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Abstract. Let F be a finite extension of Qp. Using the mod p Sa-
take transform, we define what it means for an irreducible admissible
smooth representation of an F -split p-adic reductive group over Fp to be
supersingular. We then give the classification of irreducible admissible
smooth GLn(F )-representations over Fp in terms of supersingular repre-
sentations. As a consequence we deduce that supersingular is the same
as supercuspidal. These results generalise the work of Barthel–Livné for
n = 2. For general split reductive groups we obtain similar results under
stronger hypotheses.

1. Introduction

Let F be a finite extension of Qp with ring of integers O and residue field k.
The hypothetical mod p Langlands correspondence is expected to associate
to an n-dimensional mod p Galois representation ρ : Gal(F/F )� GLn(Fp)

an admissible smooth representation π(ρ) of GLn(F ) over Fp (or maybe
an equivalence class of such representations). So far this is understood
in the case n = 2 and F = Qp (see [Bre03b], [Col10]), with some recent
progress on the case n = 2 and F/Qp unramified (see [BP]). While mod
p Galois representations are relatively easy to understand, the theory of
mod p smooth representations of p-adic reductive groups is only at its be-
ginnings. It takes its origin with the fundamental work of Barthel–Livné
[BL95], [BL94] that classifies irreducible representations of GL2(F ) over Fp

that have a central character into four classes: (i) irreducible principal series,
(ii) one-dimensional representations, (iii) twists of the Steinberg representa-
tion, and (iv) “supersingular” representations. While the first three classes
are explicit, the classification of supersingular representations has only been
completed so far for F = Qp [Bre03a]. When F 6= Qp it turned out to be
much more complicated [BP], [Hu10].

In this paper we generalise the work of Barthel–Livné to GLn, giving the
classification of irreducible admissible representations of GLn(F ) over Fp in
terms of supersingular representations. (From now on “admissible” is short
for “admissible smooth”.) We first define what it means for an irreducible
admissible representation to be supersingular (generalising the definition
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for GL2) by means of the mod p Satake isomorphism [Her11]. To state our
main theorem we need to recall the definition of the generalised Steinberg
representations. Let P denote any standard parabolic subgroup, that is a
parabolic subgroup containing the Borel subgroup B of upper triangular
matrices. Let P denote the opposite parabolic and let

SpP =
Ind

GLn(F )

P (F )
1

∑
Q)P Ind

GLn(F )

Q(F )
1
.

It is known to be irreducible and admissible [GK].

Theorem 1.1. The irreducible admissible GLn(F )-representation are given

by Ind
GLn(F )

P (F )
(σ1 ⊗ · · · ⊗ σr), where

(i) P is a standard parabolic with Levi
∏r

i=1 GLni
;

(ii) σi is an irreducible admissible GLni
(F )-representation such that ei-

ther

◦ σi is supersingular and ni > 1, or

◦ σi ∼= SpQi
⊗(ηi ◦ det) for some smooth character ηi : F

× � F
×
p

and some standard parabolic Qi ⊂ GLni
;

(iii) ηi 6= ηi+1 whenever both σi and σi+1 fall into the second case.

Moreover, P is uniquely determined and each σi is unique up to isomor-

phism.

Note that Ollivier [Oll06] proved the irreducibility of this representation
when it is a principal series, i.e., when n1 = · · · = nr = 1. In this case
σi = ηi for all i and consecutive characters are distinct. When n = 2
the result recovers the classification of Barthel–Livné: when P = B one
obtains the irreducible principal series; when P = G one obtains twists of
generalised Steinberg representations (either trivial or Steinberg in this case)
and supersingular representations.

Corollary 1.2. Suppose that π is an irreducible admissible GLn(F )-representation.
Suppose that Q = LN ′ is a standard parabolic and that τ is an irreducible

admissible L(F )-representation.

(i) Ind
GLn(F )

Q(F )
τ is of finite length, and all constituents occur with mul-

tiplicity one.

(ii) π is supersingular if and only if π is supercuspidal.

Note that the constituents in part (i) can be described explicitly. By a
supercuspidal representation in part (ii) we mean an irreducible admissible
representation that does not occur among the constituents of any parabolic
induction in part (i) of the corollary with Q 6= GLn.

These results follow from the work of Barthel–Livné when n = 2. Part
(i) was also known in the case of the trivial principal series Ind

GLn(F )

B(F )
1 by

[GK] (the constituents are the SpP ) and for all principal series when n = 3
[Vig08].
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It is not hard to determine the submodule structure of the representations
in part (i) using the methods of this paper. See Section 10.

1.1. Comparison with classical results. It is interesting to compare the
results with the results of Bernstein and Zelevinsky over the complex num-
bers [BZ77], [Zel80]. The most striking difference is the complete lack of
intertwining operators in our context, by the uniqueness part of Theo-
rem 1.1. Thus for example the principal series IndG

B
(χ1 ⊗ · · · ⊗ χn) and

IndG
B
(χ′

1 ⊗ · · · ⊗ χ′
n) do not share any common constituents unless χi = χ′

i

for all i. Note that there is no obvious way to produce intertwining operators
over Fp due to the lack of an Fp-valued Haar measure. One would however
expect non-trivial extensions between the irreducible representations and
the knowledge of these will play some role in the understanding of a mod p
Langlands correspondence. (For GL2(Qp) extensions between irreducibles
were computed in [Col10], [Eme10b], [BP], [Paš10].)

Another difference, maybe related to the lack of intertwining operators,
is that parabolic inductions tend to be irreducible. In some sense the only
reducibilities arise for “obvious” reasons, namely when ηi = ηi+1 for some i
in Theorem 1.1. And in those cases constituents occur with multiplicity one,
unlike over the complex numbers (in fact Zelevinsky formulated an analogue
of the Kazhdan–Lusztig conjecture to predict the multiplicities [Zel81]).

1.2. Methods used. We now want to explain in more detail what goes
into the proofs. Most of our methods work for more general groups, so let
G be a split connected reductive group over F . It is known that G extends
to a connected reductive group over the ring of integers O. Fix such an
integral model G/O, and fix a maximal split torus T/O and a Borel subgroup
B/O containing T . Then K := G(O) is a hyperspecial maximal compact
subgroup of G(F ) [Tit79, 3.8.1]. We usually write G for G(F ), etc. This
should not lead to any confusion.

1.2.1. Weights, Hecke eigenvalues, and supersingular representations. Let
π be any admissible smooth G-representation over Fp. It is easy to see
that π|K contains an irreducible K-subrepresentation V . Since the kernel
of K = G(O) � G(k) is a pro-p group and the coefficient field has char-
acteristic p, it follows that V factors through a representation of the finite
group G(k) over Fp. Such a representation is called a K-weight, or simply
weight. The multiplicity space HomK(V, π) is finite-dimensional (as π is ad-
missible). Let c-IndGK V denote the representation compactly induced from
V . By Frobenius reciprocity we have HomK(V, π) ∼= HomG(c-Ind

G
K V, π),

so that the Hecke algebra HG(V ) := EndG(c-Ind
G
K V ) naturally acts on it.

Let X∗(T )− denote the subset of antidominant coweights in Hom(Gm, T ).
In [Her11] we established an analogue of the Satake isomorphism, showing
that HG(V ) ∼= Fp[X∗(T )−]. (The map depends on the choice of positive
roots and on the choice of a uniformiser.) In particular, HG(V ) is commu-
tative. Thus the HG(V )-module HomK(V, π) is a direct sum of generalised
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eigenspaces, and there exists an eigenvector in each of them. Note that an
algebra homomorphism χ : HG(V )� Fp occurs as set of Hecke eigenvalues
of HG(V ) on HomK(V, π) if and only if there is a non-zero G-linear map

(1.3) c-IndGK V ⊗HG(V ),χ Fp � π.

Suppose that π is moreover irreducible. For each set of Hecke eigenvalues
χ occurring on HomK(V, π) we get a monoid homomorphism χ′ : X∗(T )− �
Fp via the Satake isomorphism. Note that in our setup above we fixed
a reductive integral structure G/O, giving rise to K. We say that π is

supersingular if, for any reductive integral structure G/O, we have that χ′

is zero on all non-invertible elements of X∗(T )− for all χ and all V . (When
G = GLn, all hyperspecial maximal subgroups are conjugate, so that we can
work with a fixed G/O and K. Moreover, as a corollary to Theorem 1.1 we
will see that χ′ is independent of χ and V above, so that the condition only
needs to be checked once.)

We now discuss two of the key tools that go into the proofs of the main
results.

1.2.2. Comparison of compact and parabolic inductions. Suppose we are
given a weight V and an algebra homomorphism χ : HG(V ) � Fp. the

support of χ′ : X∗(T )− � Fp determines a facet of the antidominant Weyl
chamber which in turn determines a standard parabolic Pχ. Let P = MN
be a standard parabolic containing Pχ. If V is sufficiently “regular” (de-
pending on P ), a condition that is satisfied by most weights, we show that
there exists a natural isomorphism

(1.4) c-IndGK V ⊗HG(V ),χ Fp
∼
−� IndG

P
(πM ),

for a certain smooth M -representation πM defined in terms of V and χ.
Note that πM is not admissible in general. It is a representation of the same
form as the left-hand side. (See Theorem 3.1 for the precise statement.)
When P = G, the isomorphism (1.4) is the identity map.

When G = GL2 and P = B the isomorphism (1.4) was established by
Barthel–Livné using a calculation with the Bruhat–Tits tree. In that case
πM is a character. In our proof we compare compact and parabolic induc-
tions via a parahoric induction, building on the ideas of Schneider–Stuhler
[SS91] and Vignéras [Vig04].

1.2.3. Changing the weight. In certain situations we construct isomorphisms
of the form

c-IndGK V1 ⊗HG(V1),χ1
Fp

∼
−� c-IndGK V2 ⊗HG(V2),χ2

Fp,

where Vi are weights and χi : HG(Vi) � Fp are algebra homomorphisms
(i = 1, 2). Suppose we have such an isomorphism. By (1.3), if V1 occurs in
π with eigenvalues χ1, then V2 occurs in π with eigenvalues χ2.

While the method is general, for the moment we can obtain an explicit
criterion mainly when G = GLn. The idea is to study the Hecke bimodule
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HomG(c-Ind
G
K V1, c-Ind

G
K V2). Our proof requires an explicit version of the

Satake transform, which we deduce from the corresponding result over the
complex numbers (the formula of Lusztig and Kato).

1.2.4. Irreducibility proof. Let G = GLn. Suppose π := IndG
P
(σ1 ⊗ · · · ⊗ σr)

as in Theorem 1.1. To prove irreducibility it is enough to show that any
weight V ⊂ π generates π as G-representation. Without loss of generality
V �֒ π is a Hecke eigenvector. If V is sufficiently regular we find a map
πM ։ σ1 ⊗ · · · ⊗ σr and use the isomorphism (1.4) to obtain a surjection
c-IndGK V ։ π. This shows that V generates π. Otherwise we use the
criterion of §1.2.3 to change to a sufficiently regular weight and we are
done as before. (To verify the criterion we use conditions (ii) and (iii) in
Theorem 1.1.)

1.2.5. Classification proof. Let G = GLn. Suppose π is an irreducible ad-
missible G-representation. Let V be a weight of π and let χ be a set of Hecke
eigenvalues on HomK(V, π). Then π is a quotient of c-IndGK V ⊗HG(V ),χ Fp

by (1.3). Suppose we can satisfy the conditions in §1.2.2 for some proper
parabolic P 6= G. Then IndG

P
(πM ) ։ π by (1.4). Using Emerton’s theory

of ordinary parts [Eme10a] one gets a map IndG
P
σ ։ π for some irreducible

admissible M -representation σ and one can proceed by induction. Other-
wise one tries to change the weight using the criterion of §1.2.3. If both
tactics fail, it turns out that π is either supersingular or π looks like a one-
dimensional representation in the sense that it contains the same weight
with the same Hecke eigenvalues as such a representation. A calculation
with the Iwahori Hecke algebra allows us to conclude in the latter case.

Both the irreducibility and the classification proofs go through for gen-
eral G provided one puts conditions on the weights of the representation so
that all weights that occur in the arguments are sufficiently regular. See
Theorems 8.8 and 9.17 for precise statements.

1.3. Other results. We complete the irreducibility proof of the generalised
Steinberg representations SpP of split reductive groups. This was proved by
Große-Klönne in case the root system is of type A, B, C, or D. In general we
use his work to show that SpP contains a unique weight (with multiplicity
one) and we determine the Hecke eigenvalues in that weight. We then use
§1.2.2 to show that the unique weight generates the representation.

1.4. Arrangement of the paper. In §2–3 we discuss Hecke actions, vari-
ants of the mod p Satake transform, and the comparison result between
compact and parabolic inductions. In §4 we give a parameterisation of
Hecke eigenvalues which is analogous to the classical parameterisation by
unramified characters of the torus. We also define what it means for an ir-
reducible admissible representation to be supersingular. In §5 we adapt the
result of Lusztig and Kato to give an explicit version of the mod p Satake
isomorphism. In §6 we study maps between compact inductions and deduce
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our “change of weight” criterion. In §7 we discuss generalised Steinberg rep-
resentations. In §8–9 we deduce the main results. Finally in §10 we prove
results on the submodule structure of parabolically induced representations.

1.5. Notation. Let F be a finite extension of Qp with ring of integers O,
uniformiser ̟, and residue field k of order q. Let G be a split connected
reductive group over O and fix a maximal split torus T . Let Φ ⊂ X∗(T )
denote the set of roots. For each root α ∈ Φ denote by α∨ the associated
coroot. Choose a system of positive roots Φ+ and let B = TU denote the
associated Borel subgroup. Let W be the Weyl group and let K = G(O),
a hyperspecial maximal compact subgroup of G(F ). For example, we could
take G = GLn with the diagonal maximal torus T and the Borel subgroup
B consisting of upper triangular matrices.

The letters P , Q usually denote standard parabolic subgroups, i.e., par-
abolic subgroups containing the Borel B. A Levi decomposition P = MN
of a standard parabolic is implicitly assumed to be standard, i.e., M is the
unique Levi subgroup of P that contains T . If P = MN is a parabolic we
denote by P =MN the opposite parabolic (determined by our choice of Levi
M). We will sometimes use that the multiplication map N ×M ×N � G
is injective on F -points (in fact it is even an open immersion on the level of
O-schemes [Jan03, §II.1.11]).

We denote by Z the connected centre of G. Similarly ZM denotes the
connected centre of a Levi subgroup M . We denote by X∗(T )− the set of
antidominant coweights of T . The set of simple roots in Φ+ is denoted by ∆.
If P = MN is a standard parabolic, we similarly define ∆M (with respect
to Φ+

M = ΦM ∩ Φ+).
We denote by red : K = G(O) � G(k) the reduction map and by K(1)

its kernel, which is a pro-p group. For a standard parabolic subgroup P , we
let P := red−1(P (k)) be the corresponding parahoric subgroup. We will also
write I for the standard Iwahori subgroup B and define I(1) := red−1(U(k))
(the pro-p Sylow subgroup of I).

If H is a group and σ an H-representation, we denote by socH σ the
H-socle, i.e., the largest semisimple subrepresentation.

We usually write G, P , M , . . . when we really mean G(F ), P (F ), M(F ),
. . . This should cause no confusion.

We use the following abbreviated notations for the conjugation action:
tK = tKt−1 and Kt = t−1Kt.

All representations in this paper, unless otherwise stated, live on k̄-vector
spaces.

1.6. Acknowledgements. I am grateful to Matthew Emerton for his com-
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Proposition 9.1. I thank Christophe Breuil, Guy Henniart, Vytautas Paškūnas,
Peter Schneider, Marie-France Vignéras, and the referee for useful com-
ments. I also thank the mathematics department at UCLA for the excellent
working conditions during my stay in the spring of 2009.
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2. Hecke actions and the Satake transform

2.1. Background.

2.1.1. Weights.

Definition 2.1. A weight is an irreducible representation V of the finite
group G(k) over k̄.

The set of q-restricted weights is defined to be:

Xq(T ) = {λ ∈ X∗(T ) : 0 ≤ 〈λ, α∨〉 < q ∀α ∈ ∆}.

We also define:

X0(T ) = {λ ∈ X∗(T ) : 〈λ, α∨〉 = 0 ∀α ∈ Φ}.

For ν ∈ X∗(T ) dominant, let F (ν) denote the irreducible G/k̄-module of

highest weight ν. Via the inclusion G(k) � G(k̄), we can consider F (ν) as
G(k)-representation.

Proposition 2.2. Suppose that the derived subgroup of G is simply con-

nected. Then all weights are of the form F (ν), where ν ∈ Xq(T ). Moreover

for ν, ν ′ ∈ Xq(T ), we have F (ν) ∼= F (ν ′) as G(k)-representations if and

only if ν − ν ′ ∈ (q − 1)X0(T ).

This goes back to Steinberg if G is semisimple; in general, see Prop. 1.3
in the appendix to [Her09]. If the derived subgroup of G fails to be simply
connected, weights can be described using a z-extension of G/k (as in the
proof of [Her11, Lemma 2.5]).

We will sometimes denote by 1 the trivial weight. If P = MN is a
standard parabolic, we denote byX0

M (T ) and FM (ν) the analogues ofX0(T )
and F (ν) for the Levi M .

For the following, very useful Lemma see [Her11, Lemma 2.5]. It was first
proved by Smith and Cabanes.
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Lemma 2.3. Suppose that V is a weight and that P = MN is a standard

parabolic. Then V N(k) and VN(k) are weights for M and the natural, M(k)-

linear map V N(k) � VN(k) is an isomorphism. In particular, V U(k) ∼= VU(k)

is one-dimensional.

Suppose the derived subgroup of G is simply connected. If V ∼= F (ν) for

some ν ∈ Xq(T ), then V N(k) ∼= FM (ν). Moreover, as a subspace of F (ν),

V N(k) is the sum of all weight spaces F (ν)ν′ with ν − ν ′ ∈ ZΦM .

Definition 2.4. A weight V is said to beM -regular if StabW (V U(k)) ⊂WM .

Here StabW (V U(k)) denotes the set of w ∈ W that preserve the one-

dimensional, T (k)-stable subspace V U(k) ⊂ V . Let us make this condi-
tion more explicit in case V = F (ν) for some ν ∈ Xq(T ). Note that

StabW (V U(k)) = StabW (ν), which is generated by the simple reflections
sα for α ∈ ∆ such that 〈ν, α∨〉 = 0. Thus V = F (ν) is M -regular if and
only if 0 < 〈ν, α∨〉 ≤ q − 1 for all α ∈ ∆−∆M .

Lemma 2.5. The map V 7� V N(k) from M -regular weights for G to weights

for M is a bijection.

Proof. Suppose first that the derived subgroup of G is simply connected.
Then the same is true for M . Let V be a weight for M . Then V ∼= FM (ν)
for some ν ∈ X∗(T ) such that 0 ≤ 〈ν, α∨〉 ≤ q − 1 for all α ∈ ∆M . We need
to find ν ′ ∈ X∗(T ) such that (a) 0 ≤ 〈ν ′, α∨〉 ≤ q − 1 for all α ∈ ∆M , (b)
0 < 〈ν ′, α∨〉 ≤ q − 1 for all α ∈ ∆ −∆M , and (c) ν − ν ′ ∈ (q − 1)X0

M (T ).
The first two conditions express that ν ′ is q-restricted and that the weight
V ∼= F (ν ′) is M -regular. Condition (c), which in fact implies (a), expresses

that V N(k) ∼= V . Clearly there is such a ν ′ and it is uniquely determined up
to (q − 1)X0(T ). This completes the proof.

In the general case, pick a z-extension 1 � R � G̃ � G � 1 in the
special fibre, just as in [Her11, Lemma 2.5]. We know there is a unique

weight V for G̃ such that V Ñ(k) ∼= V as M̃(k)-representation. Since R(k)
acts trivially on V and since it acts on V via the central character, we see
that V descends to a G(k)-representation. The uniqueness of V is even
easier. �

2.1.2. Smooth representations. We recall that a smooth G-representation π
is said to be admissible if πH is finite-dimensional for all open subgroups H
of G. It is sufficient to verify this condition for one open pro-p subgroup H.
An irreducible admissible G-representation π has a central character, which
we denote by ωπ : Z � k̄×.

Any irreducible smooth K-representation factors through G(k) (as K(1)

is pro-p); it is thus a weight. If π is admissible, socK π ⊂ πK(1) is finite-
dimensional and non-zero, so π contains a weight V . (It is clear that even
any smooth G-representation contains a weight.) We will also say that V is
a weight of π.
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For a closed subgroup H ⊂ G and a smooth H-representation σ we de-
note by IndGH σ (resp., c-IndGH σ) the representation that is induced (resp.,

compactly induced) from σ. If H is open, then c-IndGH σ ∼= k̄[G]⊗k̄[H] σ, so

c-IndGH is a left adjoint to the forgetful functor. In this case, we will denote

by [g, x] ∈ c-IndGH σ the element that is supported on Hg−1 and sends g−1

to x ∈ σ. If P is a parabolic subgroup, then IndGP is exact. (This is because
the map G� G/P has continuous sections; see [Eme10a, Prop. 4.1.5].)

Suppose that H is a compact open subgroup and that V is a finite-
dimensional smooth H-representation. We define the Hecke algebra of V
to be HH(V ) := EndG(c-Ind

G
H V ). Using the above adjunction, we can and

usually will think of it as the k̄-algebra of compactly supported functions
ϕ : G � Endk̄ V satisfying ϕ(h1gh2) = h1 ◦ ϕ(g) ◦ h2 for all h1, h2 ∈ H,
g ∈ G, where the multiplication is given by convolution. Explicitly, for
ϕ ∈ HH(V ) and f ∈ c-IndGH V , we have

ϕ(f)(g) =
∑

γ∈G/H

ϕ(gγ)f(γ−1).

Note that if π is a smooth G-representation, HH(V ) naturally acts on the
multiplicity space HomH(V, π) ∼= HomG(c-Ind

G
H V, π). (This is a right ac-

tion.) Explicitly, if ϕ ∈ HH(V ) and f : V � π is H-linear, then

(f ∗ ϕ)(v) =
∑

γ∈H\G

γ−1f(ϕ(γ)v).

Suppose now that V is a weight. We will usually write HG(V ) instead of
HK(V ). We will see just below that HG(V ) is commutative. If V = 1 then
HG(V ) is the usual unramified Hecke algebra k̄[K\G/K].

2.2. The mod p Satake transform. We begin by recalling some results
of [Her11]. Let T− denote the submonoid of T ,

T− = {t ∈ T : ordF (α(t)) ≤ 0 ∀α ∈ ∆},

and let H−
T (V

U(k)) denote the subalgebra of HT (V
U(k)) consisting of those

functions ϕ : T � k̄ that are supported on T−.

Theorem 2.6. Suppose that V is a weight. Then

SG : HG(V )� HT (V
U(k))

ϕ 7� 
t 7� ∑

u∈U/U(O)

ϕ(tu)
∣∣∣
V U(k)




is an injective k̄-algebra homomorphism with image H
−
T (V

U(k)).

In particular, HG(V ) ∼= k̄[X∗(T )−] is commutative and noetherian (Gor-
dan’s lemma shows that X∗(T )− is finitely generated). We recall that
G =

∐
Kλ(̟)K, where λ ranges over X∗(T )− (refined Cartan decomposi-

tion). Moreover, HG(V ) has a basis given by Tλ for λ ∈ X∗(T )−, where Tλ
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has supportKλ(̟)K and sends λ(̟) to the endomorphism V ։ VNλ(k)
∼�−

V N−λ(k) �֒ V (see §2.4 for the definition of Pλ = MλNλ). We also denote

by τλ ∈ HT (V
U(k)) the element supported on λ(̟)T (O) that sends λ(̟) to

1. We have:

(2.7) SG(Tλ) =
∑

µ∈X∗(T )−
µ≥Rλ

aλ(µ)τµ, with aλ(µ) ∈ k̄ and aλ(λ) = 1.

Here, µ ≥R λ means that µ− λ is a non-negative real linear combination of
the simple coroots.

For z ∈ Z we also define Tz ∈ HG(V ) such that supp(Tz) = Kz and
Tz(z) = idV . Thus Tλ(̟) = Tλ whenever λ(̟) ∈ Z. The following formulae
for z, z1, z2 ∈ Z, z0 ∈ Z(O) will be useful later.

Tz1z2 = Tz1Tz2 , T1 = 1,(2.8)

Tz0z = ωV (z0)
−1Tz,(2.9)

Tz = z−1 on c-IndGK V ,(2.10)

where ωV : Z(k)� k̄× denotes the central character of V .

2.3. Variants of the Satake transform. Let P = MN be a standard
parabolic subgroup. There is a “partial” Satake homomorphism ′SMG :
HG(V )� HM (VN(k)). It is defined by

′
S
M
G : HG(V )� HM (VN(k))

ϕ 7� 
m 7� pN

∑

N(O)\N

ϕ(nm)


 ,

where pN denotes the projection V ։ VN(k). It is easy to check that this

map is well defined (just as for SG [Her11]). We also have SMG : HG(V ) �
HM (V N(k)), defined in the same way as SG.

We have a simple compatibility between ′SMG and SMG . There is an algebra

isomorphism HG(V )
∼
−� HG(V

∗) which sends ϕ to ϕ′ with ϕ′(g) = ϕ(g−1)∗.
(Recall that HG(V ) is commutative.) Similarly we have an isomorphism

HM (V N(k))
∼
−� HM ((V ∗)N(k)). In the following lemma we denote by S

M,op
G

the analogue of SMG that is computed with respect to P =MN (a standard
parabolic for Φ−).

Lemma 2.11. We have the following commutative diagram.

−−−−−−−�S
M,op
G

−−
−
−�∼= −−

−
−� ∼=

−−−−−−�′SM
G

HG(V ) HM (V N(k))

HG(V
∗) HM ((V ∗)N(k))
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In particular ′SG := ′STG is injective. Its image consists of those elements of

HT ((V
∗)U (k)) that are supported on T− and is isomorphic to k̄[X∗(T )−].

Proof. This is straightforward, noting that V N(k) � V is dual to V ∗ �
(V ∗)N(k). �

We will see in Cor. 2.19 that SMG and ′SMG are actually the same, under

the natural identification of V N(k) and VN(k) (at least when the derived

subgroup of G is simply connected). This does not seem to be obvious from
the definition.

Proposition 2.12. The map ′SMG is an injective algebra homomorphism. It

is a localisation map of integral domains. Also ′SG = ′SM ◦ ′SMG .

The same of course also holds for SMG .

Proof. It is easy to see that ′SMG is an algebra homomorphism (see also
[Her11]). A direct calculation shows that ′SG = ′SM ◦ ′SMG . Since ′SG is

injective, so is ′SMG . As we have fixed a uniformiser ̟, we can identify
HT (VU(k)) with k̄[X∗(T )]. By Lemma 2.11 the image of HG(V ) in k̄[X∗(T )]

is k̄[X∗(T )−] and the image of HM (VN(k)) in k̄[X∗(T )] is k̄[X
M
∗ (T )−], where

XM
∗ (T )− is the monoid of antidominant coweights for T in M . Finally note

that k̄[X∗(T )−] �֒ k̄[XM
∗ (T )−] is a localisation map of integral domains: it

suffices to invert any λ ∈ X∗(T )− such that for α ∈ ∆, 〈λ, α〉 = 0 if and
only if α ∈ ∆M . �

Suppose now that V is a weight for G and σ a smooth M -representation.
By the Iwasawa decomposition we have (IndG

P
σ)|K ∼= IndK

P (O)
σ, so the nat-

ural map

HomK(V, IndG
P
σ)� HomM(O)(VN(k), σ)(2.13)

f 7� f =
(
v 7� f(v)(1)

)

is a bijection (here v is any lift of v). Note that HG(V ) naturally acts on
the left-hand side, and on the right-hand side via ′SMG .

Lemma 2.14. The natural map in (2.13) is HG(V )-equivariant.

Proof. For ϕ ∈ HG(V ) let ϕM = ′SMG (ϕ). We compute

(f ∗ ϕM )(v) =
∑

M(O)\M

m−1f

( ∑

N(O)\N

ϕ(nm)v

)
(1)

=
∑

M(O)\M

∑

N(O)\N

f(ϕ(nm)v)(m−1n−1)

and
(f ∗ ϕ)(v) = (f ∗ ϕ)(v)(1) =

∑

K\G

f(ϕ(g)v)(g−1).
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By the Iwasawa decomposition G = KP these two expressions are equal. �

2.4. Various lemmas. Suppose that λ ∈ X∗(T ). Let Pλ = MλNλ denote
the parabolic subgroup of G defined by λ. For the following proposition, see
[Her11, Prop. 3.8].

Proposition 2.15. Let t = λ(̟). Then red(K ∩Kt) = Pλ(k).

Define Z−
M := ZM ∩ T− and Z+

M := ZM ∩ (T−)−1. We also need

Z−−
M := {z ∈ ZM : ordF (α(z)) < 0 ∀α ∈ ∆−∆M}.

Lemma 2.16. Suppose P = MN is a standard parabolic subgroup. We let

P
−
= N ∩P, P

0
=M ∩P, P

+
= N ∩P. Then P = P

−
P
0
P
+
(in any order).

Moreover, conjugation by T− contracts P
−

and expands P
+
.

If h0 ∈ Z−−
M then the sets (P

+
)h

n
0 for n ≥ 0 form a neighbourhood basis

of the identity in N .

By interchanging positive and negative roots we obtain similarly that
P = P−P0P+ in any order with T− contracting P− and expanding P+.

Proof. Note that P
−
= N(O), P

0
= M(O), and P

+
= ker(N(O) � N(k)).

For any O-group scheme H let us write 1H(O) for ker(H(O) � H(k)).
Assume for now that K(1) = 1U(O)1T (O)1U(O). It is not hard to prove
this by an elementary argument when G = GLn; we will justify it in general
below.

From our assumption,K(1) ⊂ P (O)1P (O). From P (O) = N(O)M(O) and

P (O) =M(O)N(O) it follows thatK(1) ⊂ P
−
P
0
P
+
. Thus P = P (O)K(1) ⊂

P
−
P
0
P
+
. The reverse inclusion is obvious. Thus P = P

−
P
0
P
+
. Noting that

P
0
normalises both P

−
and P

+
, and by using the inverse, we see that the

order does not matter. (Moreover, it is a direct product decomposition
because multiplication N ×M ×N � G is injective.)

Let us show that T− contracts P
−
and expands P

+
. Choose root homo-

morphisms xα : Ga
∼
−� Uα [Jan03, II.1.2]. Fix an ordering of the set of

roots Φ. Note that N =
∏

Ψ− Uα and N =
∏

Ψ+ Uα (as O-schemes), where

Ψ± = Φ± − Φ±
M . Thus P

−
=
∏

Ψ− xα(O) and P
+

=
∏

Ψ+ xα(̟O). The
claim follows since txα(u)t

−1 = xα(α(t)u) for t ∈ T (F ) and u ∈ F .
Now fix an element h0 ∈ Z−−

M . The multiplication map
∏
xα :

∏
Ψ+ Ga �

N induces an isomorphism of O-schemes, thus also a homeomorphism
∏

Ψ+ F �
N(F ). Write again P

+
=
∏

Ψ+ xα(̟O), so that (P
+
)t =

∏
Ψ+ xα(α(t)

−1̟O)
for any t ∈ T (F ). By the definitions, ordF (α(h

n
0 )) ≤ −n for all α ∈ Ψ+ and

all n ≥ 0. Thus (P
+
)h

n
0 for n ≥ 0 form a neighbourhood basis of the identity

in N(F ).
Finally we justify that K(1) = 1U(O)1T (O)1U(O) using Bruhat–Tits the-

ory. Fraktur letters denote the O-group schemes defined in [BT84]. Since G
is a reductive group over O with special fibre G/F , there is a (hyper-)special
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point x in the reduced building of G/F such that G ∼= G0
x [BT84, 5.1.40].

We identify these two group schemes. Let f := f ′x be the corresponding
“quasi-concave” function on the set of roots [BT84, 4.6.24], so that G = G0

f .

Now this O-group scheme has two split maximal tori, T and T. By [G+70,
Exp. XXVI, Prop. 6.16] there is an element γ ∈ G(O) that conjugates T

to T . In the generic fibre the two unipotent subgroups, U/F and γ(U+
/F )

might correspond to two different choices of positive roots. By multiplying
γ by a suitable element of N(T )(O) we can assure that U and γU+ agree on
the generic fibre. But then they are the same (see for example [BT84, 1.2.6]).
By [BT84, 4.6.8] we have 1G0

f (O) =
1U−(O)1T(O)1U+(O). Conjugating by γ

we obtain K(1) = 1G(O) = 1U(O)1T (O)1U(O). �

Lemma 2.17. Suppose that P =MN and Q = LN ′ are standard parabolics.

Suppose that V is both M and L-regular. Then pN ′(κV N(k)) 6= 0 for κ ∈ K

implies κ ∈ QP.

If StabW (V U(k)) equals WM (resp., WL), we may drop the assumption

that V be L-regular (resp., M -regular).

Proof. It is easy to reduce to the case that the derived subgroup of G is
simply connected, just as in [Her11, Lemma 2.5]. (Note that the statements
we want to prove just concern the finite group G(k).) In this case V = F (ν)
for some ν ∈ Xq(T ), moreover V N(k) = F (ν)N .

We claim that for all weights µ of F (ν)N and all α ∈ Φ+ − Φ+
M we have

〈µ, α∨〉 > 0. We know that F (ν)N is the irreducible M -representation of
highest weight ν, so its weights lie in the convex hull of wν (w ∈WM ). Note
that any WM preserves Φ+−Φ+

M . (Reduce to the case of a simple reflection
sβ with β ∈ ΦM . It preserves ΦM and Φ+ − {β}.) Therefore 〈wν, α∨〉 =
〈ν,w−1α∨〉 ≥ 0 for all w ∈ WM . If equality holds, then sw−1α(ν) = ν.
Thus sw−1α ∈ WM (as V is M -regular), which implies that α ∈ ΦM , a
contradiction. The claim follows.

By the rational Bruhat decomposition, G(k) =
∐

WL\W/WM
Q(k)σ̇P (k).

It will thus suffice to show that pN ′(σ̇V N(k)) 6= 0 for σ ∈ W implies σ ∈

WLWM . By Lemma 2.3 we see that V = V N ′(k) ⊕ ker pN ′ and that these
two subspaces are preserved by the torus T acting on V = F (ν), sharing
no common weight. (Note that pN ′ is identified with F (ν)� F (ν)N ′ . This
follows, for example, since the natural surjection VN ′(k) � F (ν)N ′ is an

isomorphism, since the domain is irreducible as L(k)-representation.) So

there is a weight µ of F (ν)N such that σµ is a weight of F (ν)N ′
∼= F (ν)N

′

.
By the previous paragraph,

〈µ, α∨〉 > 0 ∀α ∈ Φ+ − Φ+
M , 〈σµ, β∨〉 > 0 ∀β ∈ Φ+ − Φ+

L .

It follows that σ(Φ+ − Φ+
M ) ⊂ Φ+ ∪ Φ−

L .

We claim that there is a w ∈WM such that σw(Φ+) ⊂ Φ+∪Φ−
L . Suppose

there is a simple root α of M such that σ(α) < 0. Then sα preserves
Φ+ − Φ+

M , so σsα(Φ
+ − Φ+

M ) ⊂ Φ+ ∪ Φ−
L while σsα maps one fewer simple
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root of M to a negative root. By induction we find a w ∈ WM such that
σw(Φ+ − Φ+

M ) ⊂ Φ+ ∪ Φ−
L and σw maps all simple roots of M to positive

roots. This implies the claim.
Equivalently, w−1σ−1(Φ−−Φ−

L) ⊂ Φ−. The same argument as in the pre-
vious paragraph shows that there is a w′ ∈WL such that w−1σ−1w′(Φ−) ⊂
Φ−. This shows that σ = w′w−1 ∈WLWM , which completes the proof.

To justify the final statement, suppose that StabW (V U(k)) = WM . Then

V N(k) = V U(k) is one-dimensional. (One can see this directly using the

Bruhat decomposition; alternatively note that ν ∈ X0
M (T ).) Thus if pN ′(σ̇V N(k)) 6=

0 then σν is a weight of F (ν)N
′

. Pick simple roots αi ∈ ∆ with correspond-
ing simple reflections si ∈W such that

ν  s1ν  · · ·  sr · · · s2s1ν = σν.

By Lemma 2.3 it follows that ν−σν ∈ ZΦL. So each αi is in ΦL, hence σ ∈
sr · · · s2s1 StabW (ν) ⊂ WLWM . The argument in case StabW (V U(k)) = WL

is similar, or follows by duality. �

Corollary 2.18. Suppose that P =MN is a standard parabolic and that λ ∈
X∗(T )−. Suppose that V isM -regular, and suppose that either StabW (V U(k)) =
WM or that V is also Mλ-regular. Let t = λ(̟).

(i) If Tλ(g)|V N(k) 6= 0 then g ∈ KtP. If pN ◦ Tλ(g) 6= 0 then g ∈ PtK.

(ii) We have SMG (Tλ) = TM
λ and ′SMG (Tλ) = TM

λ .

This generalises [Her11, Proposition 1.4]. Note that if λ(̟) ∈ Z−
M , then

an M -regular V is also Mλ-regular.

Proof. (i) Writing g = κ′tκ with κ′, κ ∈ K, we see that Tλ(t)κ|V N(k) 6= 0,

so pNλ
(κV N(k)) 6= 0. Lemma 2.17 shows that κ ∈ Pλ · P. By Prop. 2.15,

red(Pλ) = red(K ∩Kt), so κ ∈ (K ∩Kt)P and g = κ′tκ ∈ KtP.
The other part is similar, or follows by duality.
(ii) Take any m ∈M and suppose that Tλ(mn)|V N(k) 6= 0 (some n ∈ N) is

a non-zero term contributing to (SMG Tλ)(m). By part (i) and by Lemma 2.16
(twice), we have

mn ∈ KtP ∩ P = KtP (O) ∩ P = P (O)tP (O) =M(O)tM(O)N(O).

Thusm ∈M(O)tM(O) and n ∈ N(O). This shows that SMG (Tλ) is supported

on M(O)tM(O) and that (SMG Tλ)(t) = Tλ(t)|V N(k) is a linear projection

(which is non-zero since V U(k) ⊂ V N(k)), so SMG (Tλ) = TM
λ . The other

statement follows similarly or by using duality. �

Corollary 2.19. Suppose that the derived subgroup of G is simply con-

nected. Let P = MN be a standard parabolic subgroup. Under the natural

identification of HM (V N(k)) and HM (VN(k)) we have SMG = ′SMG .

Proof. We first show that SG = ′SG when dimV = 1. We will make use
of the “Gelfand involution” on HG(V ) (see [Her11], end of Section 2.1).
Let τ : G � G denote a “transpose” involution as in [Jan03, II.1.16]; it



IRREDUCIBLE MOD p REPRESENTATIONS OF A p-ADIC GLn 15

fixes T pointwise and interchanges Uα and U−α for all α ∈ Φ. Let τV
denote Hom(V, k̄) with G(k) acting via τ . As the derived subgroup of G is
simply connected, there is a G(k)-linear isomorphism ς : V � τV . A linear
map ϕ ∈ Endk̄ V induces τϕ ∈ Endk̄ V by dualising and applying ς. We
verified in [Her11] that τf(τg) = f(g) for all f ∈ HG(V ) and all g ∈ G. As
dimV = 1, we have Endk̄ V = k̄ and thus τϕ = ϕ. It follows that

SG(f)(t) =
∑

U/U(O)

f(tu) =
∑

U/U(O)

f(τ (tu)) =
∑

U(O)\U

f(ut) = ′
SG(f)(t).

Next we show that SG = ′SG in general. Let M be the standard Levi
with StabW (V U(k)) = WM . Under the natural identification, we have by
Cor. 2.18 that SMG (Tλ) = TM

λ = ′SMG (Tλ), for any λ ∈ X∗(T )−. Note that

V N(k) is one-dimensional (for example, by the Bruhat decomposition), so
by the above, SM = ′SM for this weight. By transitivity, SG = ′SG.

Finally if M is arbitrary we use that ′SG = ′SM ◦ ′SMG and SG = SM ◦ SMG .
By the above we already know that SG = ′SG and SM = ′SM . The claim
follows by the injectivity of the latter map. �

Lemma 2.20. Suppose P =MN . Then G = PTK.

Suppose the subset X ⊂ G has finite image in P\G. Then there exists

h ∈ Z−
M such that hX ⊂ PT−K.

See also [SS91, Lemma 12].

Proof. For the first claim, suppose g ∈ G. By the Cartan decomposition,
there is a λ ∈ X∗(T )− such that g ∈ Kλ(̟)K. By Prop. 2.15, we have

P\Kλ(̟)K/K ∼= P (k)\G(k)/P−λ(k).

The rational Bruhat decomposition shows that g ∈ Pẇλ(̟)K = P(wλ(̟))K,
for some w ∈ W . Alternatively one could use the Bruhat–Tits decomposi-
tion G = BN(T )B.

For the second claim, say X ⊂
⋃

Ptiki (finite union). We now use that
(G,B, N(T )) is a generalised Tits system [Iwa66, §1]. The relevant axioms
are as follows: (i) H := N(T ) ∩ B is normal in N(T ), (ii) N(T )/H is a
semidirect product of a subgroup Ω and a normal subgroup W ′, (iii) there
exists a generating set S = {wi : i ∈ I} of W ′ each of whose elements has
order 2, (iv) for any σ ∈ ΩW ′ and any i ∈ I, σBwi ⊂ BσwiB∪BσB, (v) any
element of Ω normalises B. Note thatH = T (O) in our case. We remark that
it is in fact not hard to justify using Bruhat–Tits theory that (G,B, N(T ))
is a generalised Tits system, namely by applying [BT72, Thm. 6.5]; so S
consists of the reflections in the walls of the chamber C corresponding to B

and Ω is the stabiliser of C, as a subset of the apartment of T .
For G = GLn it is not hard to write down Ω and S explicitly [Iwa66, §2].
It follows easily from the above axioms that for all n′ ∈ N(T ) there are

n1, . . . , nr ∈ N(T ) such that

nBn′ ⊂
⋃

BnnjB ∀n ∈ N(T ).
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(Just write the image of n′ in N(T )/H as a product of elements in S ∪ Ω
and induct.) Thus there are finitely many nij ∈ N(T ) such that hBti ⊂⋃

j BhnijB for all i and for all h ∈ Z−
M . It follows using Lemma 2.16 that

hPtiki = P
−
P
0
hP

+
tiki ⊂

⋃

j

PhnijK,

as P
+
⊂ B ⊂ P. Writing nij = tijẇij with tij ∈ T and wij ∈W we see that

the right-hand side equals
⋃

j PhtijK. Since M(O) ⊂ P we may replace tij
with any WM -conjugate without changing its double coset. In this way we
can ensure that tij is antidominant as element of M . Then it is possible to
find an h ∈ Z−

M such that htij ∈ T
− for all i, j. �

2.5. Compatibilities between Hecke actions. Let V be a weight forM .
Consider the following subspaces of Hecke algebras:

H
′
M (V ) := {ϕ : supp(ϕ) ⊂M(O)Z−

MM(O)} ⊂ HM (V ),

H
′
P(V ) := {ϕ : supp(ϕ) ⊂ PZ−

MP} ⊂ HP(V ),

H
′
P
(V ) := {ϕ : supp(ϕ) ⊂ PZ−

MP} ⊂ H
P
(V ).

The following lemma shows that each of them is a (commutative) subalgebra
and that we can naturally identify them.

Lemma 2.21. The subspaces H′
M (V ), H′

P
(V ), H′

P
(V ) are subalgebras. The

map ϕ 7� ϕ|M from H′
P
(V ) to H′

M (V ) (resp., from H′
P
(V ) to H′

M (V )) is

an algebra isomorphism.

See also Vignéras [Vig04, §A.7] for the subalgebras H′
P
(V ) and H′

P
(V ).

Proof. Clearly H′
M (V ) is a subalgebra. Once we show that the two maps

are bijective and compatible with the algebra structures, it will follow that
the other two subspaces are subalgebras. We concentrate on the first map.
The verification for the second map is similar or may be deduced by duality.

The map is clearly injective. To check surjectivity, note that the TM
h for

h ∈ Z−
M span H′

M (V ). For h ∈ Z−
M define Eh : G � End(V ) in H′

P
(V )

with support PhP and such that Eh(h) = idV . Let us check that it is

well defined. If p1h = hp2 for pi ∈ P, write pi = p−i p
0
i p

+
i according to

the Iwahori decomposition P = P−P0P+ (Lemma 2.16). It follows that
p
−
1 (p

0
1h)(p

+
1 )

h = h
p
−
2 (hp

0
2)p

+
2 in NMN , so p 01 = p 02 . Thus p1Eh(h) = p 01 =

p
0
2 = Eh(h)p2 ∈ End(V ) and Eh is well defined. As PhP = P−(P0h)P+, we

see that Eh|M = TM
h .

To check that the map is compatible with the algebra structures, by (2.8)
it suffices to show that Eh1 ∗Eh2 = Eh1h2 (hi ∈ Z−

M ). We have

Ph1Ph2P = P(h1P
−
P
0)(P+h2)P = Ph1h2P
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by Lemma 2.16 and

(Eh1 ∗ Eh2)(h1h2) =
∑

P/(P∩h1P)

Eh1(ph1)Eh2(h
−1
1 p

−1h1h2).

Since P ∩ h1P = (h1P−)P0P+, we may replace the index set by P−/h1P−.
To obtain a non-zero term for p ∈ P− we also need (h−1

1 p
−1h1)h2 ∈ Ph2P =

P−(P0h2)P
+. As the product map N ×M ×N � G is injective, p ∈ h1P−.

Thus (Eh1 ∗ Eh2)(h1h2) = idV . �

Suppose that V is an M -regular weight. Consider the subspace

H
′
G(V ) := {ϕ : supp(ϕ) ⊂ KZ−

MK} ⊂ HG(V ).

The following lemma shows that it is a subalgebra and that we can identify it
with H′

P
(V N(k)) and with H′

P
(VN(k)). Moreover, the resulting identification

H′
P
(V N(k)) ∼= H′

G(V ) ∼= H′
P
(VN(k)) is the one obtained in Lemma 2.21.

(Recall that V N(k) ∼
−� VN(k) is a weight for M .)

Lemma 2.22. Assume that V is M -regular. The subspace H′
G(V ) is a

subalgebra. There is an algebra isomorphism iP : H′
G(V ) � H′

P
(V N(k)),

which is characterised as follows. For any ϕ ∈ H′
G(V ) the map iP(ϕ) is

supported on PZ−
MP and for g ∈ PZ−

MP, iP(ϕ)(g) ∈ End(V N(k)) is the

restriction of ϕ(g) ∈ End(V ) to V N(k).

Similarly there is an algebra isomorphism i
P
: H′

G(V )� H′
P
(VN(k)) such

that for any ϕ ∈ H′
G(V ) the map i

P
(ϕ) is supported on PZ−

MP and for

g ∈ PZ−
MP, i

P
(ϕ)(g) ∈ End(VN(k)) is induced by ϕ(g) ∈ End(V ).

The resulting identification of H′
P
(V N(k)) with H′

P
(VN(k)) is the one ob-

tained in Lemma 2.21. The resulting identification of H′
G(V ) with H′

M (V N(k)) ∼=
H′

M (VN(k)) is given by SMG = ′SMG .

Proof. Let ϕ ∈ H′
G(V ). We verify that ϕ(g) induces an endomorphism of

V N(k) for g ∈ PZ−
MP by checking it for g = h ∈ Z−

M . Take n ∈ N(O) and

note that nϕ(h) = ϕ(h)nh, where nh ∈ N(O) since h−1 contracts N(O) = P+

(Lemma 2.16). Thus iP(ϕ) is well defined.
We now use Lemma 2.21 and its proof. Note that H′

G(V ) is spanned by

the Tλ with λ(̟) ∈ Z−
M . Fix such a λ and let h := λ(̟). By definition,

Tλ(h) ∈ End(V ) induces the identity map on V N−λ(k). But N−λ ⊂ N since
λ(̟) ∈ Z−

M , so Tλ(h) induces the identity map on V N(k). As a consequence,

iP(Tλ) = Eh. So Tλ in H′
G(V ) is mapped to Eh|M = TM

h = TM
λ in H′

M (V ).

By Cor. 2.18, the composite map H′
G(V ) � H′

M (V ) is given by SMG . As

the TM
λ with λ(̟) ∈ Z−

M span H′
M (V ), the map is surjective. But SMG is

injective on HG(V ), so H′
G(V ) is the inverse image under SMG of H′

M (V ), in

particular it is a subalgebra. Moreover iP is an algebra homomorphism as
SMG is.
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The algebra isomorphism i
P
is obtained by duality from iP (interchanging

positive and negative roots and V with V ∗).
The two identifications coincide since for m ∈ M(O)Z−

M , the endomor-

phisms of V N(k) and VN(k) induced by ϕ(m) are identified via V N(k) ∼
−�

VN(k). �

After this subsection we will no longer use the primed notation. If V is
a weight for M , we will denote by H(V ) the isomorphic Hecke algebras of
Lemma 2.21. ThusH(V ) can be thought of as subalgebra ofHM (V ), HP(V ),
and H

P
(V ). Similarly, suppose that V is an M -regular weight for G. Then

V N(k) ∼
−� VN(k) is a weight for M and we denote it by V . We will denote

by H(V ) the isomorphic Hecke algebras of Lemma 2.22. Thus H(V ) can
be thought of as subalgebra of HG(V ), HM (V ), HP(V ), and H

P
(V ). Note

that H(V ) ∼= H(V ). There can be no confusion since M -regular weights for
G are in natural bijection with weights for M (by Lemma 2.5).

We will even write H when it is clear from the context what V (or V ) is.

In the following proposition we will use natural maps c-IndGP V
N(k) �

c-IndGK V � c-IndG
P
VN(k). They are obtained by Frobenius reciprocity from

V N(k) � V ⊂ c-IndGK V , respectively V � IndK
P
VN(k) ⊂ c-IndG

P
VN(k).

Alternatively, as Hecke operators they are supported on K and map the
identity of K to the natural map V N(k) � V , respectively V � VN(k).

Proposition 2.23. Assume that V is M -regular. We have the following

diagram of Hecke operators.

−−−−−−�� −֒−−−−�−−
−�iP(ϕ)

����������� −−
−� ϕ ���������� −−� i

P
(ϕ)

−−−−−−�� −֒−−−−�c-IndGP V
N(k) c-IndGK V c-IndG

P
VN(k)

c-IndGP V
N(k) c-IndGK V c-IndG

P
VN(k)

For all ϕ ∈ H ⊂ HG(V ) the two squares commutes. If moreover supp(ϕ) ⊂
KZ−−

M K then there are diagonal arrows making the whole diagram commute.

Proof. First note that the horizontal map on the top left is surjective: this is
because the map is obtained by compactly inducing the K-linear surjection
c-IndKP V N(k) � V from K to G. Similarly, the horizontal map on the top
right is injective.

To check commutativity, we first deal with the left half of the diagram.
Without loss of generality, ϕ is supported on a single double coset KhK
with h = λ(̟) ∈ Z−

M . By Frobenius reciprocity it suffices to check that

the two maps around the left square agree on V N(k) ⊂ c-IndGP V
N(k). A

vector v ∈ V N(k) is mapped to [1, v] ∈ c-IndGK V which in turn is mapped

to
∑

K\KhK[g−1, ϕ(g)v] ∈ c-IndGK V under ϕ. If ϕ(g)v 6= 0 then g ∈ KhP

by Cor. 2.18. We verify that the natural map P\PhP � K\KhP is a
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bijection. It is enough to show that P ∩Kh = P ∩ Ph or equivalently that
hP∩K = hP∩P. Now note that hP∩K = (hP−)P0P+ ⊂ P by Lemma 2.16.

Thus we see that

(2.24)
∑

K\KhK

[g−1, ϕ(g)v] =
∑

P\PhP

[g−1, iP(ϕ)(g)v],

which shows that the left square commutes.
Now suppose that supp(ϕ) = KhK for some h = λ(̟) ∈ Z−−

M . In this

case P−λ = P . We will define the diagonal map ϕδ ∈ HK,P(V, V
N(k)) as

follows (see §6.1 for the notation). We let ϕδ agree with ϕ on PhK and we
let it vanish outside. To see that it is well defined, note that ϕ(h) maps V

to V N−λ(k) = V N(k) and that P preserves V N(k). We check that the top left
triangle commutes. For v ∈ V N(k) the arrow to the right maps it to [1, v]
as before and ϕδ further maps it to

∑
P\PhK [g−1, ϕ(g)v]. As noted above, if

ϕ(g)v 6= 0 then g ∈ KhP. But PhK ∩KhP = PhP since K ∩ hK ⊂ P−λ = P

by Prop. 2.15, so we are done as in (2.24). Since the map at the top is
surjective, the bottom triangle also commutes.

We now dualise the left half of the diagram, in the following sense. We
think of maps between compact inductions as Hecke operators and then
apply the duality ϕ 7� ϕ′ considered in §2.3. (Strictly speaking, we also use
this duality for maps between different compact inductions as in §6.1.) We
obtain

−−−−−−�−−
−
−�ϕ′

������������� −−
−
−� iP(ϕ)′

−−−−−−�c-IndGK V ∗ c-IndGP (V
∗)N(k)

c-IndGK V ∗ c-IndGP (V
∗)N(k)

Since the natural maps V N(k) � V and V ∗ � (V ∗)N(k) are dual, the top and

bottom maps are the natural ones. By construction of iP, i
P(ϕ)′ = iP(ϕ

′).
By replacing V by V ∗ and by interchanging positive and negative roots, we
obtain the right half of the diagram. �

Corollary 2.25. Suppose that V isM -regular and that χ : HM (V N(k))� k̄
is an algebra homomorphism. Then the maps of Prop. 2.23 induce isomor-

phisms

c-IndGP V
N(k) ⊗H,χ k̄

∼
−� c-IndGK V ⊗H,χ k̄

∼
−� c-IndG

P
VN(k) ⊗H,χ k̄,

where H = H(V ) as above.

Proof. Pick any λ ∈ X∗(T )− such that h := λ(̟) ∈ Z−−
M . Since TM

h TM
h−1 =

1, we have χ(TM
h ) 6= 0. Let m = ker(χ), an ideal of H. We will use that H

is commutative.
The first map is clearly surjective. Let ϕ = Tλ ∈ H; it is identified with

TM
h so χ(ϕ) 6= 0. Recall that we denoted the diagonal map corresponding

to ϕ on the left-hand side of the diagram in Prop. 2.23 by ϕδ. We now show
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that ϕδ is H-linear. Let ξ : c-IndGP V
N(k) � c-IndGK V denote the natural

map, and suppose that ψ ∈ H ⊂ HG(V ). Then

ϕδ ◦ ψ ◦ ξ = iP(ϕ) ◦ iP(ψ) = iP(ψ) ◦ iP(ϕ) = iP(ψ) ◦ ϕδ ◦ ξ,

and the claim follows, since ξ is surjective.
If f ∈ c-IndGP V

N(k) and ξ(f)⊗ 1 = 0 then ξ(f) ∈ m(c-IndGK V ). Then

ϕ(f) = ϕδ(ξ(f)) ∈ ϕδ(m(c-IndGK V )) = mϕδ(c-Ind
G
K V ),

so ϕ(f) ⊗ 1 = 0. Thus f ⊗ 1 = χ(ϕ)−1(ϕ(f) ⊗ 1) = 0, so the first map is
injective.

Suppose y ⊗ 1 ∈ c-IndG
P
VN(k) ⊗H,χ k̄. Then y ⊗ 1 = χ(ϕ)−1(ϕ(y) ⊗ 1)

comes from c-IndGK V , by the commuting triangle on the bottom right. This
proves that the second map is surjective.

Suppose x ⊗ 1 ∈ c-IndGK V ⊗H,χ k̄ maps to zero. Let η : c-IndGK V �
c-IndG

P
VN(k) denote the natural map. Then η(x) ∈ m(c-IndG

P
VN(k)), so

ηϕ(x) = ϕη(x) ∈ m(ϕ c-IndG
P
VN(k)) ⊂ m η(c-IndGK V ).

As η is injective, ϕ(x) ∈ m(c-IndGK V ). Finally x⊗1 = χ(ϕ)−1(ϕ(x)⊗1) = 0.
This proves that the second map is injective. �

3. Parabolic inductions and compact inductions

The following theorem is inspired by work of Barthel–Livné for GL2

(see [BL94, Thm. 25]). One aspect of the proof, namely the comparison
of parahoric and parabolic inductions, crucially use ideas of Schneider–
Stuhler [SS91] and Vignéras [Vig04]. See also the comment after Cor. 3.6.

Theorem 3.1. Let P = MN be a standard parabolic in G and suppose

that V is an M -regular weight for G. Then for any algebra homomor-

phism χ : HM (VN(k)) � k̄, there is a natural isomorphism of smooth G-

representations,

c-IndGK V ⊗HG(V ),χ k̄
∼
−� IndG

P

{
c-IndMM(O) VN(k) ⊗HM (V

N(k)),χ
k̄
}
.

Note that χ becomes a character of HG(V ) by composing with the partial
Satake homomorphism ′SMG : HG(V )� HM (VN(k)).

Proof. We begin by defining maps

(3.2) c-IndGK V
η
−� c-IndG

P
VN(k)

ζ
−� IndG

P
(c-IndMM(O) VN(k)).

The map η is the natural one that we already used in Prop. 2.23. Explic-
itly, η sends f ∈ c-IndGK V to g 7� pN (f(g)) in c-IndG

P
VN(k).

We define ζ by the following formula, for f ∈ c-IndG
P
VN(k):

ζ(f)(g) =
∑

P (O)\P

p−1[1, f(pg)].
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Note that P acts via M . By using that P (O) =M(O)N (O) we see that the
term in the sum only depends on p ∈ P (O)\P . We check that the sum only
involves finitely non-zero terms. Without loss of generality f is supported
on a single coset Pγ. Since P ∩ P = P (O), we see that the sum involves
at most one term. Clearly ζ(f) is P -equivariant and ζ is G-equivariant. It
follows that ζ(f) is smooth, so ζ(f) ∈ IndG

P
(c-IndMM(O) VN(k)). Therefore ζ

is well defined.
Let H = H(V ) as in §2.5. It acts on the first term of (3.2) via HG(V ),

on the second term via H
P
(VN(k)) and on the third term via HM (VN(k)).

Step 1. Check that η and ζ are H-equivariant. We already checked this
for η in Prop. 2.23.

We introduce a useful shorthand for certain functions in IndG
P
σ for any

smooth M -representation σ. For any compact open subset Ω ⊂ N and any
x ∈ σ we write [Ω, x] for the function that is supported on PΩ−1 and sends
all ν ∈ Ω−1 to x. This function is locally constant, since N �֒ P\G has
open image and Ω is compact open. Note that for m ∈M and n ∈ N ,

m[Ω, x] = [mΩ,mx], n[Ω, x] = [nΩ, x].

We claim that ζ([1, v]) = [P
+
, [1, v]]. Clearly the left-hand side is supported

on PP = PP
+
. It is then an easy computation to check that both sides

agree on P
+
.

To check that ζ is H-equivariant, we can immediately reduce to the
case when ϕ = Tλ for some λ ∈ X∗(T )− with h := λ(̟) ∈ Z−

M . Then
′SMG (Tλ) = TM

h by Cor. 2.18. Suppose v ∈ VN(k). On the one hand, in

c-IndMM(O) VN(k) we have TM
h ([1, v]) = [h−1, v] by (2.10). Thus (′SMG (ϕ) ◦

ζ)([1, v]) = [P
+
, [h−1, v]]. On the other hand,

(ζ ◦ i
P
(ϕ))([1, v]) =

∑

P\PhP

g−1[P
+
, [1, ϕ(g)v]]

=
∑

(P∩P
h
)\P

p
−1h−1[P

+
, [1, Tλ(h)pv]].

Since (P
+
)h\P

+ � (P∩P
h
)\P is a bijection by Lemma 2.16 and taking into

account that P
+
fixes v and that Tλ(h) is trivial on VN(k) (see the proof of

Lemma 2.22), the sum above simplifies to

∑

(P
+
)h\P

+

[p−1(P
+
)h, [h−1, v]] = [P

+
, [h−1, v]].

Step 2. Check that ζ ◦ η is HG(V )-equivariant (via partial Satake). Let
θ : V � IndG

P
(c-IndMM(O) VN(k)) be the composition of V � c-IndGK V with

ζ ◦ η. It is K-linear. Note that by definition of ζ and since η([1, v]) is
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supported on K,

θ(v)(1) = ζ(η([1, v]))(1) = [1, η([1, v])(1)] = [1, pN (v)].

Thus, in the notation of (2.13), θ ∈ HomM(O)(VN(k), c-Ind
M
M(O) VN(k)) =

HM (VN(k)) is the natural map. By Lemma 2.14, θ ∗ ϕ = θ ∗ ϕM , where

ϕM = ′SMG ϕ. Since HM (VN(k)) is commutative and since the map in (2.13)

is natural in σ, we get that θ ∗ ϕ = ϕM ◦ θ = ϕM ◦ θ. But the map in (2.13)
is injective, so θ ∗ ϕ = ϕM ◦ θ, as required.

Step 3. Check that η ⊗H,χ k̄ is an isomorphism. This is the content of
Cor. 2.25.

Step 4. Check that ζ ⊗H,χ k̄ is surjective.

Fix any non-zero v ∈ VN(k). We claim that ζ([1, v]) ⊗ 1 = [P
+
, [1, v]]⊗ 1

generates IndG
P
(c-IndMM(O) VN(k))⊗H,χ k̄. Pick h0 ∈ Z−−

M and let x0 = [1, v] ∈

c-IndMM(O) VN(k). Since

[P
+
, hn0x0]⊗ 1 = [P

+
, TM

h−n
0

(x0)]⊗ 1 = [P
+
, x0]⊗ χ(TM

h−n
0

),

it is enough to show that [P
+
, hn0x0] (n ∈ Z) generate IndG

P
(c-IndMM(O) VN(k)).

Note that the smoothM -representation σ := c-IndMM(O) VN(k) is generated

by x0. (This is the only property of σ that we will use.) We want to show
that any f ∈ IndG

P
σ is contained in the G-representation generated by the

[P
+
, hn0x0] for n ∈ Z. By writing P\G as a (finite) disjoint union of compact

open subsets, each of which is contained in a G-translate of P\PN , we can
reduce to the case that supp(f) ⊂ PN . Since f |N is locally constant and
compactly supported, we can moreover assume that f = [Ω, x], for some
compact open subset Ω ⊂ N and x ∈ σ. We can write x =

∑
i λimix0 as

finite linear combination with λi ∈ k̄, mi ∈M , so

f =
∑

i

λimi[Ω
mi , x0].

Thus we may assume that f = [Ω, x0], for some compact open Ω ⊂ N . By

Lemma 2.16 there is an n≫ 0 such that Ω =
∐

j νj · (P
+
)h

n
0 , a finite disjoint

union with νj ∈ N . Therefore

f =
∑

j

νj[(P
+
)h

n
0 , x0] =

∑

j

νjh
−n
0 [P

+
, hn0x0],

which completes the argument.
Step 5. Check that ζ ⊗H,χ k̄ is injective.

Let f ′ ∈ c-IndG
P
VN(k) such that ζ(f ′) ⊗ 1 = 0. We need to show that

f ′ ⊗ 1 = 0. Note that for h ∈ Z−
M we have supp(Ehf

′) ⊂ Ph supp(f ′) since

Eh is supported on PhP. (Recall that Eh ∈ H was defined in the proof of
Lemma 2.21. It is identified with TM

h .) Thus by Lemma 2.20 there is an
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h ∈ Z−
M such that supp(Ehf

′) ⊂ PT−K. Since Ehf
′ ⊗ 1 = χ(Eh)(f

′ ⊗ 1)

and χ(Eh) = χ(TM
h ) 6= 0, we may assume that supp(f ′) ⊂ PT−K.

Lemma 2.16 shows that for t ∈ T−, t(P
−
) ⊂ P

−
and (P

+
)t ⊂ P

+
. Thus

for h ∈ Z−
M and t ∈ T−, PhPtK = P(hP

−
P
0
)(P

+
t)K ⊂ PhtK. We can

write f ′ =
∑r

i=1 f
′
i such that supp(f ′i) = Pt′iki (t

′
i ∈ T−, ki ∈ K). Since any

element of ZM can be written in the form h′h−1 for h′, h ∈ Z−
M , we can find

hi ∈ Z−
M and τi ∈ T (O) such that τihit

′
i = τjhjt

′
j whenever T (O)ZM t

′
i =

T (O)ZM t
′
j . Let fi = χ(Ehi

)−1Ehi
f ′i , f =

∑
i fi, and ti = τihit

′
i ∈ T−. Then

f ′ ⊗ 1 = f ⊗ 1, moreover supp(fi) ⊂ PtiK (as T (O) ⊂ P) and

(3.3) ti = tj whenever T (O)ZM ti = T (O)ZM tj .

We can now write fi =
∑
fij (finite sum) such that supp(fij) = Ptikij for

some kij ∈ K. By combining those fij that have identical support, we may
assume moreover:

(3.4) the sets Ptikij are pairwise disjoint.

We now show that f = 0. In fact we show that f |
PP = 0, but all our

conditions on f are invariant under K, so f = 0 since PPK = G. (When
we replace f by kf for some k ∈ K, then ti is unchanged and kij is replaced
by kijk

−1. Also note that ζ(kf)⊗ 1 = kζ(f)⊗ 1 = 0.)

All we will use is that the image of ζ(f)(1) in c-IndMM(O) VN(k) ⊗H,χ

k̄ is zero. Let us show that this latter space is naturally isomorphic to
c-IndMM(O)ZM

VN(k). We let ZM act on VN(k) by declaring that hv = χ(TM
h−1)v

for h ∈ ZM and v ∈ VN(k). This is compatible with the M(O)-action:

for h0 ∈ ZM (O), TM
h−1
0

= ω(h0)T
M
1 = ω(h0) by (2.8) and (2.9), where

ω : ZM (k) � k× is the central character of VN(k), so χ(TM
h−1
0

) = ω(h0).

The map
c-IndMM(O) VN(k) � c-IndMM(O)ZM

VN(k)

is the obvious one induced by Frobenius reciprocity. It sends [m, v] to
[m, v]ZM

, where the subscript is used to distinguish between the two in-
duced representations. In particular it is surjective. For h ∈ ZM it sends
TM
h [m, v] = h−1[m, v] to [h−1m, v]ZM

= [m,h−1v]ZM
= χ(TM

h )[m, v]ZM
.

(See (2.10) for the first identity.) The induced map

(3.5) c-IndMM(O) VN(k) ⊗H,χ k̄ ։ c-IndMM(O)ZM
VN(k)

is injective: we can lift any element in the kernel to one of the form
∑

[mi, vi] ∈
c-IndMM(O) VN(k), where the mi lie in distinct M(O)ZM -cosets. By consider-

ing its image on the right-hand side we see that all vi are zero.
Since ζ(f)(1)⊗1 depends only on f |

PP , we will assume from now on that

f is supported on PP = P
+
P . Thus kij ∈ (P

+
)ti · P ∩ K = (P

+
)ti · P (O)

for all i. Thus we may assume that kij ∈ P (O) = P
−
P
0
without changing

Ptikij . Since ti ∈ T− shrinks P
−

we may even assume that kij ∈ P
0
=
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M(O). Let us write fij = [k−1
ij t

−1
i , vij]. As k−1

ij t
−1
i ∈ M , we see that

ζ(fij)(1)⊗ 1 = [k−1
ij t

−1
i , vij]ZM

. By showing that M(O)ZM tikij are pairwise

disjoint we will deduce from ζ(f)(1)⊗1 = 0 that vij = 0 for all i, which will
complete the argument. Thus suppose that M(O)htikij = M(O)trkrs for
some h ∈ ZM . Note that ZMT

− is the antidominant part of T with respect
toM . Thus by the Cartan decomposition for M we have T (O)hti = T (O)tr,
so by (3.3) it follows that ti = tr and hence that h ∈ ZM (O). Therefore
M(O)tikij = M(O)trkrs which implies Ptikij = Ptrkrs, so by (3.4) we see
that (i, j) = (r, s) and we are done.

Step 6. We showed that (ζ ◦ η) ⊗H,χ k̄ is an HG(V )-linear isomorphism
(as HG(V ) commutative). By tensoring over HG(V ) with χ we see that
(ζ ◦ η) ⊗HG(V ),χ k̄ is an isomorphism. The target of that isomorphism is

isomorphic to IndG
P
(c-IndMM(O) VN(k)) ⊗HM(V

N(k)),χ
k̄, since ′SMG : HG(V ) �֒

HM (VN(k)) is a localisation map. Since HM (VN(k)) is noetherian, we can

pick a finite generating set ϕ1, . . . , ϕn of the ideal kerχ. We have an exact
sequence

σ⊕n
∑

ϕi
−−−� σ � σ ⊗HM (V

N(k)),χ
k̄ � 0.

As IndG
P

is exact, we deduce that IndG
P
(c-IndMM(O) VN(k)) ⊗HM(V

N(k)),χ
k̄ is

isomorphic to IndG
P
(c-IndMM(O) VN(k) ⊗HM (V

N(k)),χ
k̄). This completes the

proof. �

We record the following corollary to the proof.

Corollary 3.6. Suppose that V is a weight for M and that χM : ZM � k̄×

such that χM |ZM (O) is the central character of V . Then there is an algebra

homomorphism χ : H� k̄ such that χ(TM
h ) = χM (h)−1 for all h ∈ Z−

M and

we have

c-IndG
P
V ⊗H,χ k̄

∼
−� IndG

P
(c-IndMM(O)ZM

V ).

On the right-hand side we let h ∈ ZM act on V by χM (h).

Proof. This isomorphism was obtained in the above proof, in case V is of
the form VN(k), where V is M -regular, and χ is the restriction of an algebra

homomorphism HM (VN(k))� k̄. But it did not matter that V was of that

form. (It is anyway, by Lemma 2.5.) Moreover, by Prop. 4.1 and Cor. 4.2
(or directly) the pair (M,χM ) gives rise to χ : HM (V ) � k̄ such that
χ(TM

h ) = χM (h)−1 for h ∈ Z−
M . �

If G = GLn and P = B is the Borel, this recovers the results of Schneider–
Stuhler [SS91, Prop. 11] (χ = 1) and Vignéras [Vig04, Thm. 4.10] (χ arbi-
trary). In those cases the right-hand side simplifies to the principal series

IndG
B
(χT ).
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4. Hecke eigenvalues and supersingularity

The following proposition allows one to compare Hecke eigenvalues be-
tween different weights. It is analogous to the classical result parameterising
unramified Hecke eigenvalues by unramified characters of the torus [Car79,
Cor. 4.2]. It will be convenient to define a standard Levi to be the unique
Levi subgroup containing T of a standard parabolic subgroup.

Proposition 4.1. There is a natural bijection between χ ∈ Homk̄-alg(HG(V ), k̄)

and pairs (M,χM ), where M is a standard Levi and χM : ZM � k̄× a char-

acter such that χM |ZM (O) is the central character of VN(k).

Given such a pair (M,χM )the corresponding set of eigenvalues is the com-

posite of algebra homomorphisms

χ : HG(V )
′SG−−� H

−
T (VU(k))

χ′

−� k̄,

where χ′(ϕ) =
∑

ZM (O)\ZM
ϕ(z)χM (z)−1.

We will say in the following that χ ∈ Homk̄-alg(HG(V ), k̄) is parameterised

by the pair (M,χM ) if they correspond under the bijection in the proposition.
Suppose now that (M,χM ) consists of a standard Levi M and an arbitrary
smooth character χM : ZM � k̄×. Then there may be more than one weight
V such that the central character of VN(k) equals χM |ZM (O); for each one we

obtain a corresponding algebra homomorphism HG(V ) � k̄. In §9 we will
see that if G = GLn and π is an irreducible admissible G-representation,
then all Hecke eigenvalues in all weights of π are identified in this manner.

We will see below thatM is in fact the smallest standard Levi such that χ
factors through ′SMG : HG(V )� HM (VN(k)) (as an algebra homomorphism).

We have the following immediate consequence.

Corollary 4.2. In the situation of Prop. 4.1, we have for λ ∈ X∗(T )−,

χ′(τλ) =

{
χM(λ(̟))−1 if λ(̟) ∈ ZM ,

0 otherwise.

Given χ ∈ Homk̄-alg(HG(V ), k̄) we can consider its Satake transform χ′ ∈

Homk̄-alg(H
−
T (VU (k)), k̄). We will say that χ′ vanishes on an open subset

X ⊂ T− if χ′ vanishes on all elements of H−
T (VU (k)) that are supported on

X. Then χ′ has a well-defined support, namely the complement in T− of the
biggest open subset on which it vanishes. It has the following alternative
description: under the isomorphism T−/T (O)

∼
−� X∗(T )− it corresponds to

a subset of X∗(T )−. And this is precisely the subset of X∗(T )− on which
χ′ : k̄[X∗(T )−]� k̄ is non-vanishing.

Lemma 4.3. Suppose P = MN is a standard parabolic. A k̄-algebra ho-

momorphism χ : HG(V ) � k̄ factors through ′SMG if and only if suppχ′ ⊃

Z−
MT (O).
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Proof. As we noted in the proof of Prop. 2.12, HM (VN(k)) is the localisation

of HG(V ) at any element ϕ such that the support of ′SG(ϕ) is a single T (O)-
coset in Z−−

M . If suppχ′ ⊃ Z−
MT (O) then χ(ϕ) = χ′(′SG(ϕ)) 6= 0 and so χ

factors through HM (VN(k)).

Conversely, if χ factors through ′SMG , then χ′ extends to the subalgebra of
HT (VU(k)) consisting of those elements whose support in T is antidominant

for M . Since ZMT (O) is a subgroup of T that is contained in the part of T
that is antidominant for M , it follows that suppχ′ ⊃ Z−

MT (O). �

Proof of Proposition 4.1. By the proof of Cor. 1.5 in [Her11], suppχ′ is of
the form Z−

MT (O) for some standard parabolic P =MN . We will show that

algebra homomorphisms χ with suppχ′ = Z−
MT (O) biject with characters

χM : ZM � k̄× such that χM |ZM (O) is the central character of VN(k). By

Lemma 4.3, χ factors through an algebra homomorphism χ̃ : HM (VN(k))�
k̄. It is not hard to verify that χ̃′ has support ZMT (O). Thus by replacing
(M,VN(k), χ̃) by (G,V, χ), we are reduced to the case suppχ′ = ZT (O).

Let us write H
−
T (VU(k)) = H⊕ I, where H (resp., I) consists of those ele-

ments ϕ whose support is contained in ZT (O) (resp., disjoint from ZT (O)).
Clearly H is a subalgebra and I is an ideal, so the χ′ with support ZT (O)
biject with Homk̄-alg(H, k̄). By restricting functions to Z, H is isomorphic
to

{ϕ : Z � k̄ : ϕ(z0z) = ω(z0)ϕ(z) ∀z0 ∈ Z(O), z ∈ Z; suppϕ cpt.}

(as algebra under convolution), where ω is the central character of V . The
linear dual of this space consists of all functions f : Z � k̄ such that
f(z0z) = ω(z0)

−1f(z) under the pairing 〈ϕ, f〉 =
∑

Z(O)\Z ϕ(z)f(z). A

simple argument shows that the linear map H � k̄ induced by f is an
algebra homomorphism if and only if f is a homomorphism Z � k̄×. Finally
we take the inverse of this homomorphism. �

Lemma 4.4. Suppose that π is a smooth G-representation that has a central

character ωπ. Suppose that V is a weight and that χ : HG(V ) � k̄ is a

set of Hecke eigenvalues on HomK(V, π). If χ is parameterised by the pair

(M,χM ), then χM |Z = ωπ.

Proof. It is enough to show that χM (z) = ωπ(z) for all z of the form λ(̟) ∈
Z. First, note that ′SG(Tλ) = τλ: this follows, for example, directly from
the definition of ′SG or from (2.7). By Cor. 4.2, χ(Tλ) = χG(z)

−1. Finally,

consider the induced G-linear map c-IndGK V � π. It follows from (2.10)
that χ(Tλ) = ωπ(z)

−1. �

Lemma 4.5. Suppose that P = MN is a standard parabolic and that σ is

an admissible M -representation. Suppose that V is a weight for G. Then

the Hecke eigenvalues of V in IndG
P
σ and of VN(k) in σ are parameterised

by the same set of pairs (L,χL). In particular, L ⊂M in each case.
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Proof. By Lemma 2.14 the possible HG(V )-eigenvalues in HomK(V, IndG
P
σ)

are obtained from the possibleHM (VN(k))-eigenvalues in HomM(O)(VN(k), σ)

by composing with ′SMG . By construction, the pair associated to χ : HM (VN(k))�
k̄ is the same as the pair associated to χ ◦ ′SMG . �

Lemma 4.6. Suppose that π is a smooth G-representation and that f ∈
HomK(V, π) is an HG(V )-eigenvector. Suppose that η : G� k̄× is a smooth

character. If the Hecke eigenvalues of f are parameterised by (M,χM ), then
the Hecke eigenvalues of f ⊗ η are parameterised by (M,χMη|ZM

).

Proof. Since c-IndGK(V ⊗ η) ∼= c-IndGK V ⊗ η, we have a natural isomorphism

HG(V )
∼
−� HG(V ⊗ η), ϕ 7� ϕη , under which the Hecke eigenvalues of

f and f ⊗ η are identified. A calculation shows that ϕη(g) = η(g)ϕ(g)
when we canonically identify EndV and End(V ⊗ η), which implies that
′SG(ϕη)(t) = η(t)′SG(ϕ)(t). (Note that η is trivial on U , as it kills all pro-p
subgroups.) The claim now follows from the formula for χ′ in Prop. 4.1. �

Finally we define what it means for an irreducible admissible representa-
tion π to be supersingular. Roughly speaking, all Hecke eigenvalues occur-
ring in π should be as trivial as possible. We fixed a hyperspecial maximal
compact subgroup K of G(F ) at the beginning, but our definition should be
independent of this choice and we should take into account all of them. (We
thank M.-F. Vignéras for this observation.) When G = GLn all hyperspecial
maximal compact subgroups of G(F ) are conjugate and we can just work
with our fixed choice of K.

Suppose the reductive group scheme G′
/O is another reductive integral

structure of G/F . Fix a maximal split torus T ′ of G′ and a Borel sub-

group B′ containing T ′. Let K ′ = G′(O). We claim that if K and K ′ are
G(F )-conjugate, then even (K,T,B) and (K ′, T ′, B′) are G(F )-conjugate.
Without loss of generality we may assume that K = K ′. By [Tit79, 3.8.1],
[BT84, II.5.1.40] reductive integral structures of G/F are naturally in bijec-
tion with hyperspecial points of the reduced building. In this bijection G
corresponds to the unique fixed point of G(O) in the reduced building. Thus
G = G′. Now by the same argument that was used towards the end of the
proof of Lemma 2.16 there is an element of G(O) that conjugates (T,B) to
(T ′, B′).

A K ′-weight is an irreducible representation V ′ of G′(k), or equivalently
of K ′. (Hence a K-weight is a weight.) We denote the corresponding Hecke
algebra by HG,K ′(V ′) to emphasise the dependence on K ′.

Definition 4.7. Let π be an irreducible admissible representation. We say
that π is supersingular if for all triples (K ′, T ′, B′) as above, for all K ′-
weights V ′ and for all Hecke eigenvalues χ′ on HomK ′(V ′, π) the following
equivalent conditions hold.

(i) χ′ is parameterised by the pair (G,ωπ).
(ii) χ′ is parameterised by a pair (G,χG) for some χG : Z � k̄×.
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(iii) χ′ does not factor through ′SM
′

G : HG,K ′(V ′) � HM ′,M ′(O)(V
′
N ′(k)

)

for any proper parabolic P ′ =M ′N ′ containing B′.

Note that the first two conditions are equivalent by Lemma 4.4 and the
last two conditions are equivalent by Lemma 4.3 and the proof of Prop. 4.1.

It is easy to see that in this definition, the triple (K ′, T ′, B′) only matters
up to G(F )-conjugacy. Thus we only need to let K ′ run through a set
of representatives for the finitely many conjugacy classes of hyperspecial
maximal compact subgroups in G(F ) (and choose compatible T ′, B′ for
each).

Suppose now that G = GLn. By the above, the supersingularity condition
has to be checked only for our fixed choice (K,T,B). Even better, as a
corollary to our main results we will see that it has to be checked only for
one weight V and for one χ. (See Cor. 9.10.) Moreover supersingularity can
be characterised using parabolic inductions. (See Cor. 9.13.)

5. Computing the Satake transform

In this section we determine the inverse of the mod p Satake transform
explicitly. We deduce this from the corresponding result over the complex
numbers, the Lusztig–Kato formula. The final result has a very simple
shape: since q = 0 in k̄, only the constant terms of the intervening Kazhdan–
Lusztig polynomials matter.

If M is a standard Levi, we will denote by ≥M the usual partial order on
X∗(T ) with respect to M , i.e., λ ≥M µ means that λ− µ is a non-negative
integral linear combination of the simple coroots of M . We also write ≥ for
≥G.

Proposition 5.1. Suppose that the derived subgroup of G is simply con-

nected. Let V be a weight. Let M be the standard Levi subgroup such that

StabW (V U(k)) =WM . Then for all µ ∈ X∗(T )−,

τµ =
∑

λ∈X∗(T )−
λ≥Mµ

SG(Tλ).

The assumption on G should be unnecessary.

Proof. We can easily reduce to the case when M = G by Cor. 2.18(ii). Just
note that if λ ∈ X∗(T ) is antidominant forM and λ ≥M µ, then λ ∈ X∗(T )−.
(The point is that 〈α∨, β〉 ≤ 0 for all α, β ∈ ∆.)

Next we will reduce to the case when V is the trivial weight, by showing
that the coefficients of SG(Tλ) in the basis (τµ)µ do not depend on V . Since
the derived subgroup of G is simply connected, we can write V = F (ν)
for some q-restricted weight ν. We have ν ∈ X0(T ) since StabW (ν) = W .
The dual Weyl module H0

O
(ν) (see [Jan03, §II.8]) of G/O of highest weight

ν is free of rank one (for example by the Weyl character formula [Jan03,
Prop. II.5.10]). In particular there is a character ν̃ : G � F× that agrees
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with ν on T and whose reduction modulo̟ is the one-dimensional represen-
tation V . (Note that ν̃(K) ⊂ O×, as K = G(O) is compact. Alternatively
we could obtain ν̃ using the isogeny of F -tori T � G/G′, where G′ is the
derived subgroup of G.) Let λ, µ ∈ X∗(T )− and put t := λ(̟), t′ := µ(̟).
For g = k1tk2 ∈ KtK we see that Tλ(g) = k1k2 ∈ Endk̄(V ) = k̄, i.e.,

Tλ(g) = ν̃(g)ν̃(t)−1 ∈ k̄×. Now we follow a standard argument (e.g., [Gro98,
§3]). By the Iwasawa decomposition we can write KtK =

∐r
i=1 tiuiK with

ti = λi(̟), λi ∈ X∗(T ), ui ∈ U . Then tiuiK ∩ t′U 6= ∅ if and only if λi = µ,
in which case the intersection equals t′uiU(O). Thus the coefficient of τµ in
SG(Tλ) equals

∑

i:λi=µ

Tλ(t
′ui) = #{i : λi = µ} · ν̃(t′)ν̃(t)−1 = #{i : λi = µ},

where the last equality follows since µ ≥R λ if KtK ∩ t′U 6= ∅ [Her11,

Lemma 3.6] and thus ν̃(t′t−1) = ̟〈ν,µ−λ〉 = 1. It is therefore indeed inde-
pendent of ν ∈ X0(T ).

We now prove the proposition in case V is trivial. Recall the Lusztig–
Kato formula [HKP10, Thm. 7.8.1] (see also [Gro98, §4]). This is an identity

in Z[q1/2, q−1/2][X∗(T )] which, when the variable q1/2 is specialised to a
complex square root of q = #k, gives the following in C[X∗(T )]:

chVµ =
∑

λ≤µ

q−〈µ,ρ〉Pwλ,wµ(q)1
∨
Kλ(̟)K .

Here λ, µ denote any dominant coweights, Vµ is the irreducible complex
representation of highest weight µ of the dual group, ρ is the half-sum of all
positive roots, wλ is the element λ · w0 in the extended affine Weyl group

W̃ = X∗(T )⋊W , where w0 is the longest Weyl element, and 1∨Kλ(̟)K denotes

the classical (i.e., normalised) Satake transform of the characteristic function

of Kλ(̟)K. Besides, for any elements w ≤ w′ in W̃ , Pw,w′(q) ∈ 1 + qZ[q]
denotes the corresponding Kazhdan–Lusztig polynomial. We remark that

λ ≤ µ if and only if wλ ≤ wµ in W̃ .
For any µ′ ∈ X∗(T ) take the coefficient of µ′ in the above formula and

rescale:

q〈µ−w0µ′,ρ〉 dimVµ(µ
′) =

∑

λ≤µ

Pwλ,wµ(q)
∑

U/U(O)

1Kλ(̟)K(µ′(̟)u).

Here Vµ(µ
′) denotes the µ′-weight space in Vµ. Also note that δ

1/2
B (µ′(̟)) =

q〈w0µ′,ρ〉 for the modulus character of B.
Consider the left-hand side. We have Vµ(µ

′) = 0 unless w0µ ≤ µ′ ≤ µ. If
these inequalities hold, then 〈µ − w0µ

′, ρ〉 ≥ 0 with equality if and only if
µ = w0µ

′. Therefore we may reduce both sides modulo p and obtain

τw0µ =
∑

λ≤µ

SG(Tw0λ),
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noting again that the Kazhdan–Lusztig polynomials have constant coeffi-
cient 1. Finally we interchange λ with w0λ and µ with w0µ. �

6. Maps between compact inductions

6.1. Generalities. Suppose that we are given compact open subgroups Hi

of G and finite-dimensional smooth Hi-representations Vi (i = 1, 2). We
define

HH1,H2(V1, V2) := HomG(c-Ind
G
H1
V1, c-Ind

G
H2
V2).

If moreover V3 is a finite-dimensional smooth representation of a compact
open subgroup H3, we have a natural bilinear map given by composition

(6.1) HH2,H3(V2, V3)×HH1,H2(V1, V2)� HH1,H3(V1, V3).

In particular HH1,H2(V1, V2) is a Hecke bimodule, with HH1(V1) acting on
the right and HH2(V2) acting on the left.

By Frobenius reciprocity, HH1,H2(V1, V2) is isomorphic to HomH1(V1, c-Ind
G
H2
V2)

and thus, by thinking of it inside the space of functions on G× V1 � V2, to

{ϕ : G� Homk̄(V1, V2) : suppϕ compact,

ϕ(h2gh1) = h2 ◦ ϕ(g) ◦ h1 ∀hi ∈ Hi, g ∈ G}.

In this language the composition (6.1) is given by convolution: (ϕ′ ∗ϕ)(g) =∑
G/H2

ϕ′(gx)ϕ(x−1).

If H1 = H2 = K and the Vi are weights, we just write HG(V1, V2) for
HK,K(V1, V2).

Proposition 6.2. Suppose that V1, V2 are two weights. Then HG(V1, V2)

is non-zero if and only if V
U(k)
1

∼= V
U(k)
2 as T (k)-representations.

If this is satisfied, the Hecke algebras HG(V1) and HG(V2) can naturally

be identified via SG. Under this identification the actions of the two Hecke

algebras on HG(V1, V2) agree. If moreover the centre of G is connected and

the derived subgroup of G is simply connected then HG(V1, V2) is a free

module of rank one under HG(V1) ∼= HG(V2).

This follows immediately from the following proposition and its proof.

Proposition 6.3. Suppose that V1, V2 are two weights. The Satake trans-

form

SG : HG(V1, V2)� HT (V
U(k)
1 , V

U(k)
2 )

ϕ 7� 
t 7� ∑

u∈U/U(O)

ϕ(tu)
∣∣∣
V

U(k)
1
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is injective. The transform is compatible with compositions:

(6.4)

−−−−−−−−−−−�−−
−
−�SG

−−
−
−�SG

−−
−
−�SG

−−−−−−�HG(V2, V3) × HG(V1, V2) HG(V1, V3)

HT (V
U(k)
2 , V

U(k)
3 ) × HT (V

U(k)
1 , V

U(k)
2 ) HT (V

U(k)
1 , V

U(k)
3 )

If V
U(k)
1

∼= V
U(k)
2 as T (k)-representation, G has connected centre, and the

derived subgroup of G is simply connected, the image of SG is a free module

of rank one under the compatible actions of H−
T (V

U(k)
1 ) ∼= H

−
T (V

U(k)
2 ).

Proof. That the transform is well defined and compatible with compositions
is formal using the Iwasawa decomposition and follows exactly the same
steps as in the case when V1 = V2 (see [Her11]).

Suppose λ ∈ X∗(T )−. By Step 1 of the proof of [Her11, Thm. 1.2], we
see that the vector space of ϕ ∈ HG(V1, V2) that are supported on Kλ(̟)K

is one-dimensional if V
N−λ(k)
1

∼= V
N−λ(k)
2 as Mλ(k)-representations and zero

otherwise. Since N−λ(k) ⊂ U(k) it follows that HG(V1, V2) 6= 0 implies

V
U(k)
1

∼= V
U(k)
2 as T (k)-representation. To see the converse, suppose V

U(k)
1

∼=

V
U(k)
2 and choose any λ ∈ X∗(T )− such that 〈λ, α〉 < 0 for all α ∈ ∆. Then
N−λ = U , so that there exists a non-zero Hecke operator supported on
Kλ(̟)K.

We pick ϕ 6= 0 in HG(V1, V2) and show that SG(ϕ) is non-zero. Sup-
pose first that ϕ is supported on Kλ(̟)K for some λ ∈ X∗(T )−. For
µ ∈ X∗(T ) the same argument as in Step 3 of [Her11, Thm. 1.2] shows that
SG(ϕ)(µ(̟)) 6= 0 implies µ ≥R λ and that SG(ϕ)(λ(̟)) 6= 0. For gen-
eral ϕ, picking a minimal λ ∈ X∗(T )− for ≥R such that ϕ is non-zero on
Kλ(̟)K, we see that SG(ϕ)(λ(̟)) 6= 0. Thus SG is injective. (This gives

an alternative proof that HG(V1, V2) = 0 unless V
U(k)
1

∼= V
U(k)
2 .)

Let us now assume that V
U(k)
1

∼= V
U(k)
2 and that G has connected centre

and simply connected derived subgroup. We first show that there is a λ0 ∈
X∗(T )− such that there is a non-zero ϕ ∈ HG(V1, V2) supported onKλ(̟)K
if and only if λ−λ0 ∈ X∗(T )−. We can write Vi ∼= F (νi) with νi q-restricted.

As V
U(k)
1

∼= V
U(k)
2 , we have ν1 − ν2 ∈ (q − 1)X∗(T ). There is a non-zero

ϕ ∈ HG(V1, V2) supported on Kλ(̟)K if and only if V
N−λ(k)
1

∼= V
N−λ(k)
2 if

and only if 〈ν1 − ν2, α〉 = 0 for all roots α of Mλ, i.e., for all α ∈ Φ such
that 〈λ, α〉 = 0 (the last step uses [Her11, Lemma 2.5] and Prop. 1.3 in the
appendix of [Her09]). Since the centre of G is connected we may choose
λ0 ∈ X∗(T )− such that for all simple roots α, 〈λ0, α〉 = 0 if 〈ν1 − ν2, α〉 = 0
and 〈λ0, α〉 = −1 otherwise. This clearly satisfies the desired property.

We can canonically identify HT (V
U(k)
1 ), HT (V

U(k)
2 ) and we denote them

simply by HT . By Thm. 2.6 and (6.4) we see that H−
T preserves the image of

SG. Choose ϕ0 ∈ HG(V1, V2) that is non-zero and supported on Kλ0(̟)K.
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We show below that H
−
T SG(ϕ0) = im(SG). Since HT

∼= k̄[X∗(T )] is an
integral domain, this completes the proof.

Claim: For all λ ∈ λ0 +X∗(T )− there is a ψλ ∈ H
−
T SG(ϕ0) such that for

all µ ∈ λ0 +X∗(T )−, ψλ(µ(̟)) 6= 0 if and only if µ = λ.
We prove the claim by induction with respect to ≥R, noting that {µ ∈

X∗(T )− : µ ≥R λ} is finite. Consider τλ−λ0SG(ϕ0) ∈ H
−
T SG(ϕ0). By the

above this is zero on µ(̟) unless µ ≥R λ and non-zero on λ(̟). If there
is no µ >R λ in λ0 +X∗(T )− we are done. Otherwise by induction we can
subtract off multiples of ψµ for such µ to find a ψλ.

Finally given ψ ∈ im(SG), by the claim we can subtract off multiples of
the ψλ ∈ H

−
T SG(ϕ0) to assume without loss of generality that ψ(λ(̟)) = 0

for all λ ∈ λ0 +X∗(T )−. Then the above argument for the injectivity of SG
shows that ψ = 0. �

Corollary 6.5. Suppose V is a weight. Then c-IndGK V is a torsion-free

HG(V )-module.

Proof. If c-IndGK V has torsion, there is a non-zero ϕ : c-IndGK V � c-IndGK V
in HG(V ) that has non-zero kernel. As a non-zero smooth G-representation,
the kernel has to contain a weight V ′. By Frobenius reciprocity we get a
non-zero map c-IndGK V ′ � c-IndGK V whose composite with ϕ is zero. More

generally suppose that a composite of non-zero maps ϕ1 : c-IndGK V1 �
c-IndGK V2 and ϕ2 : c-IndGK V2 � c-IndGK V3 is zero. By Prop. 6.2, the T (k)-

representations V
U(k)
1 , V

U(k)
2 , and V

U(k)
3 are isomorphic, and we identify

them (non-canonically). Then for all i, j the bimodules HT (V
U(k)
i , V

U(k)
j )

are all naturally identified with the integral domain HT (V
U(k)
1 ) such that

moreover for any triple (i, j, k) the bimodule multiplication corresponds to
the ring multiplication. Since SG(ϕ2) ∗ SG(ϕ1) = 0 and SG is injective, one
of ϕ1, ϕ2 has to be zero. �

6.2. The minuscule case. Let V , V ′ denote distinct weights such that
V U(k) ∼= (V ′)U(k). As we just saw, in this case we can identify HG(V ) and
HG(V

′), and we will denote them simply by HG. The goal of this subsection
is to find an explicit criterion when

(6.6) c-IndGK V ⊗HG,χ k̄ ∼= c-IndGK V ′ ⊗HG,χ k̄,

in case V and V ′ differ only minimally (in the sense that V N(k) ∼= (V ′)N(k) as
M(k)-representations for some maximal parabolic P = MN) and provided
there exists a corresponding minuscule fundamental coweight. We remark
that when G = GLn, any simple root admits a minuscule fundamental
coweight.

An isomorphism as in (6.6) is extremely useful because it allows us to
“change the weight” in a smooth G-representation π. The point is that
HomG(c-Ind

G
K V ⊗HG,χ k̄, π) 6= 0 is equivalent to saying that V occurs in π

with Hecke eigenvalues χ. So if (6.6) holds and V occurs in π with Hecke
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eigenvalues χ, then V ′ occurs in π with Hecke eigenvalues χ. The results in
this subsection will play a key role in the proofs of Theorems 8.1 and 9.8.

Suppose that G has simply connected derived subgroup. This implies
that simple coroots possess fundamental weights. Fix a simple root α. We
denote by ωα a fundamental weight for α∨, i.e., 〈β∨, ωα〉 = δαβ for all simple
roots β. We make the following assumption.

There exists a minuscule fundamental coweight −λ associated to α.

Recall that this means that 〈−λ, β〉 = δαβ for β ∈ ∆ and 〈−λ, γ〉 ∈ {0, 1}
for all γ ∈ Φ+. In particular, λ ∈ X∗(T )−.

Suppose that ν is a q-restricted weight satisfying 〈ν, α∨〉 = 0. We let
ν ′ := ν + (q − 1)ωα (again q-restricted) and define weights V := F (ν),
V ′ := F (ν ′). Note that V U(k) ∼= (V ′)U(k) as T (k)-representations. There
exist Hecke operators ϕ+

λ ∈ HG(V, V
′) and ϕ−

λ ∈ HG(V
′, V ) whose support

is Kλ(̟)K. (In fact λ is precisely a possible λ0 in the proof of Prop. 6.3.)

Proposition 6.7. With the above notation, SG(ϕ
−
λ ∗ϕ+

λ ) ∈ H
−
T has support

λ(̟)2T (O)∪ λ(̟)2α∨(̟)T (O). The values at λ(̟)2 and λ(̟)2α∨(̟) add
to zero.

Proof. We first compute ϕ−
λ ∗ ϕ+

λ ∈ HG(V ). Let t = λ(̟).

Sublemma 6.8. As −λ is minuscule, we have K ∩ tK = red−1(P−λ(k)).

Note that this is elementary when G = GLn.

Proof of Sublemma 6.8. By Prop. 2.15 we know that the left-hand side is
contained in the right-hand side. We can rewrite the right-hand side by
Lemma 2.16 as

N−λ(O)Mλ(O) ker(Nλ(O)� Nλ(k)).

Since t ∈ Z(Mλ), we see that Mλ(O) ⊂ K ∩ tK. Lemma 2.16 shows that
t−1 contracts N−λ(O) so that N−λ(O) ⊂ K ∩ tK.

Fix an order on the set of roots α such that 〈λ, α〉 > 0. Multiplication

induces an isomorphism
∏

〈λ,α〉>0 Uα
∼
−� Nλ [Jan03, II.1.7(1)]. Moreover we

choose root homomorphisms xα : Ga
∼
−� Uα [Jan03, II.1.2]. An element of

Nλ(O) can then be expressed uniquely as
∏

〈λ,α〉>0 xα(uα) with uα ∈ O. If its

reduction is trivial in Nλ(k) then uα ∈ ̟O for all α. Then t−1
∏
xα(uα)t =∏

xα(α(t
−1)uα), and this is contained inK as 〈λ, α〉 = 1 whenever 〈λ, α〉 > 0

(as −λ minuscule). It follows that ker(Nλ(O)� Nλ(k)) ⊂ K ∩ tK. �

For each w ∈ W choose a representative ẇ ∈ N(T )(O). It follows from
the sublemma that

K/(K ∩ tK) ∼= G(k)/P−λ(k) ∼=
∐

W/Wλ

U(k)ẇP−λ(k)/P−λ(k),

where we used the rational Bruhat decomposition in the last step and where
Wλ denotes WMλ

= StabW (λ). Therefore KtK =
⋃

W U(O)ẇtK.



34 FLORIAN HERZIG

We claim that the support of ϕ−
λ ∗ϕ+

λ is Kt2K. Let λ′ ∈ X∗(T )− and let

t′ = λ′(̟). When we compute (ϕ−
λ ∗ϕ

+
λ )(t

′), by the above all terms are of the

form ϕ−
λ (uẇt)ϕ

+
λ (t

−1ẇ−1u−1t′), where u ∈ U(O) and w ∈ W . As t′ ∈ T−,

(t′)−1u−1t′ ∈ U(O), so if the term is non-zero then so is ϕ−
λ (

wt)ϕ+
λ (

wt−1t′)
(where we also pulled a ẇ from the left to the right). By the refined Cartan
decomposition we need that −wλ + λ′ = w′λ for some w′ ∈ W . Moreover
ϕ−
λ (

wt)ϕ+
λ (

w′

t) 6= 0, which implies that ϕ−
λ (t)ẇ

−1ẇ′ϕ+
λ (t) 6= 0. This in turn

implies that pNλ
(ẇ−1ẇ′(V ′)N−λ(k)) 6= 0. The proof of Lemma 2.17 then

shows that w−1w′ ∈ Wλ. (Note that StabW (ν ′) ⊂ Wλ since the stabiliser
is generated by simple reflections and since 〈ν ′, α∨〉 = q − 1 > 0.) Thus
w′λ = wλ. As −wλ + λ′ = w′λ, we obtain λ′ = 2wλ. Taking into account
that λ′ and λ are antidominant coweights, we see that wλ = λ and that
λ′ = 2λ. The latter equation shows that the support of ϕ−

λ ∗ϕ+
λ is contained

in Kt2K. But if we take λ′ = 2λ, the former equation shows that uẇt =
t(t−1ut)ẇ ∈ tK, so that only the trivial term ϕ−

λ (t)ϕ
+
λ (t) contributes to

(ϕ−
λ ∗ ϕ+

λ )(t
2), but that term is clearly non-zero.

To complete the proof, we will show that SG(T2λ) = τ2λ − τ2λ+α∨ . First
note that 2λ+ α∨ ∈ X∗(T )− since for β ∈ ∆ we have

〈2λ+ α∨, β〉 =

{
0 if β = α,

〈α∨, β〉 ≤ 0 if β 6= α.

Let M be the standard Levi with WM = StabW (ν). Note that α ∈ ∆M . By
Prop. 5.1, it suffices to show the following:

Claim: Suppose µ ∈ X∗(T )−. Then µ ≥M 2λ if and only if µ = 2λ or
µ ≥M 2λ+ α∨.

It suffices to prove the claim with ≥M replaced by ≥. Suppose µ ≥ 2λ,
so µ − 2λ =

∑
i β

∨
i , where the βi are simple roots. Let α0 ∈ X∗(T ) be the

sum of the longest roots of all irreducible components of the root system (it
need not itself be a root). Then α0 =

∑
β∈∆ nββ with nβ ≥ 1. Moreover

α0 is dominant and 〈λ, α0〉 = −nα = −1 (as −λ is minuscule). As µ is
antidominant, we find

〈µ, α〉 ≥
∑

β∈∆

nβ〈µ, β〉 = 〈µ, α0〉 ≥ 〈2λ, α0〉 = −2.

If 〈µ, α〉 > −2 then
∑

i〈β
∨
i , α〉 > 0, so α has to occur among the simple roots

βi and thus µ ≥ 2λ+α∨. If 〈µ, α〉 = −2, then 〈µ, β〉 = 0 for all β ∈ ∆−{α}.
Then µ−2λ = 0 since it is orthogonal to all roots and contained in ZΦ∨. �

Question 6.9. Suppose that the centre of G is connected so that every
simple root α possesses a fundamental coweight λ. Is the result of Prop. 6.7
true when λ is not assumed to be minuscule? It seems that this is the case
when G = GSp4.
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Corollary 6.10. We keep the above notation. Suppose χ ∈ Homk̄-alg(HG, k̄)

is parameterised by (M,χM ). Assume that α 6∈ ∆M . Then

(6.11) c-IndGK V ⊗HG,χ k̄ ∼= c-IndGK V ′ ⊗HG,χ k̄,

provided either α∨(̟) 6∈ ZM or χM (α∨(̟)) 6= 1.

We can reformulate the conditions in a way that does not use ̟. The
first is equivalent to 〈α∨, β〉 6= 0 for some β ∈ ∆M , the second is equivalent
to χM ◦ α∨ : F× � k× being non-trivial.

Proof. By the above, ϕ+
λ , ϕ

−
λ induce G-linear maps between the two repre-

sentations in (6.11). If we can show that χ(ϕ−
λ ∗ϕ

+
λ ) = χ(ϕ+

λ ∗ϕ
−
λ ) is non-zero,

we will be done. Let χ′ be the Satake transform of χ. By Prop. 6.7 it suffices
to show that χ′(τ2λ) 6= χ′(τ2λ+α∨). Recall that suppχ′ = Z−

MT (O).
Since 〈λ, β〉 = 0 for all simple roots β ∈ ∆M (as α 6∈ ∆M ), we have

λ(̟)2 ∈ Z−
M ; moreover λ(̟)2α∨(̟) ∈ Z−

M if and only if α∨(̟) ∈ ZM . We
now use Cor. 4.2. If α∨(̟) 6∈ ZM then χ′(τ2λ) 6= 0 = χ′(τ2λ+α∨). Otherwise
both are non-zero and χ′(τ2λ)χ

′(τ2λ+α∨)−1 = χM(α∨(̟)) 6= 1.
In the latter case let us verify that χM ◦ α∨ is unramified, i.e., trivial on

k×. We have that χM |ZM (k) is the central character of F (ν)N(k), hence it

equals ν|ZM (k). Thus if 〈α
∨, β〉 = 0 for all β ∈ ∆M then α∨(x) ∈ ZM (k) for

x ∈ k×, so χM (α∨(x)) = ν(α∨(x)) = 1. (Recall that 〈ν, α∨〉 = 0.) �

Remark 6.12. Equation (6.11) also holds if α ∈ ∆M and 〈α∨, β〉 = 0 for
all β ∈ ∆M − {α}.

We showed in [Her11] (Step 4 of the proof of Thm. 1.2) that the image of
SG is supported on the “almost antidominant” part of the torus, namely the
set of those t ∈ T such that ordF (α(t)) ≤ 1 for all α ∈ ∆. (The proof still
goes through when V1 6∼= V2.) We now show that the support of the image
of SG may extend outside T− if V1 6∼= V2.

Proposition 6.13. With the above notation, SG(ϕ
+
λ ) ∈ HT has support

λ(̟)T (O) ∪ λ(̟)α∨(̟)T (O).

Note that 〈λ+ α∨, α〉 = 1.

Proof. By Prop. 6.7 it suffices to show that SG(ϕ
−
λ ) has support λ(̟)T (O).

Let M = Mλ. We first claim that SMG (ϕ−
λ ) ∈ HM ((V ′)N(k), V N(k)) has

support M(O)λ(̟)M(O). Since 〈ν ′, α∨〉 > 0 and −λ is a fundamental
coweight for α, it follows that V ′ is Mλ = M -regular. Then Cor. 2.18(ii)
establishes the claim. (Note that the proof still goes through and that it
only depends on the “source” weight V ′.)

Since ν ′−ν = (q−1)ωα and ωα is orthogonal to all simple coroots ofM , we

see that (V ′)N(k) ∼= V N(k). By fixing an isomorphism between them we are

reduced to consider the image of TM
λ under SM : HM (V N(k))� HT (V

U(k)).
But this equals τλ, as λ(̟) ∈ ZM . (Just as in the proof of Lemma 4.4.) �
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Example 6.14. Consider G = GL2 with diagonal torus T and upper-
triangular Borel B. A pair of integers (a, b) denotes the element of X∗(T )
that sends

(
t1

t2

)
to ta1t

b
2. Let V = F (0, 0), the trivial weight, and V ′ =

F (q − 1, 0) ∼= Symq−1 k̄2, the Steinberg weight. Then we are in the sit-
uation considered above, with α = (1,−1). In particular there are non-

zero HG[G]-linear maps c-IndGK V � c-IndGK V ′ and c-IndGK V ′ � c-IndGK V
whose support is K

(
1
̟

)
K. A variant of the latter map was used in [Kis09,

Lemma 1.5.5].

7. Generalised Steinberg representations

In this section we will determine the Jordan–Hölder factors of IndG
B
1

(completing the work of Große-Klönne) as well as their weights and Hecke
eigenvalues. As usual, P =MN and Q denote standard parabolic subgroups
of G throughout.

Recall that the generalised Steinberg representations are defined as fol-
lows:

(7.1) SpP =
IndG

P
1

∑
Q)P IndG

Q
1
.

Theorem 7.2. For any standard parabolic subgroup P , the generalised Stein-

berg representation SpP is irreducible and admissible.

For the Steinberg representation SpB this was proved by Vignéras [Vig08,
§4]. The general case was proved by Große-Klönne [GK, Cor. 4.3], under
the assumption that G is of type A, B, C, or D. We recall Cor. 4.4 of [GK],
which now holds without any restriction on the root system.

Corollary 7.3. The generalised Steinberg representations SpP are pairwise

non-isomorphic. They form the irreducible constituents of IndG
B
1, each oc-

curring with multiplicity one. In particular, IndG
B
1 is of finite length 2#∆.

We deduce Thm. 7.2 from the work of Große-Klönne with the help of
Thm. 3.1. More precisely we show that SpP contains a unique weight, that
that weight lifts to IndG

P
1, and finally that the lifted weight generates IndG

P
1.

Proposition 7.4. For any standard parabolic subgroup P , the representa-

tion SpP contains a unique weight VP . It occurs with multiplicity one. The

unique set of Hecke eigenvalues in weight VP is parameterised by the pair

(T, 1).

We will see in the proof that VP is the uniqueM -regular weight such that

(VP )
N(k) ∼= (VP )N(k) is trivial. It follows that StabW (V

U(k)
P ) =WM , so that

the weights VP are pairwise distinct.
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Proof of Theorem 7.2 and Proposition 7.4. Let SpP denote the generalised
Steinberg representation of G(k), i.e.,

SpP =
Ind

G(k)

P (k)
1

∑
Q)P Ind

G(k)

Q(k)
1
.

Then by [GK, §3], there is a natural K-linear embedding SpP �֒ SpP such
that

(7.5) (SpP )
B(k) = (SpP )

I = (SpP )
I(1).

Since I(1) is a pro-p group, we see in particular that SpP is admissible.
Step 1. We show that socK(SpP ) is irreducible. Let V ⊂ SpP be any

weight. By (7.5) we have V U(k) ⊂ (SpP )
B(k), so V U(k) = V B(k) is a one-

dimensional subspace of (SpP )
B(k), which is stable under the action of the

Hecke algebra k̄[B(k)\G(k)/B(k)]. In [GK, Prop. 3.4] it is shown that any

non-zero k̄[B(k)\G(k)/B(k)]-submodule of (SpP )
B(k) contains the element

gP , which is by definition the image of 1P (k)B(k) ∈ Ind
G(k)

P (k)
1 in SpP . This

shows that V is generated by gP as G(k)-module.
Step 2. By Lemma 2.5, there is a unique M -regular weight VP such that

(VP )N(k) is trivial. Let χ : HM (1)� k̄ denote the Hecke eigenvalues of the

trivial weight in the trivialM -representation. It is parameterised by the pair
(T, 1), for example by Lemmas 4.5 and 4.4 since the trivialM -representation
is contained in the trivial principal series for M . From Thm. 3.1 we get a
surjective G-linear map c-IndGK VP ⊗HG(VP ),χ k̄ ։ IndG

P
1. Thus the image

of VP generates IndG
P
1 as G-representation; a fortiori, its image in SpP is

non-zero and generates. By Step 1, VP is the unique weight of SpP .
Step 3. Suppose that π ⊂ SpP is a non-zero subrepresentation. Then π

contains a weight. By the previous two steps, we know that this is VP and
that VP generates SpP . Thus π = SpP .

The final statement of Prop. 7.4 follows from the proof of Lemma 4.5.
That is, χ ◦ ′SMG is parameterised by (T, 1) because χ is. �

The following proposition will be useful later.

Proposition 7.6. Suppose that P = MN is a standard parabolic and that

Q is a standard parabolic of M . Then the constituents of IndG
P
SpQ are given

by SpP ′, where P ′ runs through all standard parabolic subgroups of G such

that P ′ ∩M = Q. They all occur with multiplicity one.

Proof. The last statement follows from Cor. 7.3: IndG
P
SpQ is a subquotient

of IndG
B
1 since SpQ is a subquotient of IndMB∩M 1.

For each standard parabolic subgroup P ′ of G, P ′ ∩ M is a standard
parabolic subgroup of M . In the parameterisation of standard parabolic
subgroups by subsets of ∆ the map P ′ 7� P ′ ∩M becomes ∆′ 7� ∆′ ∩∆M .
Thus there is a smallest standard parabolic subgroup Q′

0 of G such that
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Q′
0 ∩M = Q and we have P ′ ⊃ Q′

0 if and only if P ′ ∩M ⊃ Q. In fact,
Q′

0 = QN .
By exactness and transitivity of parabolic induction,

IndG
P
SpQ

∼=
IndG

P
IndM

Q
1

∑
R)Q IndG

P
IndM

R
1
∼=

IndG
Q′

0

1
∑

R)Q IndG
R′

0

1
.

Using (7.1) again it follows by induction that the constituents of IndG
P
1 are

given by SpP ′ for P ′ ⊃ P . The claim now follows, recalling that we have
already established that all constituents occur with multiplicity one. �

8. Irreducibility of parabolic inductions

The goal of this section is to construct many irreducible admissible G-
representations by parabolic induction. The most precise results are ob-
tained for GLn.

We remark that parabolic induction preserves admissibility. Suppose
that P = MN is a standard parabolic and that σ is an admissible M -
representation. It suffices to show that (IndG

P
σ)K(1) is finite-dimensional.

This follows from the admissibility of σ since

(IndG
P
σ)K(1) = (IndK

P (O)
σ)K(1) = Ind

G(k)

P (k)
(σM(1)),

where M(1) is the kernel of M(O)�M(k).

8.1. The case of GLn. When G = GLn we will always let T be the diagonal
torus and B the upper-triangular Borel subgroup.

Theorem 8.1. Suppose that G = GLn. Let P be the standard parabolic

with Levi
∏

i GLni
, where

∑
i ni = n. Suppose that σi is an irreducible

admissible supersingular representation of GLni
(F ) for i = 1, . . . , r. Then

IndG
P
(σ1 ⊗ · · · ⊗ σr) is irreducible if and only if there is no i such that ni =

ni+1 = 1 and σi ∼= σi+1.

When n1 = · · · = nr = 1, this was proved by Ollivier [Oll06]. Her method
relied on a detailed knowledge of the I(1)-Hecke algebra and the study of in-
tertwinings of certain induced I(1)-Hecke modules. Henniart (unpublished)
found a different proof in that case, which utilises the structure of a prin-
cipal series as B-representation and which works, under some conditions,
for quasi-split groups. By contrast, our strategy is to show that every non-
zero subrepresentation of an induced representation satisfying the criterion
in Thm. 8.1 has to contain a sufficiently regular weight (by “changing the
weight” as in §6.2), and that such a weight has to generate the whole rep-
resentation (by using the surjectivity of the map in Thm. 3.1).

Lemma 8.2. Suppose that G =
∏r

i=1Gi is a product of split reductive

groups. If σi is an irreducible admissible Gi-representation for i = 1, . . . , r,
then σ :=

⊗
i σi is an irreducible admissible G-representation. Conversely,

every irreducible admissible G-representation is of this form.
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The weights of σ are of the form V :=
⊗

i Vi where Vi is an arbitrary

weight of σi. The Hecke eigenvalues of V in σ are parameterised by the

pairs (
∏

iMi,
∏
χi), where each (Mi, χi) ranges over the pairs parameteris-

ing Hecke eigenvalues of Vi in σi.

Proof. The first part follows just as in the case of finite groups (using a
proof that does not use character theory). Similarly, the weights for G
are of the form

⊗
Vi where each Vi is a weight for Gi. Next note that⊗

HomGi(O)(Vi, σi)
∼= HomG(O)(V, σ). Finally we have a natural isomor-

phism
⊗

HGi
(Vi) ∼= HG(V ) which is induced by the map ⊗ϕi 7� ϕ with

ϕ(g1, . . . , gr) =
⊗
ϕi(gi). (To see that it is a bijection, note that it sends⊗

Tλi
to T∏ λi

.) One also verifies that this isomorphism is compatible with
the Satake transform (for G and the Gi). The lemma then follows easily
from Prop. 4.1. �

Proof of Theorem 8.1. Let Mi = GLni
. We have P = MN with M =∏

i GLni
. We let σ = σ1⊗· · ·⊗σr; it is an irreducible admissible representa-

tion of M . Note first that the criterion is clearly necessary since otherwise
σ extends to a representation of a larger parabolic subgroup.

To show that the criterion is sufficient, assume that π ⊂ IndG
P
σ is a non-

zero subrepresentation. Let V be a weight of π. We claim that the action
of HG(V ) on HomK(V, π) factors through ′SMG : HG(V ) � HM (VN(k)),

which is a localisation map by Prop. 2.12. Consider the natural maps of
finite-dimensional HG(V )-modules,

(8.3) HomK(V, π) �֒ HomK(V, IndG
P
σ)

∼
−� HomM(O)(VN(k), σ),

where HG(V ) acts on the final term via ′SMG (see Lemma 2.14). Any vector
space automorphism of the right-hand side that preserves the left-hand side
obviously acts invertibly on it. The claim follows since ′SMG is a localisation
map. The maps in (8.3) are now HM (VN(k))-linear with the right-hand side

carrying its natural HM (VN(k))-action.

By the above we can pick Hecke eigenvalues χ : HM (VN(k)) � k̄ and

a corresponding Hecke eigenvector f : V � π that occur in the finite-
dimensional HM (VN(k))-module HomK(V, π). By (8.3) we can think of f

also as HM (VN(k))-eigenvector with eigenvalues χ in HomM(O)(VN(k), σ) and

we get a surjection

c-IndMM(O) VN(k) ⊗HM(V
N(k)),χ

k̄ ։ σ.

Case 1: V is M -regular. Then Thm. 3.1 applies. Since IndG
P

is an exact
functor, we obtain

(8.4) c-IndGK V ⊗HG(V ),χ k̄ ։ IndG
P
σ.

This map is naturally induced from V
f
−� π ⊂ IndG

P
σ. (See the computation

of θ in Step 2 of the proof of Thm. 3.1.) As V generates the left-hand side
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0

1 α

Figure 8.1. Final part of the proof of Thm. 8.1: α and α∨.

of (8.4), it follows that IndG
P
σ is generated by f(V ) as G-representation. In

other words, π = IndG
P
σ.

Case 2: V is not M -regular. We show by induction that π has to contain
anM -regular weight (in fact the one corresponding to V N(k) by Lemma 2.5).
Then Case 1 implies that π = IndG

P
σ, which concludes the proof that IndG

P
σ

is irreducible.
Since the derived subgroup of G is simply connected, we can write V ∼=

F (ν). As StabW (ν) 6⊂ WM and since the left-hand side is generated by
simple reflections, there is a simple root α ∈ ∆ −∆M such that sα(ν) = ν.
Since the centre of G is connected, there is a fundamental coweight −λ
associated to α, which is minuscule as G = GLn. Just as in §6.2 we now
put ν ′ = ν + (q − 1)ωα and V ′ = F (ν ′). The map f above gives rise to a
non-zero map c-IndGK V ⊗HG,χ k̄ � π (we also write χ for χ◦ ′SMG ). If we can

show that Cor. 6.10 applies, there is a non-zero map c-IndGK V ′⊗HG,χ k̄ � π,
in particular V ′ is a weight of π. Since StabW (ν ′) is strictly smaller than
StabW (ν), by induction we eventually find that π has to contain an M -
regular weight.

Finally we show that the criterion in Thm. 8.1 implies that the assump-
tions in Cor. 6.10 are satisfied. By Lemma 8.2 and Def. 4.7, the Hecke
eigenvalues χ are parameterised by (M,

∏
χi), where χi is the central char-

acter of σi. We have α 6∈ ∆M . Suppose first that there exists β ∈ ∆M

that is adjacent to α in the Dynkin diagram. In this case 〈α∨, β〉 6= 0, so
α∨(̟) 6∈ ZM and we are done. See the left part of Fig. 8.1. Otherwise, we
have ni = ni+1 = 1 for the two Levi blocks (Mi, σi) and (Mi+1, σi+1) that
α “separates”. (We work with the diagonal torus and the upper triangular
Borel.) See the right part of Fig. 8.1. In particular σi = χi, σi+1 = χi+1.
Therefore on F× we have χM ◦ α∨ = χiχ

−1
i+1 6= 1 by assumption, so we are

done. �

Theorem 8.5. Suppose that G = GLn. Let P be the standard parabolic

with Levi
∏

i GLni
, where

∑
i ni = n. Suppose that σi is an irreducible

admissible supersingular representation of GLni
(F ) for i = 1, . . . , r. Then

IndG
P
(σ1 ⊗ · · · ⊗ σr) has finite length.

By the transitivity of parabolic induction, we can rewrite such a repre-
sentation in the form IndG

Q
(τ1⊗· · ·⊗ τs) with Q ⊃ P the standard parabolic

with Levi
∏

i GLmi
, such that for all i either
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◦ τi is supersingular and mi > 1, or

◦ τi ∼= Ind
GLmi

Bi
ηi for some ηi : F

× � k̄×

and such that ηi 6= ηi+1 whenever both τi and τi+1 fall into the second case.
(Here and in the following, we often write η when we really mean η ◦ det.
Moreover Bi denotes the Borel in GLmi

.)

By Cor. 7.3, the irreducible constituents of Ind
GLmi

Bi
ηi are of the form

SpQi
⊗ηi, where Qi ranges over the standard parabolics of GLmi

.
We have thus reduced the proof of Thm. 8.5 to the following generalisation

of Thm. 8.1. It shows that IndG
Q
(τ1⊗· · ·⊗τs) has length 2

∑
i di , where di = 0

or mi−1 depending on whether τi falls into the first or into the second case.

Theorem 8.6. Suppose that G = GLn. Let P be the standard parabolic with

Levi
∏

i GLni
, where

∑
i ni = n. Suppose that σi is an irreducible admissible

representation of GLni
(F ) for i = 1, . . . , r such that for all i either

◦ σi is supersingular and ni > 1, or
◦ σi ∼= SpQi

⊗ηi for some ηi and some standard parabolic Qi ⊂ GLni
.

Assume that ηi 6= ηi+1 whenever both σi and σi+1 fall into the second case.

Then IndG
P
(σ1 ⊗ · · · ⊗ σr) is irreducible.

Proof. The proof differs from the one of Thm. 8.1 only in the final part. This
time the Hecke eigenvalues are parameterised by the pair (M ′ =

∏
M ′

i ,
∏
χi),

where M ′
i =Mi and χi is the central character of σi if σi falls into the first

case, whereas M ′
i is the torus of Mi and χi = ηi ◦ det if σi falls into the

second case. It follows that α∨(̟) 6∈ ZM ′ unless the blocks adjacent to α,
(Mi, σi) and (Mi+1, σi+1), both fall into the second case and the argument
goes through since ηiη

−1
i+1 6= 1. �

Theorem 8.7. Suppose that the final condition on the ηi is dropped in

Thm. 8.6. Then IndG
P
(σ1⊗· · ·⊗σr) is of finite length with explicit irreducible

constituents, each occurring with multiplicity one.

In the proof we describe the irreducible constituents; in particular we
show that the length of IndG

P
(σ1⊗· · ·⊗σr) equals 2

δ, where δ is the number
of times the condition ηi 6= ηi+1 fails.

Proof. Note that
⊗s

i=1 SpQi
∼= SpQ1×···×Qs

as representation of
∏s

i=1 GLni
.

(For example, directly from (7.1).) We may thus collect consecutive σi with
the same twisting character ηi and use transitivity of parabolic induction
to rewrite our representation as IndG

Q
(τ1 ⊗ · · · ⊗ τs), where Q ⊃ P is the

standard parabolic with Levi
∏

iGLmi
, such that for all i either

◦ τi is supersingular and mi > 1, or

◦ τi ∼= Ind
GLmi

Ri
SpSi

⊗η′i for some η′i : F
× � k̄×

and such that η′i 6= η′i+1 whenever both τi and τi+1 fall into the second case.
Here Ri = LiN

′
i is a standard parabolic of GLmi

and Si a standard para-
bolic of Li. (Note that Li is a product of consecutive GLnj

and Si a product
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of consecutive Qj .) By exactness of parabolic induction, by Prop. 7.6 and
Thm. 8.6 it follows that the irreducible constituents are obtained by re-
placing each τi that falls into the second case by SpS′

i
⊗η′i for any standard

parabolic S′
i of GLmi

such that S′
i ∩ Li = Si.

The multiplicity one assertion is true because these irreducible represen-
tations do not share any common weight. (This holds for the generalised
Steinberg representations by the results of Section 7. Now use (2.13).) Al-
ternatively this follows using ordinary parts; see Cor. 9.10. �

8.2. General results. We show that parabolic inductions of irreducible
admissible representations are usually irreducible, even for general G. As
we do not have the results of §6.2 available in general, we need to put
stronger hypotheses on the weights that are allowed to occur. On the other
hand, the representation of the Levi does not have to be supersingular.

Theorem 8.8. Let P =MN be a standard parabolic and suppose that σ is

an irreducible admissible M -representation satisfying:

(∗) For all simple roots α ∈ ∆−∆M , the restriction to k× via the coroot

α∨ of the T (k)-representation (socM(O) σ)(U∩M)(k) does not contain

the trivial representation.

Then IndG
P
σ is irreducible.

Proof. This follows by the proof of Thm. 8.1, since we now show that (∗)
implies that all weights V of IndG

P
σ are M -regular. First assume that the

derived subgroup of G is simply connected. In this case, V ∼= F (ν) for
some q-restricted weight ν and VN(k)

∼= FM (ν). Assumption (∗) shows that

for all simple roots α ∈ ∆ − ∆M , 〈ν, α∨〉 6≡ 0 (mod q − 1) (as VN(k) is a

direct summand of socM(O) σ and (VN(k))(U∩M)(k) is isomorphic to ν|T (k)).

In particular, 〈ν, α∨〉 > 0 for such α. Since StabW (ν) is generated by simple
reflections, we see that StabW (ν) ⊂WM , so V is indeed M -regular.

If G is general, pick a weight V of IndG
P
σ. The restriction of the T (k)-

representation VU(k) to k
× via α∨ is non-trivial for α ∈ ∆−∆M by (∗). Now

take a z-extension G̃։ G of the special fibre, just as in [Her11, Lemma 2.5].
Since coroots are compatible in z-extensions, we get the analogous statement

for V as G̃(k)-representation. By the previous paragraph, V is M̃ -regular
and therefore M -regular. �

Remark 8.9. Condition (∗) is best possible in the sense that it is equivalent
to the condition that all weights of IndG

P
σ are M -regular.

Here is a simple application to principal series representations.

Corollary 8.10. Suppose that χ : T � k̄× is a smooth character. Then the

principal series representation IndG
B
χ is irreducible provided that χ◦α∨|k× 6=

1 for all simple roots α. (Note that χ|T (O) factors through T (k).)

Proof. This follows from the theorem using (2.13). �
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9. Classification results

9.1. The case of GLn. In this subsection, G = GLn. The goal is to
show that all irreducible admissible representations are of the form as in
Thm. 8.6. Our strategy is roughly speaking as follows. If π is irreducible
admissible, it contains a weight V and Hecke eigenvalues χ in that weight,
so c-IndGK V ⊗HG(V ),χ k̄ ։ π. If there is a standard parabolic P =MN 6= G

such that V is M -regular and χ factors through ′SMG , then we can apply
Thm. 3.1 to express π as a quotient of a (non-trivial) parabolic induction.
We can then use Emerton’s ordinary parts functor (a right adjoint to para-
bolic induction) to write π as a quotient of IndG

P
σ with σ irreducible admis-

sible, and we can induct. If the process gets stuck, we try to “change the
weight” (Cor. 6.10). The one crucial ingredient that is still needed is that
we can detect the trivial representation by its weight and Hecke eigenvalues;
see Prop. 9.1 below.

We recall that Emerton’s functor OrdP [Eme10a] sends smoothG-representations
to smooth M -representations. It is left exact and preserves admissibility. It
is a right adjoint to IndG

P
between the full subcategories of admissible rep-

resentations.

Proposition 9.1. Suppose π is a smooth G-representation such that π con-

tains the trivial weight with Hecke eigenvalues parameterised by (T, 1). Then

either π contains the trivial G-representation or there exists a proper stan-

dard parabolic P such that OrdP π 6= 0.

In fact we will see in Cor. 9.11 below that if π is moreover irreducible and
admissible, then π is the trivial G-representation. (Note also that OrdP 1 =
0 for any proper parabolic P .)

Proof. The first assumption means that πK 6= 0. We use the more classi-
cal notation [KgK] for a Hecke operator in the unramified Hecke algebra
HG(1). The action on πK is the natural left action: if KgK =

∐
gαK,

then [KgK]v :=
∑
gαv ∈ πK . Note that [KgK] = 1Kg−1K ∈ HG(1). Let

Ti := [KtiK], where ti = diag(̟, . . . ,̟, 1, . . . , 1) (i copies of ̟).
Pick v ∈ πK , a Hecke eigenvector with Hecke eigenvalues parameterised

by (T, 1). This means that Tiv = v for all 1 ≤ i ≤ n. (This follows from
Cor. 4.2. Note that ≥R is the same as ≥ on X∗(T ) for GLn and so by (2.7),
SG(Tλ) = τλ whenever −λ is minuscule.) From i = n or from Lemma 4.4
we see that π has trivial central character.

Suppose that OrdP π = 0 for all proper standard parabolics P .
Step 1. We show that Ui := [ItiI] ∈ HI(1) acts nilpotently on v for i = 1,

. . . , n− 1. (Recall that I denotes the Iwahori subgroup.)
Let P be the standard parabolic subgroup with Levi GLi×GLn−i and

let P be the corresponding parahoric subgroup. Suppose that the Hecke
operator [PtiP] has a non-zero eigenvalue on πP. Then a corresponding
eigenvector is even stable under H(1) ⊂ HP(1) because H(1) is generated
by Eh = [Ph−1P] for h = t−1

i and h = t−1
n (in the notation of Lemma 2.21).
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Then there is a unique unramified character χM : ZM � k̄× that sends h−1

to the (non-zero!) eigenvalue of Eh for h = t−1
i and h = t−1

n . Since Eh is

identified with TM
h ∈ HM (1), Prop. 9.14 applies with V = 1 and we see that

OrdP π 6= 0. Contradiction.
Thus [PtiP] is nilpotent on πP. But [PtiP] = [ItiI] on πP ⊂ πI , so

Ui acts nilpotently on v. (To see this, note that PtiP/P naturally bijects
with N(O)/tiN(O) by Lemma 2.16. Similarly ItiI/I naturally bijects with
U(O)/tiU(O). Now use that U = N ⋊ (M ∩ U).)

Step 2. Setup and some lemmas.

Define the following elements in the Iwahori Hecke algebra HI(1):

S1 =

[
I

(
1

1
...

1

)
I

]
, . . . , Sn−1 =

[
I

(
1
...

1
1

)
I

]
,Π =

[
I

(
1
...

1
̟

)
I

]
,

where Si is defined by the i-th simple reflection. It is straightforward to
verify the following relations.

S2
i = −Si for all i,

SiSj = SjSi whenever |i− j| > 1,

SkSk+1Sk = Sk+1SkSk+1 for all k < n− 1,

SkΠ = ΠSk+1 for all k < n− 1.

We also have

Πn = 1 on πI .

The quadratic relations take a simple form, since we work in characteristic p.
For the last property note that the matrix defining Π normalises I. (We
remark that the above is a presentation of HI(1), but we will not need that
fact. It can be deduced from Cor. 4 in [Vig05] for R = Fp and γ consisting
of the trivial character.)

Note that

T1v =
∑

(
̟ a2 a3 ···

1
1
...

)
v +

∑
(

1
̟ a3 ···

1
...

)
v + · · · ,

where in each sum, the ai run over representatives of O modulo ̟.
It is not hard to express this in terms of the Iwahori Hecke action. First,

in each of these sums we can interchange the first column with the col-
umn containing ̟ (since v ∈ πK). For 1 ≤ i ≤ n let xi ∈ G be the
product of the matrices defining Si(i+1)···(n−1)Π. It will suffice to show that
Si(i+1)···(n−1)Π = [IxiI] and that IxiI is the disjoint union of the cosets
u(ai+1, . . . , an)xiI, where u(ai+1, . . . , an) ∈ U(O) is zero above the diagonal
except for the i-th row which ends in (ai+1, . . . , an), and the aj run through
representatives of O modulo ̟. The second claim is a simple calculation.
The first claim follows since both sides contain qn−i one-sided cosets. Since
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T1v = v, we get:

(9.2) v =
n∑

i=1

Si(i+1)···(n−1)Πv,

where we abbreviate Si(i+1)···(j−1) := SiSi+1 · · ·Sj−1 for any 1 ≤ i ≤ j ≤ n.
(This equals 1 when i = j.)

Sublemma 9.3. Suppose i ≤ k ≤ ℓ ≤ j. Then

Si(i+1)···jSk(k+1)···(ℓ−1) = S(k+1)(k+2)···ℓSi(i+1)···j

Proof. It suffices to consider the case ℓ− 1 = k. In that case, i ≤ k ≤ j − 1.
By the braid relations,

Si(i+1)···jSk = Si(i+1)···(k−1)k(k+1)SkS(k+2)···j

= Si(i+1)···(k−1)S(k+1)Sk(k+1)(k+2)···j

= S(k+1)Si(i+1)···j .

�

Sublemma 9.4. We have Sn−1Π
2v = 0.

Proof. We first note that for all i we have Siv = 0. This is immediate from
the fact that v ∈ πK and that the double coset defining Si is a disjoint union
of q = #k one-sided cosets.

Then we get Sn−1Π
2v = Π2S1v = 0 (since Π2v = Π−(n−2)v). �

Sublemma 9.5. For all i, we have Ui = (Si···(n−1)Π)
i.

Proof. If we multiply out the double cosets on the right-hand side, we cer-
tainly find the matrix ti. (We just multiply the defining matrices of all these
double cosets.) To see that the product of the double cosets yields only the
double coset of this diagonal matrix, it’s enough to count the number of
one-sided cosets. On the left-hand side the number of cosets is qi(n−i). Since
each Si contains q cosets and Π contains just one, the result follows. �

Step 3. We show that U1v = S12···(n−1)Πv = 0.
Sublemma 9.5 tells us that U1 = S12···(n−1)Π. We now see that

(S12···(n−1)Π)
2v = S12···(n−1)Π

(
v −

n∑

i=2

Si···(n−1)Πv

)

by (9.2),

= S12···(n−1)Πv −
n∑

i=2

S12···(n−1)S(i−1)···(n−2)Π
2v

by pushing Π to the right,

= S12···(n−1)Πv −

n∑

i=2

Si···(n−1)S12···(n−1)Π
2v

by Sublemma 9.3,
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= S12···(n−1)Πv,

by Sublemma 9.4. In other words, U2
1 v = U1v. So by Step 1, we have

U1v = 0.
Step 4. We show that U2v = S23···(n−1)Πv = 0.
By Step 3, the first term in (9.2) vanishes and we get

(9.6) v =
n∑

i=2

Si(i+1)···(n−1)Πv.

We repeat the calculation we did in the previous step, using (9.6) instead
of (9.2); we find:

(S23···(n−1)Π)
2v = S23···(n−1)Πv.

It follows from Sublemma 9.5 that

(9.7) U2v = (S23···(n−1)Π)
2v = S23···(n−1)Πv

and moreover that U2
2 v = U2v. By Step 1 we see that U2v = 0.

...

Step n+ 2. We show that v ∈ πG.
From Step i+2, we know that Uiv = Si(i+1)···(n−1)Πv = 0 (1 ≤ i ≤ n−1).

Equation (9.2) thus simplifies to v = Πv. Since G is generated by K and(
1
...

1
̟

)
∈ NG(I) (for example by the Cartan decomposition, generating

ti first as in the proof of Sublemma 9.5), the claim follows. This completes
the proof. �

Theorem 9.8. Let π be any irreducible admissible G-representation. Then

there exists a standard parabolic P with Levi
∏r

i=1GLni
and irreducible ad-

missible representations σi of GLni
(F ) such that π ∼= IndG

P
(σ1 ⊗ · · · ⊗ σr)

and such that for all i either

◦ σi is supersingular and ni > 1, or
◦ σi ∼= SpQi

⊗ηi for some ηi and some standard parabolic Qi ⊂ GLni
.

Moreover ηi 6= ηi+1 whenever both σi and σi+1 fall into the second case.

Together with Thm. 8.6, this achieves the classification of irreducible ad-
missible GLn(F )-representations.

We first prove a useful lemma using ordinary parts.

Lemma 9.9. Suppose that Q = LN ′ is a standard parabolic subgroup.

Suppose there is a G-invariant surjection IndG
Q
τ ։ π for some smooth

L-representation τ having a central character and some irreducible admis-

sible G-representation π. Then there exists an irreducible admissible L-
representation σ and a G-invariant surjection IndG

Q
σ ։ π.
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Proof. As τ is locally ZL-finite and π is smooth, the natural map

HomG(Ind
G
Q
τ, π)� HomL(τ,OrdQ π)

is injective: this follows from the injectivity of the first map in [Eme10a,
(4.4.7)] (a geometric fact) and the isomorphism in [Eme10a, Cor. 4.2.8]. In
particular, OrdQ π 6= 0. As OrdQ π is admissible ([Eme10a, Thm. 3.3.3]),
it has an irreducible admissible subrepresentation σ �֒ OrdQ π (the dual
of an admissible L-representation is a finitely-generated module over the
noetherian ring k̄[[L(O)]], see [Eme10a, Lemma 2.2.11]). By the adjunc-

tion [Eme10a, Thm. 4.4.6] we get a G-linear map IndG
Q
σ ։ π. �

Proof of Theorem 9.8. We argue by induction on n. For n = 1, there is
nothing to show. For n > 1, we may assume that there is at least one
weight V that occurs in π with non-supersingular Hecke eigenvalues χ pa-
rameterised by (M,χM ) (otherwise π is supersingular and we are done).
This means that M 6= G.

Let ∆V = {α ∈ ∆ : sα ∈ StabW (V U(k))}, where sα ∈ W denotes the
simple reflection corresponding to the root α. Thus V is M -regular if and
only if ∆V ⊂ ∆M .

Case 1: ∆V ∪∆M 6= ∆. Pick α ∈ ∆− (∆V ∪∆M ). Let Q = LN ′ be the
standard, maximal parabolic defined by α, so ∆L = ∆ − {α} ⊃ ∆M . Then
V is L-regular and χ factors through HL(VN ′(k)). Thm. 3.1 gives rises to

IndG
Q
(c-IndLL(O) VN ′(k) ⊗HL(VN′(k)

),χ k̄) ։ π.

Note that the L-representation that is being induced on the left-hand side
has a central character (namely h 7� χ(TL

h−1)). Thus by Lemma 9.9 there
is an irreducible admissible L-representation σ and a G-linear surjection
IndG

Q
σ ։ π. We can now decompose σ as a tensor product of irreducible

admissible representations of the Levi blocks (Lemma 8.2). By induction,
each of them is of the desired form. By transitivity of parabolic induction
we see that π is a quotient of a parabolic induction of the desired form,
except that consecutive ηi might be equal. But by Thm. 8.7 we know that
all Jordan–Hölder factors of this parabolic induction are of the desired form.

Case 2: ∆V ∪ ∆M = ∆. Suppose first that there is an α ∈ ∆ − ∆M

such that α∨(̟) 6∈ ZM or χM (α∨(̟)) 6= 1. Then by Cor. 6.10, there is a
weight V ′ that occurs in π with the same Hecke eigenvalues χ and such that
∆V ′ = ∆V − {α}. We are thus reduced to Case 1.

Otherwise, for all α ∈ ∆−∆M we have α∨(̟) ∈ ZM and χM (α∨(̟)) = 1.
The first condition implies that M = T and then the second condition
implies that χM = η ◦ det, for some smooth character η. By twisting we
may assume that χM = 1 (see Lemma 4.6). Thus VU(k) is trivial. Since

we are in Case 2, we also have ∆V = ∆. Putting together these two facts
and using Lemma 2.3, we see that V is the trivial weight. By Prop. 9.1,
either π is trivial (and we are done) or OrdQ π 6= 0 for some proper standard
parabolic Q (and we induct as in Case 1). �
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Corollary 9.10. Suppose that π is an irreducible admissible G-representation.

(i) All Hecke eigenvalues of π are parameterised by the same pair (M ′, χM ′).
(ii) There is a unique datum (P, (σi)

r
i=1) as in Thm. 9.8 such that

π ∼= IndG
P
(σ1 ⊗ · · · ⊗ σr). In other words, there are no non-trivial

intertwinings between the representations in Thm. 9.8.

Proof. By Thm. 9.8 we know that π ∼= IndG
P
(σ1 ⊗ · · · ⊗ σr) with (P =

MN, (σi)
r
i=1) satisfying the conditions in that theorem.

As in Thm. 8.6 we write M =
∏
Mi as product of Levi blocks. By

Lemmas 4.5 and 8.2 we see that the Hecke eigenvalues of π are parameterised
by (

∏
M ′

i ,
∏
χi), where (M ′

i , χi) runs over the Hecke eigenvalues of weights
of σi. If σi is supersingular, we haveM

′
i =Mi and χi is the central character

of σi (see Def. 4.7). If σi ∼= SpQi
⊗ηi, then M ′

i is the torus in Mi and
χi = ηi ◦ det (use Prop. 7.4 and Lemma 4.6). Part (i) follows.

Since consecutive ηi are distinct, these common Hecke eigenvalues deter-
mineM . Part (ii) follows since OrdP (Ind

G
P
σ) ∼= σ [Eme10a, Prop. 4.3.4]. �

We can now prove a converse to Prop. 7.4.

Corollary 9.11. Suppose that π is an irreducible admissible G-representation.
Suppose that Q is a standard parabolic and that the weight VQ occurs in π
with Hecke eigenvalues parameterised by (T, 1). Then π ∼= SpQ.

Proof. If π ∼= IndG
P
(σ1 ⊗ · · · ⊗σr) as in Thm. 9.8, then the analysis of Hecke

eigenvalues in the proof of Cor. 9.10 shows that P = G, and that σ1 is a
generalised Steinberg representation (note that r = 1). Then Prop. 7.4 show
that π ∼= SpQ. �

Definition 9.12. Suppose that π is an irreducible admissibleG-representation.
We say that π is supercuspidal if it does not occur as subquotient in IndG

P
σ,

where P = MN is any proper standard parabolic and σ any irreducible
admissible M -representation.

Corollary 9.13. Suppose π is an irreducible admissible G-representation.
Suppose P = MN is a standard parabolic and σ an irreducible admissible

M -representation.

(i) IndG
P
σ is of finite length, and all constituents occur with multiplicity

one. All Hecke eigenvalues of all constituents are parameterised by

the same pair (M ′, χM ′).
(ii) π is supersingular if and only if π is supercuspidal.

Proof. Part (i) follows from Thm. 8.7 and the analysis of Hecke eigenval-
ues in the proof of Cor. 9.10. (In terms of the classification in Thm. 9.8,
only the parabolics Qi differ among the constituents. But Qi plays no role
for the Hecke eigenvalues.) It is clear that the Hecke eigenvalues of σ are
parameterised by the same pair (M ′, χM ′). In particular, M ′ ⊂M .

If π is supercuspidal, it follows from Thm. 9.8 and the definition of the
generalised Steinberg representations that π is supersingular. Conversely,
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suppose that π occurs in IndG
P
σ for some proper parabolic P . By the above,

the Hecke eigenvalues of π are parameterised by (M ′, χM ′) with M ′ ⊂M 6=
G. Thus π cannot be supersingular. �

9.2. Some general results. We show for general G that any irreducible
admissible G-representation is parabolically induced from a supersingular
representation, provided that it does not contain certain weights at the
boundary. First we need the following result on the weights of ordinary
parts.

Proposition 9.14. Suppose that V is a weight for M . Suppose χM : ZM �
k̄× is a homomorphism such that χM |ZM (O) is the central character of V .

Then there is an algebra homomorphism χ : HM (V )� k̄ such that χ(TM
h ) =

χM(h)−1 for all h ∈ ZM and for any smooth G-representation π we have a

natural isomorphism

(9.15) HomM(O)(V , (OrdP π)
ZM=χM ) ∼= HomG(c-Ind

G
P V ⊗

H(V ),χ k̄, π).

Proof. We let h ∈ ZM act on V by χM (h). As this agrees with the usual
action on ZM (O), the weight V becomes an M(O)ZM -representation. Thus
by the definition of OrdP π [Eme10a, Def. 3.1.9], the left-hand side of (9.15)
is naturally isomorphic to

HomM(O)ZM
(V ,HomZ+

M
(ZM , π

N(O))) ∼= HomM(O)Z+
M
(V , πN(O)).

(Even though we let ZM denote the connected centre, as opposed to [Eme10a],
it is straightforward to verify that this is irrelevant for the definition of
OrdP .) We verify that any M(O)Z+

M -linear map f : V � πN(O) factors

through πP(1), where P(1) = ker(P � M(k)). By the smoothness of π and
by Lemma 2.16, there is an h ∈ Z−−

M such that f(V ) is fixed by h(P−).

Then h−1f(V ) is fixed by P−(M ∩K(1))(P+)h = P(1) ∩ P(1)h. Note that
the natural map N(O)/N(O)h � P(1)/(P(1) ∩ P(1)h) is a bijection. By the

definition of the Hecke Z+
M -action on πN(O), we have for all v ∈ V :

χM (h−1)f(v) =
∑

N(O)/N(O)h

nh−1f(v) =
∑

P(1)/(P(1)∩P(1)h)

ph−1f(v).

This implies that f(v) ∈ πP(1). In particular f is P-linear.
By Prop. 4.1 and Cor. 4.2 (or directly) the pair (M,χM ) gives rise to

χ : HM (V ) � k̄ such that χ(TM
h ) = χM (h)−1 for h ∈ ZM . We verify

that the P-linear map f : V � πP(1) �֒ π is an H(V )-eigenvector with
eigenvalues χ. For h ∈ Z−

M ,

(f∗Eh)(v) =
∑

P/(P∩Ph)

ph−1f(Eh(hp
−1)v) =

∑

N(O)/N(O)h

nh−1f(v) = χM (h−1)f(v),

since N(O)/N(O)h � P/(P ∩ Ph) is a bijection and by definition of the

Z+
M -Hecke action on πN(O). (Note that Eh was defined in the proof of

Lemma 2.21.) Now note that χ(Eh) = χ(TM
h ) = χM (h−1).
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Thus we have a natural map

HomM(O)Z+
M
(V , πN(O))� HomG(c-Ind

G
P V ⊗

H(V ),χ k̄, π).

Reversing the above argument we obtain an inverse map. This completes
the proof. �

Lemma 9.16. Suppose that π is an irreducible admissible G-representation.
Then there exists a standard parabolic P = MN and an irreducible admis-

sible M -representation σ such that IndG
P
σ ։ π and such that for all triples

(K ′
M , T

′
M , B

′
M ) as in Def. 4.7, all T ′

M -regular K ′
M -weights of σ are super-

singular.

Proof. Suppose that π contains a T ′-regularK ′-weight that is non-supersingular,
for some triple (K ′, T ′, B′). Relabel (K ′, T ′, B′) as (K,T,B) for a moment.
Pick a T -regular weight V that occurs in π with Hecke eigenvalues param-
eterised by the pair (M,χM ), M 6= G. In the notation of the proof of
Thm. 9.8 we see that ∆V = ∅ and ∆M 6= ∆. By Case 1 of the proof of
Thm. 9.8, there is a proper standard parabolic Q = LN ′, an irreducible
admissible L-representation σ, and a G-linear surjection IndG

Q
σ ։ π. When

we change back to the original notation, Q gets replaced by some parabolic
subgroup, but we can easily rewrite any parabolic induction as an induction
from a standard parabolic subgroup. Now induct. �

Theorem 9.17. Suppose that π is an irreducible admissible G-representation
such that the following condition is satisfied:

(∗′) For all triples (K ′, T ′, B′) as in Def. 4.7 and for all simple roots

α ∈ X∗(T ′), the restriction to k× via the coroot α∨ of the T ′(k)-

representation (socK ′ π)U
′(k) does not contain the trivial represen-

tation.

Then there exists a standard parabolic P = MN and an irreducible admis-

sible supersingular M -representation σ such that π ∼= IndG
P
σ.

In the situation of the theorem all Hecke eigenvalues of π can be naturally
identified. We can compare Hecke eigenvalues in the following way. Suppose
we work with a triple (K ′, T ′, B′). The Hecke eigenvalues of a K ′-weight
are then parameterised by a pair (L′, χL′), where L′ is a standard Levi
with respect to (T ′, B′). The pair (T ′, B′) can be conjugated to (T,B) by
an element of G, which is unique up to T . After conjugating (L′, χL′) by
such an element we get a well-defined pair (L,χL) with L standard and
χL : ZL � k̄× a smooth character. (To be precise we mean L/F : the
integral structure depends on the triple we started with.) It is now clear
from Def. 4.7 and Lemma 4.5 that in this way all Hecke eigenvalues of π
give rise to the pair (M,ωσ), where ωσ is the central character of σ (just as
in Cor. 9.10).

Proof. By Thm. 9.16 there exists an irreducible admissibleM -representation σ
such that IndG

P
σ ։ π and such that all T ′

M -regular K ′
M -weights of σ are
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supersingular. It will suffice to show that condition (∗′) implies that IndG
P
σ

is irreducible and that all K ′
M -weights of σ are T ′

M -regular (for any triple
(K ′

M , T
′
M , B

′
M )).

We first show that for any weight V of σ the unique M -regular weight
V of G such that V N(k) ∼= V (see Lemma 2.5) is a weight of π. Let
χM : ZM � k̄× be the central character of σ, so we have anM(O)-linear map
V �֒ σ �֒ (OrdP π)

ZM=χM . By Prop. 9.14 we obtain an algebra homomor-
phism χ : HM (V ) � k̄ and a G-linear surjection c-IndGP V ⊗

H(V ),χ k̄ ։ π.

As V is M -regular, we may apply Cor. 2.25 and get a G-linear surjection
c-IndGK V ⊗

H(V ),χ k̄ ։ π. Thus V is a weight of π.

To show that IndG
P
σ is irreducible it suffices to show that σ satisfies

condition (∗) of Thm. 8.8. Suppose that V is a weight of σ. By what we just

showed, V ∼= V N(k) for some weight V of π. So V (U∩M)(k)
∼= V

(U∩M)(k) ∼=

V U(k). Thus the condition follows from (∗′).
To complete the proof, it will be useful to have an alternative description

of a triple (K,T,B). We claim that K is a hyperspecial subgroup corre-
sponding to a point in the apartment of T/F . Conversely we claim that if
we start with a hyperspecial subgroup K ′ corresponding to a point in the
apartment of a torus T ′

/F and a Borel subgroup B′
/F containing T ′

/F , then

K ′ = G′(O) for a unique reductive integral structure G′ of G/F . Moreover,
T ′
/F extends (uniquely) to a split maximal torus T ′ of G′ and B′

/F extends

(uniquely) to a Borel subgroup of G′ containing T ′.
To see the first claim, we already recalled in Section 4 that the reductive

integral structure G of G/F corresponds to a unique hyperspecial point x
in the building of G/F (the unique fixed point of K). Choose a torus Tx/F
in G/F whose apartment contains x. By Bruhat–Tits theory, the torus Tx/F
extends (uniquely) to a split maximal torus Tx of G. But then T and Tx are
conjugate by an element of G(O) = K [G+70, Exp. XXVI, Prop. 6.16], so x
also lies in the apartment of T/F . For the second claim, the corresponding
hyperspecial point gives rise to the required reductive integral structure G′

of G/F . The remaining assertions are established by Bruhat–Tits ([BT84,
§II.4.6]; see [Her11, §3] for more details).

Finally we deduce that all K ′
M -weights of σ are T ′

M -regular. By conju-
gating (K ′

M , T
′
M , B

′
M ) by an element of M , we may assume that (T ′

M , B
′
M )

agrees with (T,B ∩M) on the generic fibre. We claim that there is a re-
ductive integral structure G′ of G/F with a torus T ′ and a Borel subgroup
B′ containing it such that (T ′, B′) agrees with (T,B) on the generic fibre
and such that G′(O) ∩M = K ′

M . By the above claims it suffices to find a
hyperspecial subgroup K ′ corresponding to a point in the apartment of T/F
such that K ′ ∩ M = K ′

M . By [BT72, §7.6] and [BT84, II.4.2.18] the ex-
tended building of M/F can be embedded M -equivariantly in the extended
building of G/F such that the apartments AM (T/F ) and AG(T/F ) of T/F
coincide. Moreover any wall in AM (T/F ) is a wall in AG(T/F ). Let y be a
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(hyperspecial) point in AM (T/F ) whose stabiliser in M is K ′
M . (Note that

y need not be unique, since we work with the extended building.) As y
is hyperspecial, for each simple root α ∈ ∆M there is an α-wall Hα that
passes through y. The stabiliser in M of any point in

⋂
α∈∆M

Hα is K ′
M . (It

projects to a single point in the reduced building of M/F .) For each simple
root β ∈ ∆−∆M pick an arbitrary β-wall Hβ in AG(T/F ). As simple roots
are linearly independent, we see that

⋂
β∈∆Hβ 6= ∅. Let x be any point in

this intersection. It is hyperspecial and its stabiliser K ′ in G is as required.
After relabelling (K ′, T ′, B′) as (K,T,B) we can now assume that (K ′

M , T
′
M , B

′
M ) =

(M(O), T,B ∩M). Then notice that we established above that condition
(∗) holds for σ, but even for all simple roots α. We show that the condition
for simple roots α ∈ ∆M implies the T -regularity of all weights of σ. If the
derived subgroup of M is simply connected, we can write V ∼= FM (ν) for
some ν ∈ X∗(T ). If sα(ν) = ν for some α ∈ ∆M it follows that ν ◦ α∨ is
trivial on k×, contradicting the condition. In the general case one uses a
z-extension of M/k. �

10. Submodule structure

In this section we determine the submodule structure of parabolically
induced representations in two situations: for the trivial principal series
(G general) and for the parabolic induction of an irreducible admissible
representation (when G = GLn).

We recall some elementary facts about the submodule structure of finite
length modules whose constituents occur with multiplicity one. Let M be
such a module over some, not necessarily commutative, ring. Let J denote
the (finite) set of irreducible constituents of M . For each j ∈ J there is a
unique submodule Mj whose cosocle is j. There is a partial order ≤ on J
such that i ≤ j if and only if Mj contains i as constituent. Then the lattice
of submodules of M (with respect to inclusion) is naturally isomorphic to
the lattice of lower sets in (J,≤) (with respect to inclusion). (By a lower set

in a partially ordered set (J,≤) we mean a subset J ′ ⊂ J such that i ∈ J ′

whenever i ≤ j and j ∈ J ′.) A submodule N is sent to the lower set JH(N)
of constituents of N , whereas a lower set J ′ ⊂ J is sent to the submodule∑

j∈J ′ Mj .

Recall from Cor. 7.3 that all constituents of IndG
B
1 occur with multiplicity

one.

Proposition 10.1. Let Π denote the set of standard parabolic subgroups.

The lattice of submodules of IndG
B
1 is naturally isomorphic to the lattice of

lower sets in (Π,⊃).

Note that we can identify the set of constituents of IndG
B
1 with the set

of standard parabolic subgroups via SpP � P . With this identification a
submodule N corresponds to the lower set JH(N).
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We have an analogous result for IndG
P
SpQ as in Prop. 7.6: the submodule

lattice is isomorphic to the lattice of lower sets in (ΠQ,⊃), where ΠQ consists
of all standard parabolic subgroups P ′ such that P ′ ∩M = Q. (Just note
that IndG

P
SpQ is a subquotient of IndG

B
1.)

Proof. Let P be a standard parabolic subgroup. We will show that IndG
P
1

is the unique submodule with cosocle SpP . This implies the result: we have
JH(IndG

P
1) = {SpQ : Q ⊃ P} by using (7.1) and induction. Recall from

Section 7 that each SpQ contains a unique weight VQ and that these weights
are pairwise distinct. Moreover we saw in the proof of Thm. 7.2 that VP is
a weight of IndG

P
1 and that it generates IndG

P
1 as G-representation. Thus

the image of VP generates any quotient of IndG
P
1, so SpP is the unique

irreducible quotient of IndG
P
1. �

Now let G = GLn. Let P = MN be a standard parabolic subgroup
and σ an irreducible admissible M -representation. We will determine the
submodule structure of IndG

P
σ. Recall from Cor. 9.13 that IndG

P
σ has finite

length and that the constituents occur with multiplicity one.
We can use Thm. 9.8 to express π := IndG

P
σ in the same form as in

Thm. 8.7. As in the proof of Thm. 8.7 we can further rewrite π as IndG
Q
(τ1⊗

· · · ⊗ τs), where Q is the standard parabolic with Levi
∏

iGLmi
, such that

for all i either

◦ τi is supersingular and mi > 1, or

◦ τi ∼= Ind
GLmi

Ri
SpSi

⊗η′i for some η′i : F
× � k̄×

and such that η′i 6= η′i+1 whenever both τi and τi+1 fall into the second case.
Here Ri = LiN

′
i is a standard parabolic of GLmi

and Si a standard parabolic
of Li. Let I ⊂ {1, . . . , s} be the subset of those i such that τi falls into the
second case. Let X be the set consisting of tuples (S′

i)i∈I such that each S′
i

is a standard parabolic subgroup of GLmi
satisfying S′

i∩Li = Si. We define
a partial order ≤X on X by declaring that (S′

i)i∈I ≤X (S′′
i )i∈I if and only if

S′
i ⊃ S′′

i for all i ∈ I.

Proposition 10.2. With the above notation, the lattice of submodules of

IndG
P
σ is naturally isomorphic to the lattice of all lower sets in (X,≤X).

Proof. Whenever we are given GLmi
-representations τ ′i for i ∈ I, let ς(τ ′i :

i ∈ I) denote the
∏

iGLmi
-representation

⊗s
i=1 τ

′
i , where τ

′
i = τi for i 6∈ I.

Also let π(τ ′i : i ∈ I) denote IndG
Q

(
ς(τ ′i : i ∈ I)

)
. Then the constituents of π

are the π(SpS′

i
: i ∈ I) for (S′

i)i∈I ∈ X.

Note that π is a subquotient of π′ := π(Ind
GLmi

Bi
η′i : i ∈ I), where Bi

is the Borel in GLmi
. The corresponding partially ordered sets (X,≤X),

(X ′,≤X′) are compatible in the sense that ≤X is the restriction of ≤X′

to X. Without loss of generality we can therefore assume that π = π′. (I.e.,
Ri = Bi and Si = Li = T .) Then π has constituents π(SpRi

⊗η′i : i ∈ I),
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where the Ri run over all standard parabolic subgroups of GLmi
(for i ∈ I).

Fix now such Ri. We claim that the submodule π(Ind
GLmi

Ri
η′i : i ∈ I) has

irreducible cosocle π(SpRi
⊗η′i : i ∈ I). To see this, let Vi be any weight of

τi for i 6∈ I and the unique weight of SpRi
⊗η′i for i ∈ I. Then V :=

⊗
Vi is

a weight of ς(Ind
GLmi

Ri
η′i : i ∈ I) and generates it as

∏
iGLmi

-representation

(by the proof of Thm. 7.2). Let V be the
∏

iGLmi
-regular weight for G

that corresponds to V under the bijection of Lemma 2.5. By Thm. 3.1 it

follows that V generates π(Ind
GLmi

Ri
η′i : i ∈ I) as G-representation. (Just

pick any set of Hecke eigenvalues χ for the weight V .) But (2.13) and
the fact that generalised Steinberg representations can be distinguished by

their weights show that π(Ind
GLmi

Ri
η′i : i ∈ I) indeed has irreducible cosocle

π(SpRi
⊗η′i : i ∈ I).

Finally notice that the constituents of π(Ind
GLmi

Ri
η′i : i ∈ I) are all

π(SpR′

i
⊗η′i : i ∈ I) with R′

i ⊃ Ri for all i ∈ I. (Decompose each Ind
GLmi

Ri
η′i

and apply Thm. 8.6.) �

References
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210, 1980.
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