Math 327, Term Test
Fall Quarter 2011
Thu, Oct 27

Name: \qquad

Instructions:

Show all your work on these sheets. Justify your answers! This test has 5 problems and 7 pages. Make sure you have all of them. No calculators, books, notes, etc. are allowed.

Prob.	Possible points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
TOTAL	50	

Question 1. (10 points)
(a) Define the concept of a basis for a topology on a set X.
(b) Is the collection of all closed intervals, $\mathcal{C}=\{[a, b]: a<b$ in $\mathbb{R}\}$, a basis for a topology on the set of real numbers?
(c) Suppose that X, Y are topological spaces. Show that $\{U \times V: U$ open in X, V open in $Y\}$ is a basis for a topology on $X \times Y$. You are not allowed to assume anything about the product topology!

Question 2. (10 points)
(a) Show that \mathbb{R}_{ℓ} is disconnected.
(b) Show that if X is path-connected, then X is connected.
(c) Is \mathbb{R}_{ℓ} path-connected?

Question 3. (10 points) Suppose that $A \subset X$ and suppose that $f: A \rightarrow Y$ is a continuous function with Y Hausdorff. Show that there is at most one continuous function $g: \bar{A} \rightarrow Y$ that extends f (that is, $\left.g\right|_{A}=f$).

Question 4. (10 points) Recall that, as a set, $\mathbb{R}^{\omega}=\prod_{n=1}^{\infty} \mathbb{R}$.
(a) Is the function $f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}$ with $f(t)=(t, 2 t, 3 t, \ldots)$ continuous, if \mathbb{R}^{ω} carries the product topology?
(b) Does the sequence in \mathbb{R}^{ω},

$$
\begin{aligned}
\mathbf{x}_{1} & =(1,0,0,0, \ldots) \\
\mathbf{x}_{2} & =\left(\frac{1}{2}, \frac{1}{2}, 0,0, \ldots\right) \\
\mathbf{x}_{3} & =\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \ldots\right) \\
& \vdots
\end{aligned}
$$

converge, if \mathbb{R}^{ω} carries the box topology? Justify your answer.

Question 5. (10 points) Suppose that (X, d) is a metric space. Fix any element $x \in X$ and $r>0$, a positive real number.
(a) Show that $C_{r}(x)=\{y \in X: d(x, y) \leq r\}$ is a closed subset of X.
(b) Give an example to show that $\overline{B_{r}(x)}$ need not be equal to $C_{r}(x)$. (Recall that $B_{r}(x)=\{y \in X: d(x, y)<r\}$. Hint: one can find such an example that is a subset of \mathbb{R} with the induced metric.)

Scratch Paper

