfx(v) = ta for some t. Since f is an immersion, t 6= 0. Hence
g(x, t−1a) = a, contradicting the choice of a.

(Note that in fact Whitney eventually proved that it was possible to embed a k-dimensional
manifold in R2k.)
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9 The Lie derivative

Let α be an r-form and let β be an s-form on M . Let X be a vector field on M . Define the
interior product iX : Ωk(M)→ Ωk−1(M) by

(iXα)(Y1, . . . , Yk−1) = α(X, Y1, . . . , Yk−1)

(we insert X as the first argument of α). This is also called the contraction of α by X. Then

iX(α ∧ β) = (iXα) ∧ β + (−1)|α|α ∧ iXβ

Remark 9.1 If X is a vector field and f :M → R is a smooth function then

ifXα)(p) = f(p)(iXα)(p)

(in other words the interior product is C∞(M) -linear in X).
Also, We have already shown that

d(α ∧ β) = (dα) ∧ β + (−1)|α|α ∧ dβ.

Define the Lie derivative by
LX = diX + iXd

which sends r-forms to r-forms. A straightforward calculation shows that

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ).

A derivation is a linear map L from ΩrM to Ωr+tM (here t is independent of r) satisfying

L(α ∧ β) = (Lα) ∧ β + α(Lβ).

An antiderivation is a linear map A from ΩrM to Ωr+tM (here t is independent of r) satisfying

A(α ∧ β) = (Aα) ∧ β + (−1)|α|α(Aβ).

For example d and iX are antiderivations. The above shows that LX is a derivation. The
formula LX = diX + iXd together with the fact that iX is C∞(M)-linear in X show that LX is
not C∞(M)-linear in X. Instead

(LfXα)(p) = f(p)(LXα)(p) + (df) ∧ (iXα)(p)

Definition 9.2 (Lie bracket of vector fields) In terms of evaluation of vector fields on functions,

[X, Y ]f = X(Y f)− Y (Xf)
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In a coordinate system, all vector fields are of the form

X =
∑

i

ai(x)
∂

∂xi
, Y =

∑

i

bi(x)
∂

∂xi

so

X(Y f) =
∑

i

ai(x)
∂

∂xi

(

∑

j

bj
∂f

∂xj

)

=
∑

i,j

ai

(

∂bj
∂xi

∂f

∂xj
+ bj

∂2f

∂xi∂xj

)

.

Similarly

Y (Xf) =
∑

i,j

bj

(

∂ai
∂xj

∂f

∂xi
+ ai

∂2f

∂xi∂xj

)

.

Hence

[X, Y ]f =
∑

i,j

(

ai
∂bj
∂xi
− bi

∂aj
∂xi

)

∂f

∂xj
.

It follows immediately that

Proposition 9.3

[
∂

∂xi
,
∂

∂xj
] = 0

The following is obvious:

Lemma 9.4 [X, Y ] = −[Y,X]

The following can be proved by calculation with the above formula for the Lie bracket of vector
fields:

Lemma 9.5 (Jacobi identity)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

There is a formula for the exterior derivative in terms of the Lie bracket (see Boothby Chap.
V, (8.4)). Here is the special case of the exterior derivative on 1-forms.

Proposition 9.6 If X and Y are vector fields on M and α is a 1-form then

(dα)(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]).
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Proof: WLOG α = fdg for smooth functions f and g. So dα = df ∧ dg.

dα(X, Y ) = df(X)dg(Y )− dg(X)df(Y )

= (Xf)(Y g)− (Xg))(Y f)

while

X(α(Y ))− Y (α(X))− α([X, Y ]) = X(fdg(Y ))− Y (fdg(X))− fdg([X, Y ])

= X(f(Y g))− Y (f(Xg))− f([X, Y ]g)

By the Leibniz rule, this becomes

= (Xf)(Y g) + f(X(Y g))− (Y f))(Xg)− f(Y (Xg))− f(X(Y g)− Y (Xg))

Four terms cancel, and we obtain

(Xf)(Y g)− (Xg))(Y f)

as claimed.
The more general formula is (if α is an r-form)

dα(X1, . . . , Xr+1) =
r+1
∑

i=1

(−1)i−1Xiα(X1, . . . , X̂i, . . . , Xr+1)

+
∑

i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xr+1.)
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10 Flows

Let X be a vector field on a manifold M .

Definition 10.1 An integral curve of X is a smooth map F : (a, b)→M for which

dF

dt
(t0) = XF (t0)

Let W be an open set in R×M satisfying ∃α(p) < 0 < β(p) such that

W ∩ (R× {p}) = {(t, p) : α(p) < t < β(p)}

Definition 10.2 A local flow on M is a smooth map θ : W → M such that (introducing the
definition θt(p) := θ(t, p))

1. θ0(p) = p∀p ∈M

2. If (s, p) ∈ W α(θs(p)) = α(p)− s and β(θs(p)) = β(p)− s, and for t such that α(p)− s <
t < β(p)− s, θt+s(p) is defined and

θt(θs(p)) = θt+s(p).

In particular θt is a local diffeomorphism (the inverse is θ−t).

Equivalently, we have a collection of open neighbourhoods Vα covering M and maps θα :
(−ǫα, ǫα)× Vα →M such that

θαt (p) := θα(t, p)

such that

1. θα and θβ agree on the intersection of their domains

2. θα(0, p) = p

3. θαt+s = θαt ◦ θαs where both sides are defined

Theorem 10.3 Given a vector field X on M , there exists θ : (−δ, δ)× V →M for which

d

dt
θ(t, p) = Xθ(t,p)

and θ(0, p) = p for all p ∈ V , in other words {θ(t, p)} is an integral curve of X through p. Any
two such θ are equal on the intersection of their domains.
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Proof: Follows from existence and uniqueness of solutions for ordinary differential equations.

Theorem 10.4 1. Let U ⊂ Rn, (f1, . . . , fn) : (−ǫ, ǫ)×U → Rn smooth. Then there exists an
open subset V of U such that for any (a1, . . . , an) ∈ V there exist (x1, . . . , xn) : (−ǫ, ǫ)→ U
satisfying

(a) dxi
dt

= fi(t, (x1(t), . . . , xn(t)))

(b) xi(0) = ai for i = 1, . . . , n.

The functions xi are uniquely determined.

2. Write xi(t, (a1, . . . , an)). Then xi is smooth in t and (a1, . . . , an).

Proof: (of existence of integral curves:) The vector field X is written in local coordinates
(y1, . . . , yn) as (f1, . . . , fn). Then

X =
∑

i

fi
∂

∂yi

If θ = (θ1, . . . , θn) : W →M then solving

∂θt
∂t

= X

is equivalent to solving
∂θi

∂t
= fi

The existence of solutions of this follows from existence and uniqueness of ODE’s.

Lemma 10.5 If I(p) = {(α(p), β(p))} where the flow θ(t, p) is defined for t ∈ (α(p), β(p)),
then we assume the domain W is maximal (in other words that |α(p)| and |β(p)| are maximal
for all p).

Lemma 10.6 If β(p) <∞ and tn is an increasing sequence converging to β(p), then {θ(tn, p)}
cannot lie in any compact set.

Proof: Let K ⊂ M be a compact set. By the existence theorem, for all q ∈ M there exists
δ > 0 and a neighbourhood V of q such that θ is defined on Iδ × V . A finite number of these
cover K. Let δ0 be the minimum δ for these neighbourhoods. So for any q ∈ K θ(t, q) is defined
for |t| < δ0. If {(θ(tn, p)} ⊂ K, and N so large that β(p) − tN < δ0/3, then θ(t, θ(tN , p)) is
defined only for t < β(p) − tN < δ0/3. But θ(tN , p) ∈ K so θ(t, θ(tN , p)) is well defined for
|t| < δ0.
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Definition 10.7 A vector field is complete if θ(t, p) is defined for all p ∈M and all t ∈ R.

Corollary 10.8 (of Lemma) If M is compact then any vector field on M is complete.

Example 10.9 If M is a compact manifold and X is a vector field on M consider M ′ =
M r {p}. The flow generated by X|M ′ is not complete. Take y ∈ M for which θ(t0, y) = p, so
y = θ(−t0, p). Then on M ′, θ(t, y) is only defined for t < t0.

Theorem 10.10 1. Lie derivative on forms:

LXω =
d

dt
|t=0θ

∗
tω = lim

t→0

1

t
(θ∗tω − ω)

2. Special case of above: LXf = Xf

3. Lie derivative on vector fields:

LXY = − d

dt
|t=0(θt)∗Y = lim

t→0

1

t
(Y − (θt)∗Yθ−t

)

Proposition 10.11 If X and Y are vector fields, then

LXY = [X, Y ]

Proof:

(LXY ) ◦ f = lim
t→0

1

t

(

Y (0)(f)− (θt)∗Yθ−t(0)(f)
)

= lim
t→0

1

t

(

Y (0)(f)− Yθ−t(0)(f ◦ θt)
)

But θt(p) = p+ tX(p) +O(t2) so f ◦ θt(p) = f(p) + tdf(X(p)) +O(t2) and we get

lim
t→0

1

t

(

Y (0)f − Yθ−t(0)(f + tdf(X)(p) +O(t2)
)

= lim
t→0

1

t

(

Y0f − Yθ−t(0)f
)

= X(Y f)− Y (Xf) = [X, Y ]f

Proposition 10.12 (Cartan’s theorem) On differential forms,

LX = diX + iXd.
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Proof: Since LX and diX and iXd are derivations, it suffices to prove the identity on the
differential forms f (0-form) and df (exact 1-form) since all differential forms are given locally
as wedge products of forms of this type.

1. LXf = iX(df): The left hand side is

d

dt
θ∗t f =

d

dt
f ◦ θt = df(X)

This completes the proof.

2. LXdf = diXdf : The left hand side is

d

dt
|0θ∗t df = d/dt|0d(f ◦ θt) = d(iXdf).

This completes the proof.

Proposition 10.13 If X is a smooth vector field with X(p) 6= 0 then there are coordinates
x : U → Rn on a neighbourhood U of p for which X = ∂/∂x1 on U . The flow in these
coordinates is

θt(x1, . . . , xn) = (x1 + t, x2, . . . , xn).

Proof: Start with an open set U ⊂ M . Assume we have coordinates (y1, . . . , yn) : U → Rn

with y(p) = 0. Define θt(q) the flow of X starting at q ∈ M . Assume X(p) = ∂
∂y1

(p). We
shall define new coordinates using the flow of X. In a neighbourhood of 0 there is a unique
integral curve through each point y = (0, a2, . . . , an). If q lies on the integral curve through this
point, use a2, . . . , an as the last n − 1 coordinates and the time it takes the curve to get to q
as the first coordinate. Define new coordinates x : V → Rn on a neighbourhood V of p by
x−1(a1, . . . , an) = θa1 ◦ y−1(0, a2, . . . , an), in other words aj = xj ◦ θa1 ◦ y−1(0, a2, . . . , an), and

∂

∂x1

(

yi ◦ x−1(0, . . . , 0)
)

= lim
t→0

1

t

(

yi ◦ θt ◦ y−1(0, . . . , 0)− yi ◦ θ0 ◦ y−1(0, . . . , 0)
)

= (dyi)(X(p)) = δi1 since X(p) = ∂
∂y1

.

∂

∂xj
(yi ◦ x−1)(0, . . . , 0) = lim

t→0

1

t

(

yi ◦ θ0 ◦ y−1(0, . . . , t, . . . , 0)− yi ◦ θ0 ◦ y−1(0, . . . , 0)
)

(where the t in the first expression is the j-th coordinate) = δij since θ0 is the identity so
y ◦ θ0 ◦ y−1 is also the identity. Hence d(y ◦x−1)(0,...,0) is nonsingular (the Jacobian determinant
is nonzero), which implies y ◦ x−1 is a local diffeomorphism (by the inverse function theorem).
Hence x are local coordinates (since y are).
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Proposition 10.14 In the preceding situation, ∂
∂x1

= X.

Proof: For f : U → R,
(

∂

∂x1
f

)

x−1(a1,...,an)

= lim
h→0

1

h

(

f(x−1(a1 + h, . . . , an))− f(x−1(a1, . . . , an))
)

= lim
h→0

1

h

[

f
(

θa1+h ◦ y−1(0, a2, . . . , an)
)

− f
(

θa1 ◦ y−1(0, a2, . . . , an)
)]

= lim
h→0

1

h
[f (θh(p

′))− f(p′)]

where p′ = θa1 ◦ y−1(0, a2, . . . , an) = x−1(a1, . . . , an)). This then equals (Xf)(p′) since θt(q) is
the flow of X starting at q.

Lemma 10.15 Two flows θt and ψs commute if and only if the corresponding vector fields
commute.

Proof: See Boothby IV.7.12

Definition 10.16 Suppose dimM = n + k. A distribution on M is an assignment of an n-
dimensional subspace ∆p of TpM at each p ∈M . Suppose in a neighbourhood U of each p ∈M
there are n linearly independent vector fields X1, . . . , Xn which form a basis of ∆q for each
q ∈ U . Then {Xi} are called a local basis of ∆.

Example 10.17 M = Rn+k, ∆ spanned by ∂
∂xi

, i = 1, . . . , n.

Definition 10.18 A distribution is integrable if each point has a coordinate neighbourhood
(x1, . . . , xm) for which a local basis for ∆ is given by { ∂

∂xi
, i = 1, . . . ,m}.

Definition 10.19 A distribution is involutive if there exists a local basis in a neighbourhood of
each point such that

[Xi, Xj ] =
n
∑

k=1

ckijXk

in other words [Xi, Xj ]p lies in the plane ∆p for all p ∈M .

Theorem 10.20 (Frobenius) A distribution is integrable iff it is involutive.

Note that ‘if’ is clear since

[
∂

∂xi
,
∂

∂xj
] = 0.
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11 Smooth functions and partitions of unity

11.1 Smooth functions

Example 11.1 The function θ : R→ R given by

θ(t) = 0, t ≤ 0

and
θ(t) = e−1/t, t > 0

is smooth and all its derivatives are 0 at t = 0. In particular it is not represented by its Taylor
series at 0.

The open cube C(r) is defined as follows.

Definition 11.2
C(r) = {(x1, . . . , xn) ∈ Rn||xi| < r∀i}

The closure of C(r) is denoted C(r).

Lemma 11.3 There exists a smooth function h : Rn → R with

1. 0 ≤ h(x) ≤ 1

2. h(x) = 1, x ∈ C(1)

3. h(x) = 0, x /∈ C(2)

Remark 11.4 The function h is called the bump function.

Proof: Define

φ(x) =
θ(x)

θ(x) + θ(1− x) .

Then φ(x) = 1 for x > 1 and φ(x) = 0 for x ≤ 0. Define ψ : R→ R by

ψ(x) = φ(x+ 2)φ(2− x).

Then ψ(x) = 1, |x| ≤ 1 while ψ(x) = 0, |x| ≥ 2. Thus define h(x1, . . . , xn) = ψ(x1) . . . ψ(xn).
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Definition 11.5 The support of a smooth function f : M → R is the closure of the set of
points x ∈M where f(x) 6= 0.

Consequences of existence of the function h:

Proposition 11.6 Let M be a smooth manifold and let (U, φ) be a chart in an atlas for M .
There exists a smooth function f :M → R with f(M) ⊂ [0, 1] and Supp(f) ⊂ U , and f(x) = 1
on a neighbourhood of p ∈ U .

Proof: For a point p ∈ U choose a cubical neighbourhood B ⊂ Rn around φ(p), say

{x : |φ(pi)− xi| < ǫ}.

Define α : B → C(2) by

α(x) =
2

ǫ
(x− φ(p))

and define
f(x) = {h ◦ α ◦ φ(x), x ∈ U ∩ φ−1(B)}

and 0 otherwise. Then h : Rn → R, h(x) = 1 if |xi| ≤ 1 for all i, and h(x) = 0 if |xi| ≥ 2 for
some i.

Definition 11.7 A partition of unity subordinate to an open cover {Uα} of M is a collection
of smooth functions fγ :M → R such that

1. For all γ, Supp(fγ) ⊂ Uα for some α (here Suppfγ is the closure of the subset where
fγ(x) 6= 0)

2. 0 ≤ fγ ≤ 1 on M

3. ∀x ∈ M there is an open neighbourhood Vx of x s.t. there exist only finitely many fγ s.t.
Suppfγ ∩ Vx 6= ∅ are nonzero at any points on Vx

4.
∑

γ fγ(x) = 1 (this sum is finite because of (3))

We shall prove existence of a partition of unity. We require some facts from general topology.

Lemma 11.8 Manifolds are regular (in other words if C ⊂ X is a closed subset, C 6= X and
x ∈ X r C then these can be separated by disjoint open subsets)

Let M be a Hausdorff space.
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Definition 11.9 M is paracompact if

1. M is regular

2. every open cover admits a locally finite refinement

Definition 11.10 An open cover {V} is a refinement of the open cover {U} if there exists
ı : IV → IU (where IV is the indexing set of {V} and similarly for {U}) such that Vβ ⊂ Iı(β).

Theorem 11.11 Manifolds are paracompact.

Proof: There exist compact subsets K1 ⊂ K2 ⊂ . . . of M such that Kr ⊂ Int(Kr+1 and
M = ∪rInt(Kr). Let {Wi} be a countable base of the topology with each W̄i compact. K1 =
W̄1, . . . , Kr ⊂ ∪ℓi=1Wi (let ℓ be the smallest for which this is true) and Kr+1 = ∪ℓi=1W̄i. Let {Uα}
be an open cover: to get a locally finite refinement, choose finitely many Vi = Uαi

covering K1.
Extend this by {Uαi

}ℓ2i=ℓ1+1 to give an open cover of K2. M is Hausdorff so K1 is closed, and

Vi = Uαi
rK1 is open, ℓ1 + 1 ≤ ℓ2 and {Vi}ℓ2i=ℓ1+1 is an open cover of K2.

Note that K1 does not meet Vi for i > ℓ1.
By induction we get {Vi} such that Kr meets only finitely many elements of V ∀r ≥ 1.
For any x ∈M , x ∈ Int(Kr) for some r, there exists a neighbourhood meeting only finitely

many elements of V .

Definition 11.12 A precise refinement of an open cover {Uα} is a locally finite refinement
indexed by the same set with V̄α ⊂ Uα.

Proposition 11.13 If M is a paracompact manifold and {Uα} is an open cover of M , then
this cover has a precise refinement.

Proof: There exists a refinement {Wk} with j : K → A such that W̄k ⊂ Uj(k) (since M is
regular). Passing to a locally finite refinement of W gives a locally finite refinement V ′ of U
with ı : B → A with V̄ ′

β ⊂ Uı(β). The V̄
′
β are a locally finite family of closed subsets of M . For

all α ∈ A, define βα := ı−1(α).
Vα = ∪β∈βαV ′

β

Because V ′ is locally finite, V̄α = ∪β∈Bα
V̄ ′

β ⊂ Uα.

Definition 11.14 M is normal if whenever A and B are disjoint closed subsets of M , there
is an open set U containing A and disjoint from B with Ū ∩ B = ∅.

Lemma 11.15 Paracompact spaces are normal.
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Proposition 11.16 (Urysohn’s lemma) Suppose M is normal and A and B are closed sub-
sets of M . There exists a smooth function f :M → [0, 1] such that f |A = 1 and f |B = 0.

Theorem 11.17 Suppose K is compact and K ⊂ U for an open set U . Then there exists a
smooth function f : Rn → [0, 1] with f |K = 1 and f supported in U .

Use Lemma 11.3 to show that

Lemma 11.18 If A = (a1, b1)× . . .× (an, bn) ⊂ Rn then there is a smooth function gA : Rn →
[0, 1) such that gA > 0 on A and gA|{RnrA} = 0.

Proof: (of Theorem) Let K ⊂ Rn be compact and U ⊂ Rn an open neighbourhood of K. For
each x ∈ K, let Ax be an open bounded neighbourhood of x of the form

Ax = (a1,x, b1,x)× . . .× (an,x, bn,x)

with ¯A+ x ⊂ U, x ∈ Ax. By Lemma 11.18, there is a smooth function gx : Rn → [0, 1) with
gx(y) > 0 for y ∈ Ax and gx(y) = 0 for y 6= Ax. Since K is compact, it is covered by finitely
many Ax1 , . . . , Axq . Define G = gAx1

+ . . .+ gAxq
: Rn → R. Then G is smooth on Rn, G(x) > 0

if x ∈ K and supp(G) = Āx1 ∪ . . .∪ Āxq ⊂ U . Since K is compact, there exists δ > 0 such that
G(x) ≥ δ for x ∈ K. Define our bump function ℓ so it is 0 for t ≤ 0 and 1 for t ≥ δ. Define
f = ℓ ◦G : Rn → [0, 1]. Then

1. f is smooth

2. supp(f) ⊂ U

3. f |K = 1

Theorem 11.19 There is a partition of unity subordinate to any open cover U .

Proof: If V is a refinement of U , then a partition of unity subordinate to V induces one
subordinate to U .

ı : B → U
Vβ ⊂ Uı(β) {µβ} subordinate to U

λα =
∑

β∈ı−1(α)

µβ.

So since manifolds are locally compact, WLOG each Uα has compact closure in M .
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A precise refinement has the property that V̄α ⊂ Uα is a compact subset. We may use
Urysohn’s lemma to give f . We choose a precise refinement V with W a precise refinement of
V .
{γα}α∈U satisfy γα|Wα

= 1 and supp(γα) ⊂ V̄α ⊂ Uα.
{suppγα} is locally finite. γ :=

∑

α γα is smooth and > 0. Define vα = γα/γ, which is
smooth. The vα are a partition of unity.

Applications of partitions of unity:
The primary application is integration on manifolds. Let us begin with integration of a

function on Rn. Assume {Uα} is an open cover of Rn and consider a partition of unity {fα}
subordinate to this open cover. Let g be a smooth function on Rn. Then

∫

Rn

g =

∫

Rn

(
∑

α

fα)g =
∑

α

∫

Uα

(fαg).

Application to Whitney embedding theorem:

Proposition 11.20 Let X be a compact manifold. Then there is an injective immersion from
X into RM for some M .

Proof: Construct a covering of X by charts (Uα, φα), and take a partition of unity {fα}
subordinate to the covering {Uα}. Since X is compact, WLOG we may assume the number of
Uα is a finite number M . Then define F : X → RM by

F (x) = (f1(x)φ1(x), . . . , fM(x)φM(x))
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12 Orientations and volume forms

Definition 12.1 Let V be a vector space of dimension n. The top exterior power ΛnV ∗ has
dimension 1 so ΛnV ∗ r {0} has two components. An orientation of V is the choice of one of
these. Equivalently, an orientation on V is the choice of an ordered basis [e1, . . . , en] of V with
[e1, . . . , en] declared equivalent to [f1, . . . , fn] if the linear map B : V → V defined by Bei = fi
has determinant > 0.

Example 12.2 If (e1, e2) is the usual ordered basis for R2, then the two orientations of R2 are
[e1, e2] and [e2, e1].

Example 12.3 If e1, e2 are the first two basis vectors for R3, then the two possible orientations
of R3 are [e1, e2, e1 × e2] and [e1, e2, e2 × e1] (where × denotes the cross product).

An invertible linear map F : V → V preserves orientation if det(F ) > 0.

12.1 Orientation of a manifold

Definition 12.4 A manifold is orientable if we have a covering by charts (Uα, φα) for which,
for any two charts (U, φ) and (V, ψ) with coordinate functions (x1, . . . , xn) and (y1, . . . , yn), we
have

detd(ψ ◦ φ−1) > 0.

Proposition 12.5 A manifold M of dimension n is orientable iff it has a nowhere vanishing
n-form (call it ω).

Proof: Suppose such a form ω exists. Then in local coordinates (x1, . . . , xn),

ω = f(
∂

∂x1
, . . . ,

∂

∂xn
)dx1 ∧ . . . ∧ dxn,

and in different local coordinates y1, . . . , yn,

ω = f(
∂

∂y1
, . . . ,

∂

∂yn
)dy1 ∧ . . . ∧ dyn.

Then denoting wy := [ ∂
∂y1
, . . . , ∂

∂yn
] and wx := [ ∂

∂x1
, . . . , ∂

∂xn
] (these are local sections of ΛnTM)

we have that det(
∂yj
∂xi

) > 0 which is the definition of orientability. Suppose on the other hand we
know thatM is orientable. Suppose {Uα, fα} is a partition of unity subordinate to an open cover
{Uα} of M . Suppose that (xα) are coordinates on Uα. We can choose the open sets Uα so that
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Λn ∂
∂xα

is nonzero on each Uα. Then there is a nowhere vanishing n-form ωα := dx1 ∧ . . . ∧ dxn
supported on Uα. This lets us make a nowhere vanishing n-form ω on M ,

ω :=
∑

α

fαωα.

Proposition 12.6 Suppose M 6= Rn+1 is an n-dimensional submanifold, given by an embed-
ding ψ : M → Rn+1, and M has a nowhere vanishing normal vector field N (in other words
∀p ∈ M ∃N(p) ∈ TpRn+1 smoothly varying as p varies in M , with N(p) ⊥ TpM ∀p ∈ M) with
respect to the Euclidean metric on Rn+1). Then M is orientable.

Proof: We will construct a nowhere vanishing n-form ω. Take

ωp(X1, . . . , Xn) = dx1 ∧ . . . ∧ dxn+1(N(p), X1, . . . , Xn)

Suppose there is p for which ωp = 0. as an element of ΛnT ∗
pM . In fact the formula we

have given defines ωp(v1, . . . , vn) for vi ∈ TpR
n+1. But all vectors vj ∈ TpR

n+1 can be given
as vj = ξj + ajN(p) for some ξj ∈ TpM , aj ∈ R and ωp(v1, . . . , vn) = ωp(ξ1, . . . , ξn) +
∑n

i=1 ajωp(ξ1, . . . , N(p), . . . , ξn) (where N(p) is in the j-th place) + terms where at least two
arguments are N(p). The terms ωp(ξ1, . . . , N(p), . . . , ξn) are equal to 0 since ξj ∈ TpM (because
we assumed ωp vanished on TpM). Likewise the terms with two or more arguments of ωp given
by N(p) are = 0. Write N(p) = (N1(p), . . . , Nn+1(p)). Then ωp(v1, . . . , vn) = 0 ∀vj ∈ TpRn+1.
But

ωp =
n
∑

j=1

(−1)jNj(p)dx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn+1

as a tensor on Rn+1 and at least one of the coordinates Nj(p) is nonzero. This is a contradiction.
Hence ωp cannot be zero as a tensor on Rn+1, so our assumption that it is zero on TpM must
be false.

Example 12.7 The volume element on S2 is given by the restriction to S2 of the 2-form ω on
R3 given by

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2
Substituting spherical coordinates x1 = sin θ cosφ, x2 = sin θ sinφ, x3 = cos θ one recovers

ω = sin θdθ ∧ dφ.
Definition 12.8 A vector bundle is orientable if the transition functions gUV can be chosen to
satisfy
detgUV (y) > 0 ∀y ∈ U ∩ V , ∀U, V .

For example, the tangent bundle is orientable iff detd(ψ ◦φ−1) > 0 for all chart maps φ, ψ. This
is the usual definition of the manifold M being orientable.
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12.2 Antipodal map on Sn

Let ω be the volume form on Sn, and i : Sn → Rn+1 the inclusion map. ω = i∗Ω where Ω is
the form

Ω =
n+1
∑

j=1

(−1)j−1xjdx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxn+1

on Rn+1. Notice that if A : Sn → Sn is defined by

A(x1, . . . , xn+1) = (−x1, . . . ,−xn+1)

then i ◦ A = Ā ◦ i where Ā : Rn+1 → Rn+1 is defined by Ā(x1, . . . , xn+1) = (−x1, . . . ,−xn+1).
So A∗i∗Ω = i∗Ā∗Ω. For F = (F1, . . . , Fn+1) : R

n+1 → Rn+1 and xi : R
n+1 → R a coordinate

function, we have
F ∗xi = xi ◦ F = Fi

and
F ∗dxi = d(xi ◦ F ) = dFi

Applying this to F = Ā : Rn+1 → Rn+1 we get Ā∗xj = −xj, Ā∗dxj = −dxj , and

Ā∗Ω =
n+1
∑

j=1

(−1)j−1(−xj)(−dx1) ∧ . . . ∧ (−dxj−1) ∧ (−dxj+1) ∧ . . . ∧ (−dxn+1) = (−1)n+1Ω

Thus
A∗ω = i∗Ā∗Ω = (−1)n+1i∗Ω = (−1)n+1ω.

So if n is odd there is a nowhere vanishing n-form on RP n coming from the volume form
ω on Sn, for which A∗ω = ω. If n is even, we have seen (using a partition of unity) that if a
manifold is orientable then it has a nowhere vanishing n-form. So if RP n were orientable, there
would be a nowhere vanishing n-form on RP n and A∗q∗ω = q∗ω. But any volume form ω̂ on Sn

is of the form ω̂ = f(x)ω0 where ω is the standard volume form on Sn and f : Sn → R r {0}.
Hence since A∗ω = −ω, A∗(fω) = −(f ◦ A)ω so if A∗(fω) = fω (in other words, if fω were
invariant under the antipodal map) then f ◦A(x) = −f(x), which is impossible. It follows that
RP n is not orientable if n is even.

Remark 12.9 The product of two orientable manifolds is orientable.

Proposition 12.10 For any manifoldM with charts U ⊂ Cn and chart transformations ψ◦φ−1

given by holomorphic maps fi : C
n → Cn, M is orientable.
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Proof: If n = 1, ψ ◦ φ−1 = f1 + if2 where f1, f2 : R
2 → R. Then

d(ψ ◦ φ−1) =

(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

The Cauchy-Riemann equations tell us that

∂f1
∂x1

=
∂f2
∂x2

∂f1
∂x2

= −∂f2
∂x1

This tells us that

detd(ψ ◦ φ−1) = |∂f1
∂x1
|2 + |∂f2

∂x2
|2.

More generally if a linear map F : R2n → R2n comes from a linear map F : Cn → Cn (i.e. an
nxn matrix of complex numbers) this means FR splits into blocks of the form

(

a b
−b a

)

and these can be reorganized into blocks of the form
(

FC 0
0 F̄C

)

so detFR = | detFC|2 > 0. We apply this to F = d(φ ◦ ψ−1).

Example 12.11 CP n is orientable (because φj ◦ φ−1
i are of the form

(w1, . . . , wn) 7→ (w1/wj, . . . , 1/wj , . . . , ŵj, . . . , wn/wj)

(where 1/wj is in the i-th position and ŵj is in the j-th position), and these are holomorphic
functions of (w1, . . . , wn).

Example 12.12 (Möbius band) M = {[0, 2π + ǫ]× (−1,+1)}/ ∼ where (x, λ) ∼ (2π + x,−λ
for x ∈ [0, ǫ]. M contains M ′ = (0, 2π)× (−1, 1) which is orientable. If M had an orientation
it would restrict on M ′ to one of the two standard orientations of M . But the map (x, λ) 7→
(2π + x,−λ) is orientation reversing, so M cannot have an orientation.

Example 12.13 The Klein bottle K is nonorientable since it contains the Möbius band.
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13 Integration on manifolds

Recall that integration of functions over domains U in Rn is not invariant under diffeomorphism.
According to the Change of Variables Theorem in one variable,

∫ f(b)

f(a)

h(y)dy =

∫ b

a

h(f(x))| df
dx
|dx.

In n variables we have
∫

f(U)

hdy1 . . . dyn =

∫

U

h ◦ f |detdf |dx1 . . . dxn.

But if we write
ω = dy1 ∧ . . . ∧ dyn

f ∗ω = h ◦ f(detdf)dx1 ∧ . . . ∧ dxn
so

∫

f(U)

ω =

∫

U

f ∗ω

if we define
∫

hdx1 ∧ . . . ∧ dxn =

∫

Rn

hdx1 . . . dxn

for any integrable h on Rn.
Let M be an oriented manifold with an oriented atlas with charts (Uα, φα).

Definition 13.1 If ω has compact support in Uα and with ((φα)
−1)

∗
ω|φα(Uα) = A(x)dx1∧ . . .∧

dxn, then
∫

M
ω :=

∫

φα(Uα)
A(x)dx1 . . . dxn. In particular, if ω has compact support in U ⊂ Rm,

then ω = A(x)dx1 ∧ . . . ∧ dxn. Or
∫

Rn ω :=
∫

U
A(x)dx1 . . . dxn.

Definition 13.2 Suppose ω is an arbitrary smooth form on M . Let {fα} be a partition of unity
subordinate to {Uα}, then

∫

M

ω :=
∑

α

∫

M

fαω

Note that fαω is supported in Uα.

Theorem 13.3 If f : M → N is orientation preserving, then
∫

N
ω =

∫

M
f ∗ω. If instead f is

orientation reversing then
∫

N
ω = −

∫

M
f ∗ω.
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Proof:
Case 1: First consider ω supported in Rn: If ω(y) = h(y)dy1 ∧ . . . ∧ dyn then f ∗ω(x) =

h(f(x))det(df)dx1 ∧ . . . ∧ dxn. If V is a coordinate chart in Rn (with coordinates xi) and
f(V ) is a coordinate chart with coordinates yi, then

∫

V
f ∗ω =

∫

V
h(f(x))det(df)dx1 . . . dxn. So

∫

V
f ∗ω =

∫

f(V )
h(y)dy1 . . . dyn. The two right hand sides are equal by the change of variables

theorem.
Case 2: More generally if (φ−1)∗ω is supported in φ(U) ⊂ Rn, then

∫

f(U)
ω =

∫

φ(f(U))
(φ−1)∗ω

=

∫

ψ(U)

g∗(φ−1)∗ω

(by case 1)

=

∫

ψ(U)

(ψ−1)∗f ∗φ∗)(φ−1)∗ω

=

∫

ψ(U)

(ψ−1)∗f ∗ω =

∫

U

f ∗ω.

In particular, taking f = id but φ, ψ arbitrary chart maps compatible with the orientation, we
see

∫

ψ(U)

(ψ−1)∗ω =

∫

φ(U)

(φ−1)∗ω,

so we have

Proposition 13.4 The integral is well defined independent of the choice of charts.

Lemma 13.5 If ω is supported in some chart U then the first definition agrees with the second
definition.

Proof:
∑

α

∫

M

fαω =

∫

φ(U)

∑

α

(fα ◦ φ−1)(φ−1)∗ω) =

∫

φ(U)

(φ−1)∗ω

The left hand side is Definition 13.2, while the right hand side is Definition 13.1.

Lemma 13.6 The definition of the integral is independent of the choice of partition of unity.

Proof: If {fα}, {gβ} are two different partitions of unity then
∫

M

fαω =
∑

β

∫

M

gβfαω

∫

M

gβω =
∑

α

∫

M

fαgβω

so
∑

α fαω =
∑

β gβω.
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13.1 Stokes’ Theorem

Theorem 13.7 [Stokes] With the above orientation convention
∫

M
dω =

∫

∂M
ω if ω is an

(n− 1)-form on M .

Proof: First assume ω has compact support in U , and φ(U) is open in Rk (in other words U
contains no boundary points of M). Then

∫

∂M
ω = 0. We write ω =

∑

i fidx1∧ . . .∧ d̂xi∧ . . .∧
dxn. So

dω =
∑

i

(−1)i−1 ∂fi
∂xi

dx1 ∧ . . . ∧ dxn

and
∫

M

dω =
∑

i

(−1)i−1

∫

∂fi
∂xi

dx1 ∧ ∧dxn

(by definition)

=
∑

i

(−1)i−1

∫

dx1 ∧ . . . d̂xi . . . dxn−1[

∫

R

∂fi
∂xi

dxi]

(by Fubini’s theorem)

=
∑

i

(−1)i−1

∫

dx1 . . . d̂xi ∧ . . . dxn−1(fi(∞)− fi(−∞))

(by fundamental theorem of calculus) = 0 (as ω is compactly supported).
Now if U ⊂ Hn (the upper half space), we find instead that

∫

dfn
dxn

dx1 . . . dxn = (−1)nfn(x1, . . . , xn−1, 0)dx1 . . . dxn−1

But this is
∫

∂M
ω where we recall that the orientation of ∂M is equal to [∂1, . . . , ∂n−1] where the

orientation of M is [−∂n, ∂1, . . . , ∂n−1]. This is then (−1)n times the orientation [∂1, . . . , ∂n].
Consequences of Stokes’ Theorem in dimension 3: Recall the identification between 1-forms

and vector fields (similarly between 2-forms and vector fields).
If γ is a dimension 1 line,

∫

γ

(∇g) · dγ
dt
dt = g(b)− g(a)

(fundamental theorem of calculus applied to line integral)
If S2 is a 2-manifold with boundary in R3,

∫

S2

(∇× V1 )̇̂uA =

∫

∂S2

~V1
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(classical Stokes’ Theorem)
If B3 is a 3-manifold with boundary in R3,

∫

B3

∇ · ~V1dx1dx2dx3 =
∫

∂B3

~V2 · ûA

(Gauss’s theorem, divergence theorem)
Consequences of Stokes’ theorem for vector calculus:

1. Fundamental theorem of calculus (Stokes in dimension 1):
∫ b

a

f ′(x)dx = f(b)− f(a)

This follows from
∫

[a,b]

df =

∫

∂[a,b]

f = f(b)− f(a).

2. Green’s theorem (Stokes for n = 2 in R2):
∫

∂Ω

(f1(x, y)dx+ f2(x, y)dy) =

∫

Ω

(∂f2/∂x− ∂f1/∂y)) dxdy

if Ω is a region in R2 with boundary ∂Ω and f1, f2 are smooth functions.

This follows from ω = f1(x, y)dx+ f2(x, y)dy and dω = (∂f2/∂x− ∂f1/∂y) dx ∧ dy.
3. Gauss’s theorem (divergence theorem) (Stokes for n = 3): Let M be a 3-manifold with

boundary in R3. The vector field ~F = (F1, F2, F3) on M correponds to a 2-form

ω = F1(~y)dy2 ∧ dy3 + F2(~y)dy3 ∧ dy1 + F3(~y)dy1 ∧ dy2.
So

∇ · ~Fdy1 ∧ dy2 ∧ dy3 = dω

and
(~F · ~u)A = ω

where A is the area form on M and û is the unit normal vector to M in R3.

4. Classical Stokes’ theorem: Suppose ~F is a vector field on a 2-manifold Σ embedded in R3

with boundary ∂Σ, with ω the corresponding 1-form ω = F1dx1 + F2dx2 + F3dx3. Then
∫

Σ

(~∇× ~F ) · ~uA =

∫

∂Σ

(F1dx1 + F2dx2 + F3dx3).

This translates to
∫

Σ

dω =

∫

∂Σ

ω.
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13.2 Line integral

If ω =
∑

i fi(x1, x2, x3)dxi is a 1-form on R3 and γ : I → R3 (where γ(t) = (γ1(t), γ2(t), γ3(t))
then

∫

γ(I)

ω =

∫

I

γ∗ω =

∫ 1

0

∑

i

fi(γ(t))
dγi(t)

dt
dt

=

∫

~f · d~γ
dt
dt.

The line integral is
∫

I

∇g · d~γ
dt
dt = g(1)− g(0).

Proposition 13.8 The line integral over a closed path γ bounding a surface S in R3 is equal
to 0 if ω is defined everywhere on S and dω = 0.

Proof: By Stokes,
∫

∂S
ω =

∫

S
dω = 0.

Remark 13.9 If dω = 0 but ω is not defined everywhere, then the conclusion of Proposition
13.8 will not hold: for example

ω =
xdy − ydx
x2 + y2

on R2 r {0} but
∫

S1 ω = 2π.

Proposition 13.10 If ω has the property that
∫

γ
ω = 0 for all closed curves γ, then one can

define
∫ q

p
ω as

∫ 1

0
c∗ω for a curve c : [0, 1] → R3 with c(0) = p, c(1) = q. (This depends only

on the endpoints p and q, not on the choice of c.) Any two such curves can be glued to form a

closed curve γ = c1 ∪ (−c2) so
∫ 1

0
c∗1ω =

∫ 1

0
c2 ∗ ω since

∫

γ
ω = 0.

Proposition 13.11 If
∫

γ
ω = 0 for all closed curves γ on R3 then ω = df for some smooth

function f .

Proof: Define f(x) =
∫ x

p
ω for any path γ from p to x. (f is well defined by the previous

Proposition.) To compute ∂f/∂x1, take an open neighbourhood of x and

∂f

∂x1
=

∂

∂x1

∫ x1,x2,x3

p1,x2,x3

ω1(t, x2, x3)dt = ω1(x1, x2, x3).

Similarly to compute ∂f/∂xi, pick a path where only one coordinate xj varies at any time and
the coordinate xi changes only in the last segment of the path. We choose a path which is
piecewise linear and is obtained by concatenating the line segments v1, v2, v3 where
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1. v1 is the line segment from (p1, p2, p3) to (p1, p2, x3),

2. v2 is the line segment from (p1, p2, x3) to (p1, x2, x3)

3. v3 is the line segment from (p1, x2, x3) to (x1, x2, x3).

Remark 13.12 These propositions generalize to connected manifolds M other than R3 but we
require that

∫

γ
ω = 0 for all closed curves γ ⊂M .

Proposition 13.13 If a manifold M is simply connected then every closed 1-form on M is
exact.

Proof: If M is simply connected, then every closed curve γ : S1 → M extends to a smooth
map σ : D2 → M (where D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}). Then

∫

γ
ω =

∫

D2 dω = 0, so
∫

γ
ω = 0 for every closed curve γ. This is the hypothesis of the previous proposition so ω = df

for some smooth function f :M → R.
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14 Mayer-Vietoris Sequence

If U and V are open subsets of a manifold M , the Mayer-Vietoris sequence is as follows. (We
refer to the ’Homological Algebra’ notes for the result that a short exact sequence of chain
complexes gives rise to a long exact sequence of the corresponding cohomology groups.)

0 - Ω∗(U ∪ V )
f
- Ω∗(U)⊕ Ω∗(V )

g
- Ω∗(U ∩ V ) - 0

where if iU : U → U ∪ V and iV : V → U ∪ V, jU : U ∩ V → U, jV : U ∩ V → V are the
canonical inclusions,

f = (i∗U , i
∗
V )

and
g = j∗U − j∗V .

Clearly f is injective since a differential form α on U ∪ V restricting to 0 on both U and V
is simply α = 0.

To see that g is surjective, we observe that a differential form αU∩V on U ∩ V can written
as αU∩V = j∗UαU − j∗V αV for suitable forms αU on U and αV on V . Let {ρU , ρV } be a partition
of unity subordinate to the open cover {U, V } of U ∪ V . Then we have αU∩V = ρUαU∩V −
(−ρV )αU∩V on U ∩ V . Now ρUαU∩V can be extended by zero to give a differential form βU on
U . Likewise ρV αU∩V can be extended by zero to give a differential form βV on V . Now we have
αU∩V = j∗UβU − j∗V βV .

Finally we must check that Im(f) = Ker(g). This is true because Ker(g) consists of forms
(αU , αV ) on U (resp. V ) with j∗UαU = j∗V αV . This means that αU and αV agree on U ∩ V , so
there is a form β on U ∪ V with αU = i∗Uβ and αV = i∗V β).

This completes the proof that the above sequence is exact.
Then according to the course notes section on ‘Homological Algebra’ Definition 9.1.1 and

Theorem 9.1.12, there is a corresponding long exact sequence of de Rham cohomology groups

- Hj(U ∪ V )
f
- Hj(U)⊕H∗(V )

g
- Hj(U ∩ V )

δ
- Hj+1(U ∪ V ) -

where δ is the connecting homomorphism. The connecting homomorphism is defined as follows.
If α ∈ Ωj(U ∩ V ) satisfies dα = 0, then there are αU ∈ ΩjU and αV ∈ ΩjV with α =
j∗UαU − j∗V αV . We find that j∗UdαU = j∗V dαV so there is β ∈ Hj+1(U ∪ V ) with i∗Uβ = dαU and
i∗V β = dαV . We define δ[α] = [β].
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15 Poincaré Lemma

Definition 15.1 A form α is closed if dα = 0 and exact if α = dη for some η

Since d ◦ d = 0, exact forms are closed.

Definition 15.2 The k-th de Rham cohomology of a manifold is the quotient of the space of
closed k-forms by the space of exact k-forms.

Theorem 15.3 (Poincaré Lemma) If η is a closed k-form on Rn then it is exact.
More generally if a manifold M is smoothly contractible to a point and η is a closed form

on M then it is exact.

For example, a vector space and a ball are smoothly contractible to a point. A region U ⊂ Rn is
smoothly contractible to a point if it is star-shaped (in other words there is p0 ∈ U s.t. ∀p ∈ U ,
p0 + t(p− p0) ⊂ U for 0 ≤ t ≤ 1).

Example 15.4 If ω is the 1-form on R2r{0} given by ω = xdy−ydx
x2+y2

, then dω = 0 but
∫

S1 ω = 2π.

So ω is not exact, since the integral of an exact form around S1 would be 0.

Example 15.5 The form

ω =
x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

(x21 + x22 + x23)
3/2

on R3 r {0} is closed. It satisfies that its restriction to S2 is the volume form on S2. So
∫

S2 i
∗ω = 4π.

15.1 Chain homotopy

(Spivak, Chapter 7)
Suppose M is a smooth manifold and ıt : M →M × [0, 1] is given by ıt(p) = (p, t). Define

I : Ωk(M×[0, 1])→ Ωk−1(M) as follows. Write ω = ω1+dt∧η where (for πM :M×[0, 1]→M)
we have

1. ω1(v1, . . . , vk) = 0 if some vi ∼ ∂/∂t (in other words if some vi ∈ Ker(dπM))

2. η is a (k − 1)-form with this property
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Define

Iω(p)(v1, . . . , vk−1) =

∫ 1

0

η(p, t)((ıt)∗v1, . . . , (ıt)∗vk−1).

Claim ı∗1ω − ı∗0ω = dIω + Idω.
Proof:

• Case 1: Assume first local coordinates (x1, . . . , xn) on a chart in M .

ω = f(x, t)dxj1 ∧ . . . ∧ dxjk
(we denote the above by f(x, t)dxJ). Hence dω is the sum of the term not involving dt
plus ∂f

∂t
dt ∧ dxJ . So

I(dω)(p) =
(∫ 1

0

∂f

∂t′
(p, t′)dt′

)

dxJ(p)

for p ∈M
=
(

f(p, 1)− f(p, 0)
)

dxJ(p)

= i∗1ω(p)− i∗0ω(p)
and Iω = 0. So in this case Idω + dIω = i∗1ω − i∗0ω.

• Case 2: Assume ω = f(x, t)dt ∧ dxJ . Then i∗1ω = i∗0ω = 0 because i∗1(dt) = d(c) = 0
(where c is the constant function with value 1) since i1(m) = (m, 1). Now

I(dω)(p) = I
(

−
n
∑

α=1

∂f

∂xα
dt ∧ dxα ∧ dxJ

)

(p)

= −
n
∑

α=1

(∫ 1

0

∂f

∂xα
(p, t′)dt′

)

dxα ∧ dxJ .

while

d(Iω) = d

(∫ 1

0

f(p, t′)dt′
)

dxj

=
n
∑

α=1

∂

∂xα

(∫ 1

0

f(p, t′)dt′
)

dxα ∧ dxJ

=
n
∑

α=1

(∫ 1

0

∂f

∂xα
(p, t′)dt′

)

dxα ∧ dxJ

= −I(dω)
so in this case also Idω + dIω = 0.
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Consequences:

1. IfM is smoothly contractible to a point, then there exists a homotopy H :M×[0, 1]→M
for which H ◦ i1 : M → M is the identity and H ◦ i0 : M → M is the constant map to a
point p0. Then ω = (H ◦ i1)∗ω and 0 = (H ◦ i0)∗ω. We have

ω = i∗1H
∗ω − i∗0H∗ω

so if ω is closed, then H∗ω is closed and i∗1H
∗ω = ω and i∗0H

∗ω = 0. This shows
ω = d(IH∗ω), so ω is exact. This gives a proof of the Poincaré lemma which works if M
is contractible.

Definition 15.6 If F0.F1 : M → N are smooth maps, then a homotopy between F0 and F1 is
a smooth map H :M × [0, 1]→ N for which H ◦ i0 = F0 and H ◦ i1 = F1. Here i0 : m 7→ (m, 0)
and i1 : m 7→ (m, 1)

Consequences of chain homotopy I:
If H :M×[0, 1]→ N is a homotopy between F0 and F1, then F

∗
0ω−F ∗

1ω = i∗0H
∗ω−i∗1H∗ω =

(dI + Id)H∗ω = d(IH∗ω) + IH∗(dω). So if dω = 0, then [F ∗
0ω] = [F ∗

1ω].
Consequences of Poincaré lemma:
Cohomology of spheres
Hℓ(Sk) ∼= Hℓ−1(Sk−1) for k > 1 and ℓ > 1

Proof: (Sketch) (following Guillemin-Pollack p. 182) We will show that Hk(Sk) = H0(Sk) ∼=
R and all the other groups are 0. Sk = U1 ∪ U2 where U1 = {(x0, . . . , xk) : x0 > −ǫ} and
U2 = {(x0, . . . , xk) : x0 < ǫ}. So U1 ∩ U2 = {U2 = {(x0, . . . , xk) : −ǫ < x0 < ǫ}

Recall that if F0 and F1 are homotopic then F ∗
0ω − F ∗

1ω = (dI + Id)H∗ω (where I is a
chain homotopy ωk(M × [0, 1])→ ωk−1(M). Hence if dω = 0, [F ∗

0ω] = [F ∗
1ω]

Definition 15.7 Two manifolds A and B are homotopy equivalent if there are maps F : A→ B
and G : B → A for which F ◦G ≃ idB and G ◦ F ≃ idA.

Proposition 15.8 If two manifolds A and B are homotopy equivalent then H∗(A) ∼= H∗(B).

Proof:

F ∗ ◦G∗ = idH∗(A),

G∗ ◦ F ∗ = idH∗(B),

(by the previous Proposition).
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Definition 15.9 If A is a manifold and B a submanifold, a deformation retraction from A to
B is a map r : A → B where i : B → A is the inclusion map, for which i ◦ r : A → A is the
identity map and r ◦ i : B → B is homotopic to the identity map. So if there is a deformation
retraction from A to B then A and B are homotopy equivalent and H∗(A) ∼= H∗(B).

Lemma 15.10 There is a deformation retraction r : A→ B where A = U1∩U2 and B = Sk−1

and

r(x0, . . . , xn) =
(0, x1, . . . , xn)
√

x21 + . . .+ x2n
.

Proof:

H(t, (x0, x1, . . . , xn)) =
((1− t)x0, x1, . . . , xn)
||((1− t)x0, x1, . . . , xn)||

.

So H ◦ i0 = id and H ◦ i1 = r ◦ i.
Hence Hp(Sk−1) ∼= Hp(U1 ∩ U2).
Given a closed ℓ-form ω on U1∪U2, we produce a closed (ℓ−1)-form η on U1∩U2. Start with

ω. The restriction of ω to U1 is exact (by the Poincaré lemma, since U1 is smoothly contractible
to a point).

i∗U1
ω = dφ1

and
i∗U2
ω = dφ2

for (ℓ− 1)-forms φ1 on U1 and φ2 on U2. Thus d(φ1 − φ2) = 0 on U1 ∩ U2, so φ1 − φ2 = β is a
closed (ℓ− 1)-form on U1 ∩ U2.

Given a closed (ℓ− 1)-form η on U1∩U2, we produce a closed ℓ-form on U1∪U2. Start with
smooth functions ρ1 on U1 and ρ2 on U2 such that ρ1 = 0 on a neighbourhood of the north
pole N , and ρ2 = 0 on a neighbourhood of the south pole S. (In fact we can assume ρ2 = 0 on
U2r (U1 ∩U2).) ρi(x) ∈ [0, 1] and ρ1+ ρ2 = 1 everywhere. Thus ρ1β is a form on U1 and ρ2β is
a form on U2 and we can define φ1 = ρ1β and φ2 = −ρ2β. Note that φ1− φ2 = β on U1 ∩U2 as
ρ1 + ρ2 = 1. Then dφ1 − dφ2 = 0 on U1 ∩ U2 as dβ = 0. Define ω ∈ Ωℓ(U1 ∪ U2) by ω|U1 = dφ1

and ω|U2 = dφ2, and dω = 0 since this is true on U1 and U2. In fact these two procedures are
inverse to each other (as indicated by the notation). So Hℓ(Sk) ∼= Hℓ−1(Sk−1) for ℓ ≥ 1. Hence
Hk(Sk) ∼= H1(S1) = R and H0(Sk) ∼= H0(S1) = R and all the other groups are 0.

To see this, we use Mayer-Vietoris.

0 - Ωj(U1 ∪ U2) - Ωj(U1)⊕ Ωj(U2) - Ωj(U1 ∩ U2) - 0

This gives the long exact sequence

. . . - Hj(U1 ∪ U2) - Hj(U1)⊕Hj(U2) - Hj(U1 ∩ U2) - . . .

Using this we can show the following theorem:
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Theorem 15.11 Hℓ(Sk) ∼= Hℓ−1(Sk−1).
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16 Brouwer fixed point theorem

Theorem 16.1 (Brouwer fixed point theorem) Any smooth map f from Dn to itself has a fixed
point.

Remark 16.2 This theorem can be generalized to continuous maps.

Proof: Suppose not. Then there is a map from Dn to Sn−1 which is the identity on Sn−1,
in other words there is a deformation retraction from Dn to Sn−1. We construct this map by
using a line from x to f(x) and checking where this line hits Sn−1. Define

gt(x) = tx+ (1− t)f(x) = f(x) + t(x− f(x)).

We solve
1 = t2(x− f(x))2 + 2tf(x)(x− f(x)) + f(x)2

We take the solution t0 with t ≥ 1. This solution is a smooth function of x (using the quadratic
formula). The map we seek is then gt0(x). We note that gt0(x) is a smooth function of x.

If r : Dn → Sn−1 is a retraction, then r ◦ i = id for i : Sn−1 → Dn the inclusion. Then we
have i∗r∗ = id but this factors through Hn−1(Dn) = {0}. This is a contradiction.
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17 Degree

In this section let M and N be compact oriented manifolds and f :M → N a smooth map.

Definition 17.1 If M is connected and oriented, and dim(M) = n, then

Hn(M) = Ωn(M)/dΩn−1(M).

(Note that for any α ∈ Ωn(M), dα = 0.)

Proposition 17.2 If M is compact, connected and oriented and ∂M = ∅, then there is a linear
isomorphism B : Hn(M)→ R given by B(α) =

∫

M
α.

Proof: Using a partition of unity we can construct an n-form α on M with
∫

M
α 6= 0. If

α = dβ then
∫

M
α = 0 by Stokes.

Remark 17.3 Later we will give the proof that the map R given by R([α]) =
∫

M
α is an

isomorphism.

An application of this result is the definition of degree.

Lemma 17.4 There exists λ ∈ R for which
∫

M
f ∗α = λ

∫

N
α for all α. (λ depends only on f

– it is independent of α.)

Proof: f ∗ gives a linear map

Hn(N)
f ∗
- Hn(M)

R

BN

?

·λ
- R

BM

?

λ is called the degree deg(f) of f .

Theorem 17.5 If b is a regular value of f then deg(f) = n+ − n− where n+ is the number
of p ∈ f−1(b) for which dfp : TpM → TbN preserves orientation, while n− is the number of
p ∈ f−1(b) for which dfp : TpM → TbN reverses orientation.
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Proof: f−1(q) is a finite set of points p1, . . . , pk. Choose a neighbourhood Ui around each pi
on which f |Ui

is a diffeomorphism. Such a neighbourhood exists because dfpi is an isomorphism
for all pi. In particular these neighbourhoods cannot intersect.

Choose a compact neighbourhood W around q, and define W ′ := f−1(W )r
∐

j Uj. Choose

a neighbourhood V of q in W , so f−1(V ) ⊂ U1 ∪ . . . ∪ Uk. Redefine Ui to be Ui ∩ f−1(V ), so
f : Ui → V is a diffeomorphism. Choose ω = gdy1∧ . . .∧dyn where g ≥ 0 has compact support
contained in V . Then the support of f ∗ω is contained in U1∪. . .∪Uk. So

∫

M
f ∗ω =

∑k
j=1

∫

Uj
f ∗ω.

But since f : Ui → V is a diffeomorphism,
∫

Ui
f ∗ω =

∫

V
ω if f is orientation preserving on Ui,

while
∫

Ui
f ∗ω = −

∫

V
ω if f is orientation reversing on Ui.

Remark 17.6 The degree of f is independent of the choice of regular value. So since b with
f−1(b) = ∅ is a regular value, the degree of f is 0 unless f is surjective.

Example 17.7 IfM and N are compact oriented manifolds and F :M → N is an orientation-
preserving covering map with n sheets (for example F : S1 → S1 defined by F (eiθ) = einθ) then
∫

M
F ∗ω = n

∫

N
ω (as a consequence of the previous theorem).

17.1 Consequences of chain homotopy

Proposition 17.8 Homotopic maps have the same degree.

Proof: If H : M × [0, 1] → N is a homotopy between the maps F0 : M → N and
F1 : M → N , then F0 = H ◦ i0 and F1 = H ◦ i1 so F ∗

0ω − F ∗
1ω = i∗0H

∗ω − i∗1H
∗ω =

d(IH∗ω) + IdH∗ω. Hence if M and N are compact oriented manifolds and F0 and F1 are
homotopic then

∫

M
F ∗
0ω = deg(F0)

∫

N
ω and

∫

M
F ∗
1ω = deg(F1)

∫

N
ω. But by Stokes’ theorem

∫

M
F ∗
1ω−

∫

M
F ∗
0ω =

∫

M
dIH∗ω (recall that ω is closed since it is anm-form on anm-dimensional

manifold) so degF0 = degF1.

17.2 Consequences of degree

Proposition 17.9 “Hairy ball theorem”) If n is even, there is no nowhere zero vector field on
Sn.

Proof: Let A be the antipodal map. Then A is an orientation reversing diffeomorphism since
n is even (it is an orientation preserving diffeomorphism when n is odd). Because a reflection
is an orientation reversing diffeomorphism, it has degree −1. The antipodal map of Sn is the
composition of n + 1 reflections, so deg(A) = (−1)n+1 (see Proposition 17.11 below). At the
same time the degree of the identity map is 1. But if there is a nowhere zero vector field X on
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Sn then we can construct a homotopy between A and the identity map. For each p, there is a
unique great semicircle γp from p to A(p) = −p whose tangent vector at p is a multiple of X(p)
(if p is the north pole, γp would be the longitude whose tangent at p is is X(p)).

Note that for n odd we can construct a nowhere zero vector field on Sn: for p = (x0, . . . , xn) ∈
Sn we define

X(p) = (−x1, x0,−x3, x2, . . . ,−xn+1, xn) = (−x1∂x0 + x0∂x1 + . . .+ (−xn−1∂xn + xn∂xn−1)

Theorem 17.10 If M is a compact orientable k-manifold then Hk(M) ∼= R.

The isomorphism is given by the map integrating differential forms over M .
Proof:

• Step 1: Hk(Sk) ∼= R, and the isomorphism is given by ω 7→
∫

ω. (This was already
proved, since we proved Hk(Sk) ∼= Hk−1(Sk−1) and H1(S1) ∼= R)

• Step 2: If the k-form ω is compactly supported in Rk, ω = dη for some compactly
supported η iff

∫

Rk ω = 0. (Proof: Let Φ : Skr{N} → Rk be the stereographic projection.
Then Φ∗ω = ω′ is a differential form on Sk, for some ω′ such that ω = 0 on a contractible
neighbourhood U of N . So if

∫

Rk ω = 0 then
∫

Sk Φ
∗ω = 0 so ω′ = dν on Sk. As dν = 0 on

the contractible neighbourhood U of N , iU : U → Sk and d(i∗Uν) = 0. By the Poincaré
lemma, i∗Uν = dµ for a (k−2)-form µ on U . Hence i∗Uν−dµ = 0 and γ := (Φ−1)∗(i∗Uν−dµ)
is defined on Rk and compactly supported, and ω = dγ.

If ω = dη and η is compactly supported, then we choose R so large that Supp(η) ⊂ {x ∈
Rk||x| ≤ R} := BK(R). Then

∫

Rk ω =
∫

BK(R)
ω =

∫

BK(R)
dη =

∫

∂BK(R)
η = 0.

• Step 3: If U ⊂ M is an open set diffeomorphic to Rk, then any k-form β compactly
supported in U satisfies

[β] = (

∫

U

β)[ω]

for any k-form ω compactly supported in U with
∫

U
ω = 1. (This follows from Step 2,

because α := β − (
∫

U
β)ω = dη for some η, because

∫

U
α = 0.)

• Step 4: Cover M by a finite number of open sets U1, . . . , UN and pick homotopies Hi :
M × I →M with Hi|M×{0} = id and Hi|M×{1} = Gi : Ui → U . So [ω] = G∗

i [ω] if ω is the
extension to M of a form compactly supported on U with

∫

U
ω = 1. This is true because

homotopic maps induce the same map in de Rham cohomology.
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• Step 5: Choose a partition of unity {fi} subordinate to {Ui}. Any closed k-form θ equals
∑

i fiθ, where fiθ is supported in Ui and

[fiθ] =

∫

Ui

fiθ · [G∗
iω]

(by Step 3, because G∗
iω is compactly supported on Ui with

∫

Ui
G∗
iω = 1 – in Step 3, we

replace β by f ∗
i θ and replace ω by G∗

iω)

= (

∫

Ui

fiθ) · [ω]

(by Step 4). Hence

[θ] =
∑

i

[fiθ] =
∑

i

∫

M

fiθ · [ω]

= (

∫

M

θ) · [ω],

in other words [θ] = 0 iff
∫

M
θ = 0.

This completes the proof that F : Hn(M)→ R given by F (α) =
∫

M
α is an isomorphism.

17.3 Further results about the degree

Proposition 17.11 if f :M → N and g : N → P then

deg(fg) = deg(f) · (deg(g)

Proof: This follows from Theorem 17.5.

Proposition 17.12 The degree of an orientation reversing diffeomorphism is −1. Hence an
orientation reversing diffeomorphism cannot be homotopy equivalent to the identity map.

Proof: This also follows from Theorem 17.5.

Proposition 17.13 The antipodal map of Sn is the composition of n + 1 reflections, so its
degree is (−1)n+1. So if n is even, the antipodal map is not homotopy equivalent to the identity.
If n is odd, the antipodal map is homotopy equivalent to the identity (via the flow of a nowhere
zero vector field on Sn).
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Proposition 17.14 If f : Sn → Sn has no fixed points, then deg(f) = (−1)n+1.

Proof: If f(x) 6= x for any x, then the line

t 7→ (1− t)f(x) + t(−x), 0 ≤ t ≤ 1

does not pass through 0. So

ft(x) =
(1− t)f(x)− tx
| (1− t)f(x)− tx |

defines a homotopy from from f to the antipodal map, which has degree (−1)n+1.)

17.4 Applications of degree to group actions

Definition 17.15 A group G acts on a space X if there is a homomorphism G 7→ Homeo(X).

Definition 17.16 A group acts freely on X if the homeomorphism corresponding to each non-
trivial element of G has no fixed points.

Example 17.17 The rotation group SO(3) acts on R3 and S2; the group U(1) acts on R2 = C

by
eiθ : z 7→ eiθz.

Proposition 17.18 If n is even, then Z2 is the only nontrivial group that can act freely on Sn.

Remark 17.19 Note that S1 and S3 are groups (see the section on Lie groups) and all Lie
groups act freely on themselves (by left or right multiplication) so there are some odd dimensional
spheres which admit a free action of a group other than Z2.

Proof: The degree of a homeomorphism must be ±1. Hence a group action determines a
function D : G→ {±1} which is a homomorphism (by Proposition 17.11 above). If the action
is free, D sends every nontrivial element of G to (−1)n+1 (using Proposition 17.14). So if n is
even, D sends all the nontrivial elements of G to −1. Hence

Ker(D) = {1}.

So since
D : G/Ker(D) ∼= {±1},

we learn that G ∼= {±1} = Z2.
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18 Riemannian metrics

Definition 18.1 A Riemannian metric is an assignment of an inner product on TxM for all
x ∈M , such that gij := g(∂i, ∂j) are smooth functions.

Definition 18.2 The length of a curve γ : [a, b]→M is

∫ b

a

gγ(t)(
dγ

dt
,
dγ

dt
)1/2dt.

Proposition 18.3 The length of a curve γ is independent of the parametrization of γ.

Proof:

∫ b

a

gγ(s)(
dγ

ds
,
dγ

ds
)1/2ds =

∫ b

a

gγ(t)

(

dγ

dt
,
dγ

dt
·
(

dt

ds

)2
)1/2

ds

dt
dt =

∫ b

a

gγ(t)(
dγ

dt
,
dγ

dt
)1/2dt

Definition 18.4 The arc length of the curve γ is L(t) =
∫ t

a
gγ(s)(

dγ
ds
, dγ
ds
)1/2ds

Definition 18.5 The volume element is

ω =
√

det gdx1 ∧ . . . ∧ dxn

where det g refers to the determinant of the n× n matrix gij.

The volume element equals w1 ∧ . . . ∧ wn if {wj} is the basis for T ∗
xM dual to an orthonormal

basis {ei} of TxM . The Riemannian volume element is
√
dethw1 ∧ . . . ∧ wn if {wi} ∈ Γ(T ∗M)

is the dual basis to a basis of vector fieldsx {Xi} . h is the matrix hij = g(Xi, Xj). For example
we might write Xi =

∂
∂xi

.

Proposition 18.6 The Riemannian volume element is independent of the choice of basis {Xi}.

Proof: Let {Zi} ∈ Γ(TM) be another basis of tangent vectors and let {ηi} ∈ Γ(T ∗M) its
dual basis. Put fij = g(Zi, Zj) and define a matrix γ by Xj =

∑

ℓ Zℓγℓj. The determinant of γ
must be positive because both {Xj} and {Zj} are compatible with the orientation.

Then
hij = g(Xi, Xj) =

∑

ℓ,m

γℓiγmjg(Zℓ, Zm)

=
∑

ℓ,m

γℓiγmjfℓm.
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So h = γTfγ, and
√
deth = det(γ)

√
det f. Thus evaluating on (X1, . . . , Xn) we see that

η1 ∧ . . . ∧ ηn = (det γ)ω1 ∧ . . . ∧ ωn

and so √
hω1 ∧ . . . ∧ ωn =

√

det fη1 ∧ . . . ∧ ηn.
The collection of vector fields on M will be denoted Ξ(M).

Definition 18.7 A connection on TM is a map ∇ : Ξ(M)×Ξ(M)→ Ξ(M) denoted (X, Y ) 7→
∇XY for which

1. ∇fXY = f∇XY for f a smooth function and X, Y vector fields on M .

2. ∇X(fY ) = (Xf)Y + f∇XY.

More generally if V is a vector bundle over M , ∇ : Ξ(M) × Γ(V ) → Γ(V ) where X ∈ Ξ(M)
and Y ∈ Γ(V ).

Note that ifM = Rn (for smooth functions fj) there is an obvious connection∇∂i(
∑

j fj∂j) =
∑

j(∂ifj)∂j but this depends on the coordinate choice. A connection provides a way to compare
tangent vectors at different points in a manifold.

Proposition 18.8 For any connection on TM , write ξi = ∂i and ∇ξiξj =
∑n

k=1 Γ
k
ijξk. The Γkij

are called Christoffel symbols.

Definition 18.9 The torsion of a connection is

T (X, Y ) = ∇XY −∇YX − [X, Y ]

We can compute that the torsion is a tensor, in other words if we multiply X or Y by a smooth
function f , T (fX, Y ) = fTXY and T (X, fY ) = fTXY – there is no dependence on derivatives
of f .

Proposition 18.10 ∇ is torsion free iff in local coordinates Γkij = Γkji

Definition 18.11 (Connection along a curve, or covariant derivative) Let Ξ(s) be the collection
of smooth maps v : [a, b]→ TM such that v(s(t)) ∈ Ts(t)M . The covariant derivative associated
to a connection ∇ is ∇/dt : Ξ(s)→ Ξ(s) such that

1. ∇/dt is R-linear

2. ∇/dt(fv) = (df/dt)v + f(∇/dtv)
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3. If Y ∈ Ξ(M) then ∇/dt(Y |s) = ∇ṡ(t)(Y ).

Definition 18.12 A vector field v ∈ Ξ(s) is parallel along s if (∇/dt)v = 0.

Definition 18.13 For a curve s in a submanifold M ⊂ Rn and a vector field Y along the curve
s, we define a covariant derivative by ((∇/dt)Y ) (t) = π(dY/dt), where π is the projection from
Rn onto Ts(t)M .

Define < X, Y >:= g(X, Y )

Proposition 18.14 d/dt < v, w >=< ∇/dtv, w > + < v,∇/dtw > In particular if v and w
are vector fields parallel along a curve s, relative to the Levi-Civita connection, they make a
constant angle with each other and have constant lengths along s.

Proof: If v =
∑

viξi, w =
∑

iw
iξi, in terms of ξi = ∂i we have∇v/dt =

∑

k dv
k/dtξk+v

k∇ṡξk.
The right hand side is

∑

< dvk/dtξk, w
ℓξℓ > + < vkξk, dw

ℓ/dtξℓ > +
∑

< vk∇ṡξk, w
ℓξℓ > +

∑

< vkξk, w
ℓ∇ṡξℓ >

This is the sum of the first two terms plus
∑

vkwℓṡ < ξk, ξℓ > (because ∇ is Riemannian)
= d

dt
< v,w > .

Theorem 18.15
< ∇XY, Z > − < ∇YX,Z >=< [X, Y ], Z >

73



Poincaré Duality and the Hodge Star Operator

Let M be a compact oriented manifold of dimension n.

Definition 18.16 The Hodge star operator is a linear map

∗ : Ωk(M)→ Ωn−k(M)

which satisfies

•
∗ ◦ ∗ = (−1)k(n−k)

•
α ∧ ∗α = |α|2vol

where vol is the standard volume form and |α|2 is the usual norm on α(x) viewed as an
element of ΛkT ∗

xM .

The definition of the Hodge star operator requires the choice of a Riemannian metric on the
tangent bundle to M .

Let d be the exterior differential. Then d∗ := ∗d∗ is the formal adjoint of d, in the sense
that (d∗a, b) = (a, db). This is because (∗a, ∗b) = (a, b) for any a, b ∈ ΩkM , so

(da, b) =

∫

da∗b = (−1)k
∫

ad ∗ b

(by Stokes’ theorem)
= (−1)k(n−k)(−1)k(a, ∗d ∗ b)

Definition 18.17 A k-form α on M is harmonic if dα = d∗α = 0.

Theorem 18.18 The set of harmonic k-forms is isomorphic to Hk(M ;R).

Theorem 18.19 If α is a harmonic k-form on M , its Poincare dual is represented by ∗α.
The pairing between an element α and its Poincare dual is nondegenerate, i.e. for any form α
∫

M
α ∧ ∗α = 0 −→ α = 0.
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19 Lie Groups

Definition 19.1 A Lie group is a group G which is also a smooth manifold, for which multi-
plication m : G × G → G and inversion i : G → G are smooth maps. The identity element is
usually denoted e.

Example 19.2 U(1): m(eiσ, eiτ ) = ei(σ+τ) i(eiσ) = e−iσ.

Example 19.3 GL(n,R) : m(A,B)ij =
∑

r AirBrj i(A)ji =
(−1)i+j

detA
Ãij where Ãij is the deter-

minant of the matrix obtained by striking out the i-th row and j-th column of A.

Example 19.4 GL(n,C): the definition is exactly the same as GL(n,R) with R replaced by C

Example 19.5 R: m(a, b) = a+ b, i(a) = −a

Example 19.6 O(n) = {A ∈Mn×n(R) : AA
T = 1} where 1 is the n× n identity matrix.

Example 19.7 SO(n) = {A ∈ O(n) : detA = 1}

Example 19.8 U(n) = {A ∈ GL(n,C”AA
† = 1} where A† = ĀT

Example 19.9 SU(n) = {A ∈ U(n) : detA = 1}

Definition 19.10 A Lie subgroup of G is a regular submanifold which is also a subgroup of
G.

Lie subgroups are necessarily Lie groups, with their smooth structure as submanifolds of G.
The multiplication and inversion maps are automatically smooth. Lie subgroups are necessarily
closed (Boothby, Theorem III.6.18).

Example 19.11 1. O(n) = {A ∈ GL(n,R) : AAT = 1} is a Lie subgroup of GL(n,R).

2. SO(n) = {A ∈ O(n) : det(A) = 1} is a Lie subgroup of GL(n,R).

3. U(n) = {A ∈ GL(n,C) : AA† = 1} is a Lie subgroup of GL(n,C). (Here A† is the
conjugate of the transpose of A.)
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Example 19.12 (Sp(n)) The group

Sp(n) = {M(A,B) :=

[

A −B̄
B Ā

]

}

where A,B ∈ End(Cn) and we insist that M(A,B) ∈ U(2n). Equivalently

Sp(n) = {U ∈ SU(2n) : ŪJ = JU}

where J =

[

0 1n
−1n 0

]

.

Classical groups:

• An ... SU(n+ 1), n ≥ 1

• Bn ... SO(2n+ 1), n ≥ 2

• Cn ... Sp(n), n ≥ 3

• Dn ... SO(2n), n ≥ 4

The reason for the restriction on n is to avoid duplication: for low values of n many of the
groups are isomorphic, or at least their Lie algebras are. For example SO(3) has the same Lie
algebra as SU(2).

The classical groups above and a finite list of “exceptional Lie groups” ( G2, F4, E6, E7,
E8) are basic building blocks for compact connected Lie groups.

Theorem 19.13 If G1 and G2 are Lie groups and F : G1 → G2 is a smooth map which is
also a homomorphism, then Ker(F ) is a closed regular submanifold which is a Lie group of
dimension dim(G1)− rk(F ).

Example 19.14 SL(n,R) is the kernel of det : GL(n,R→ Rr {0}.

Proof: This is Boothby, , Theorem III.6.14.

Definition 19.15 A Lie subgroup H of a Lie group G is a subgroup (algebraically) which is a
submanifold and is a Lie group (with its smooth structure as an immersed submanifold).

Proposition 19.16 A Lie subgroup that is a regular submanifold is closed. Conversely a Lie
subgroup that is closed is a regular submanifold.
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(Recall: X ⊂M is a regular submanifold iff there is a chart φ : U → Rm for which φ(U ∩X) =
φ(U) ∩ Rn.)

Definition 19.17 Let F : N →M be a diffeomorphism and X a vector field on N , while Y is
a vector field on M . Then X is F -related to Y iff F∗(Xm) = YF (m) for all m ∈M .

Proposition 19.18 The Lie brackets of F -related vector fields are F -related.

Proof: We have to show that if Xi, Yi are F -related vector fields then

dF ([X1, X2]) = [Y1, Y2].

We are assuming dF (Xi) = Yi. For all g ∈ C∞(V ), and x ∈ F−1(V ),

(Y g)(F (x)) = (dF )x(X)(g) = X(g ◦ F ) (2)

This is equivalent to
(Y g) ◦ F = X(g ◦ F ).

If f ∈ C∞(V ), we replace g by Y2f , and Y by Y1 in (2). This gives

Y1(Y2f) ◦ F = X1((Y2f) ◦ F ).

Now apply (2) for g = f , Y = Y2. This gives

Y1(Y2f) ◦ F = X1(X2(f ◦ F )).

Likewise
Y2(Y1f) ◦ F = X2(X1(f ◦ F )).

So
([Y1, Y2]f) ◦ F = [X1, X2](f ◦ F )

so [Y1, Y2] is F -related to [X1, X2].

19.1 Left invariant vector fields

For g ∈ G define Lg : G → G by Lg(h) = g ◦ h. For Y ∈ TeG define a vector field Ỹ by
Ỹg = (Lg)∗Y .

Proposition 19.19 Ỹ is a smooth vector field.

Proposition 19.20 [X̃, Ỹ ] is left invariant.
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Proof: For any h ∈ G, Ỹ is F -related to itself (where F = Lh), so [Ỹ1, Ỹ2] is also F -related
to itself, in other words it is left invariant (so [Ỹ1, Ỹ2] = Z̃ for some Z ∈ TeG. Hence there is
an operation [·, ·] on TeG (Lie bracket). TeG equipped with [·, ·] is called the Lie algebra of G,
denoted Lie(G).

Proposition 19.21 The tangent bundle TG of a Lie group G is trivial.

Proof: We have a global basis of sections given by the left invariant vector fields.

Example 19.22 TS3 is trivial, since S3 = SU(2).

Theorem 19.23 For every X ∈ TeG there is a unique smooth homomorphism φ : R→ G with
dφ/dt|t=0 = X.

Proof: Given X, we construct the corresponding left invariant vector field X̃. Take the
integral curve φ : (−ǫ, ǫ)→ G through e (with φ(0) = e). Extend it to φ : R→ G by defining

φ(t) = φ(ǫ/2) ◦ . . . φ(ǫ/2)φ(r)

where the number of φ(ǫ/2) is k and t = k(ǫ/2) + r. Then t 7→ φ(s) · φ(t) is an integral curve
of X̃ passing through φ(s) at t = 0. Also, φ(s+ t) is such an integral curve. So by uniqueness
of integral curves

φ(s+ t) = φ(s) · φ(t).
Conversely if φ : R→ G is a smooth homomorphism, and f : G→ R is smooth, then dφ/dt

is a tangent vector to G at φ(t). Recall

dφ

dt
(f) = limh→0

f(φ(t+ h))− f(φ(t))
h

limh→0
f(φ(t)φ(h))− f(φ(t))

h

=
d

du
|u=0 f ◦ Lφ(t) ◦ φ(u)

= (Lφ(t))∗
d

du
|u=0 (f)

= (Lφ(t))∗X(f) = X̃(φ(t))(f).

So φ is an integral curve of X̃.

Definition 19.24 A one parameter subgroup of G is a homomorphism phi : R→ G.
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We have thus shown that there is a bijective correspondence between left invariant vector fields
and one parameter subgroups.

Given X ∈ Lie(G), let φ be the unique smooth homomorphism with dφ
dt
(0) = X. Then we

define the exponential map as follows.

Definition 19.25 (Exponential map) With the above notation,

exp(X) = φ(1).

Clearly
exp(t1 + t2)X = (exp t1X)(exp t2X)

and
exp(−tX) = (exp tX)−1.

Proposition 19.26 The map exp : Lie(G) → G is smooth, and 0 is a regular value so exp
takes a neighbourhood of 0 ∈ Lie(G) diffeomorphically onto a neighbourhood of e ∈ G.

Proof: Define a vector field Y on Lie(G)×G by

Y(X,a) = 0⊕ X̃(a).

(Note that T(X,a)(Lie(G)×G) ∼= TeG⊕ TaG.) Then Y has a flow

α : R× (TeG×G)→ TeG×G

which is smooth (since Y is smooth). Since exp(X) is the projection on G of α(1, 0⊕X), exp
is smooth (as it is the composition of smooth maps).

Given v ∈ TeG, the curve c(t) = tv in TeG has tangent vector v at 0.
So

exp0(v) =
d

dt
|0 exp(tv) = v.

Hence
(d exp) |0= id.

So exp is a diffeomorphism in a neighbourhood of 0.

Proposition 19.27 If ψ : G→ H is a homomorphism then

expH ◦dψ = ψ ◦ expG .
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Proof: If ψ : G→ H, and X ∈ TeG, then let ψ : R→ G be a homomorphism with

dφ

dt
|t=0= X.

Then ψ ◦ φ : R→ H is a homomorphism with

d

dt
(ψ ◦ φ) |t=0= ψ∗X.

So
exp(ψ(X) = ψ ◦ φ(1) = ψ(expX).

Proposition 19.28 If G = GL(n,R) then Lie(G) = Mn×n(R) (the vector space of n × n real
matrices) and

exp(X) =
∑

n≥0

Xn

n!
. (3)

Proof: We define a norm on Lie(G) as follows:

|X| = sup1≤i,j≤n|xij|

sp

|Xk| ≤ 1

n
(n|X|)k

(since |AB| ≤ n|A||B|). Hence the series (3) converges absolutely. Also the one parameter
subgroup of GL(n,R) whose left invariant vector field has the value X at e is exp(tX) since

∑

n≥0

tnXn

n!
= id + tX +O(t2)

hence
d

dt
|t=0

∑

n≥0

tnXn

n!
= X.

Proposition 19.29 If G = GL(n,R) and A,B ∈ Lie(G) then

[A,B] = AB − BA.
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Proof:

A =
∑

i,j

aij
∂

∂xij
,

B =
∑

i,j

bij
∂

∂xij

where aij, bij are constants. Let Ã, B̃ be the left invariant vector fields corresponding to A and
B. Then

[Ã, B̃]f = Ã(B̃f)− B̃(Ãf)

(by definition of the Lie bracket on vector fields).
If x ∈ GL(n,R), then

B̃(x)ij = (xB)ij =
∑

r

xirbrj

so

A(B̃f) =
∑

i,j

∑

k,ℓ

akℓ
∂

∂xkℓ

=
∑

r

airbrj
∂

∂xij
r + terms with

∂

∂xkℓ

∂

∂xij

Likewise

B(Ãf) =
∑

r

birarj
∂

∂xij
f.

It follows that
[Ã, B̃] = ˜AB − BA.

Proposition 19.30 If [X, Y ] = 0 then exp(X + Y ) = expX expY.

Proof: For matrix groups,

exp(X + Y ) =
∑

n≥0

(X + Y )n

n!

=
∞
∑

m=0

m
∑

p=0

1

(m− p)!X
m−p 1

p!
Y p

=
(

∞
∑

k=0

1

k!
Xk
)(

∞
∑

ℓ=0

1

ℓ!
Xℓ
)

= expX expY.
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